
Thinking in C++ 2nd edition
VERSION TICA8

Revision history:

TICA8, September 26, 1998. Completed the STL containers chapter.

TICA7, August 14, 1998. Strings chapter modified. Other odds and ends.

TICA6, August 6, 1998. Strings chapter added, still needs some work but it’s in fairly good
shape. The basic structure for the STL Algorithms chapter is in place and «just» needs to be
filled out. Reorganized the chapters; this should be very close to the final organization (unless
I discover I’ve left something out).

TICA5, August 2, 1998: Lots of work done on this version. Everything compiles (except for
the design patterns chapter with the Java code) under Borland C++ 5.3. This is the only
compiler that even comes close, but I have high hopes for the next verison of egcs. The
chapters and organization of the book is starting to take on more form. A lot of work and new
material added in the «STL Containers» chapter (in preparation for my STL talks at the
Borland and SD conferences), although that is far from finished. Also, replaced many of the
situations in the first edition where I used my home-grown containers with STL containers
(typically vector). Changed all header includes to new style (except for C programs):
<iostream> instead of <iostream.h>, <cstdlib> instead of <stdlib.h>, etc. Adjustment of
namespace issues («using namespace std» in .cpp files, full qualification of names in header
files). Added appendix A to describe coding style (including namespaces). Added «require.h»
error testing code and used it universally. Rearranged header include order to go from more
general to more specific (consistency and style issue described in appendix A). Replaced
‘main() {}’ form with ‘int main() { }’ form (this relies on the default «return 0» behavior,
although some compilers, notably VC++, give warnings). Went through and implemented the
class naming policy (following the Java/Smalltalk policy of starting with uppercase etc.) but
not the member functions/data members (starting with lowercase etc.). Added appendix A on
coding style. Tested code with my modified version of Borland C++ 5.3 (cribbed a corrected
ostream_iterator from egcs and <sstream> from elsewhere) so not all the programs will
compile with your compiler (VC++ in particular has a lot of trouble with namespaces). On the
web site, I added the broken-up versions of the files for easier downloads.

TICA4, July 22, 1998: More changes and additions to the «CGI Programming» section at the
end of Chapter 23. I think that section is finished now, with the exception of corrections.

TICA3, July 14, 1998: First revision with content editing (instead of just being a posting to
test the formatting and code extraction process). Changes in the end of Chapter 23, on the
«CGI Programming» section. Minor tweaks elsewhere. RTF format should be fixed now.

TICA2, July 9, 1998: Changed all fonts to Times and Courier (which are universal); changed
distribution format to RTF (readable by most PC and Mac Word Processors, and by at least

one on Linux: StarOffice from www.caldera.com. Please let me know if you know about
other RTF word processors under Linux).

__

The instructions on the web site (http://www.BruceEckel.com/ThinkingInCPP2e.html) show
you how to extract code for both Win32 systems and Linux (only Red Hat Linux 5.0/5.1 has
been tested). The contents of the book, including the contents of the source-code files
generated during automatic code extraction, are not intended to indicate any accurate or
finished form of the book or source code.

Please only add comments/corrections using the form found on
http://www.BruceEckel.com/ThinkingInCPP2e.html

Please note that the book files are only available in Rich Text Format (RTF) or plain ASCII
text without line breaks (that is, each paragraph is on a single line, so if you bring it into a
typical text editor that does line wrapping, it will read decently). Please see the Web page for
information about word processors that support RTF. The only fonts used are Times and
Courier (so there should be no font difficulties); if you find any other fonts please report the
location.

Thanks for your participation in this project.

Bruce Eckel

«This book is a tremendous achievement. You owe it to yourself to have a
copy on your shelf. The chapter on iostreams is the most comprehensive and
understandable treatment of that subject I've seen to date.»

Al Stevens
Contributing Editor, Doctor Dobbs Journal

«Eckel's book is the only one to so clearly explain how to rethink program
construction for object orientation. That the book is also an excellent tutorial
on the ins and outs of C++ is an added bonus.»

Andrew Binstock
Editor, Unix Review

«Bruce continues to amaze me with his insight into C++, and Thinking in
C++ is his best collection of ideas yet. If you want clear answers to difficult
questions about C++, buy this outstanding book.»

Gary Entsminger
Author, The Tao of Objects

«Thinking in C++ patiently and methodically explores the issues of when and
how to use inlines, references, operator overloading, inheritance and dynamic
objects, as well as advanced topics such as the proper use of templates,
exceptions and multiple inheritance. The entire effort is woven in a fabric that
includes Eckel’s own philosophy of object and program design. A must for
every C++ developer’s bookshelf, Thinking in C++ is the one C++ book you
must have if you’re doing serious development with C++.»

Richard Hale Shaw
Contributing Editor, PC Magazine

Thinking
In

C++
Bruce Eckel

President, MindView Inc.

Prentice Hall PTR
Upper Saddle River, New Jersey 07458
http://www.phptr.com

Publisher: Alan Apt
Production Editor: Mona Pompilli
Development Editor: Sondra Chavez
Book Design, Cover Design and Cover Photo:

Daniel Will-Harris, daniel@will-harris.com
Copy Editor: Shirley Michaels
Production Coordinator:Lori Bulwin
Editorial Assistant: Shirley McGuire

© 1998 by Bruce Eckel, MindView, Inc.
Published by Prentice Hall Inc.
A Paramount Communications Company

Englewood Cliffs, New Jersey 07632
The information in this book is distributed on an «as is» basis, without warranty. While every precaution
has been taken in the preparation of this book, neither the author nor the publisher shall have any
liability to any person or entitle with respect to any liability, loss or damage caused or alleged to be
caused directly or indirectly by instructions contained in this book or by the computer software or
hardware products described herein.

All rights reserved. No part of this book may be reproduced in any form or by any electronic or
mechanical means including information storage and retrieval systems without permission in writing
from the publisher or author, except by a reviewer who may quote brief passages in a review. Any of the
names used in the examples and text of this book are fictional; any relationship to persons living or dead
or to fictional characters in other works is purely coincidental.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-917709-4

Prentice-Hall International (UK) Limited, London

Prentice-Hall of Australia Pty. Limited, Sydney

Prentice-Hall Canada, Inc., Toronto

Prentice-Hall Hisapnoamericana, S.A., Mexico

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

dedication
to the scholar, the healer, and the muse

What’s inside...
Thinking in C++ 2nd edition VERSION
TICA8 ... 1

Preface 15
Prerequisites 15

Thinking in C...................................... 15
Learning C++ 16
Goals .. 17
Chapters 18
Exercises 22
Source code 22

Coding standards 23
Language standards................... 24

Language support 24
Seminars & CD Roms............... 25
Errors 25
Acknowledgements................... 25

1: Introduction to objects 27
The progress of abstraction........ 27
An object has an interface 29
The hidden implementation 30
Reusing the implementation 32
Inheritance: reusing the interface32

Overriding base-class functionality... 33
Is-a vs. is-like-a relationships 33

Interchangeable objects with
polymorphism........................... 34

Dynamic binding 36
Abstract base classes and interfaces.. 37
Objects: characteristics + behaviors.. 37
Inheritance: type relationships........... 38
Polymorphism..................................... 38
Manipulating concepts: what an OOP
program looks like.............................. 39

Object landscapes and lifetimes 40
Containers and iterators 41

Exception handling: dealing with
errors ..42
Introduction to methods.............43

Complexity ... 43
Internal discipline............................... 44
External discipline.............................. 45
Five stages of object design............... 49
What a method promises.................... 50
What a method should deliver........... 51
«Required» reading 54

Scripting: a minimal method.....55
Premises .. 55
1. High concept................................... 58
2. Treatment.. 58
3. Structuring 58
4. Development 60
5. Rewriting .. 62
Logistics.. 62

Analysis and design...................63
Staying on course 63
Phase 0: Let’s make a plan 64
Phase 1: What are we making?.......... 64
Phase 2: How will we build it?.......... 65
Phase 3: Let’s build it! 66
Phase 4: Iteration................................ 66
Plans pay off 68

Other methods...........................68
Booch .. 69
Responsibility-Driven Design (RDD)70
Object Modeling Technique (OMT). 71

Why C++ succeeds....................71
A better C.. 72
You’re already on the learning curve 72
Efficiency.. 72
Systems are easier to express and
understand... 73
Maximal leverage with libraries........ 73
Error handling..................................... 73
Programming in the large 74

Strategies for transition..............74
Stepping up to OOP 74
Management obstacles 76

Summary 77

2: Making & using objects 79
The process of language translation79

Interpreters.. 79
Compilers.. 80
The compilation process 81

Tools for separate compilation... 82
Declarations vs. definitions 82
Linking.. 86
Using libraries..................................... 86

Your first C++ program............. 88
Using the iostreams class................... 88
Fundamentals of program structure... 88
"Hello, world!" 89
Running the compiler......................... 90

More about iostreams................ 90
String concatenation........................... 91
Reading input...................................... 91
Simple file manipulation.................... 92

Summary 93
Exercises 93

3: The C in C++ 95
Controlling execution in C/C++. 95

True and false in C 95
if-else... 96
while.. 97
do-while .. 98
for.. 98
The break and continue Keywords.. 99
switch.. 101

Introduction to C and C++
operators................................. 102

Precedence .. 103
Auto increment and decrement........ 103

Using standard I/O for easy file
handling.................................. 104

Simple "cat" program....................... 104
Handling spaces in input.................. 105

Utility programs using iostreams
and standard I/O...................... 107

Pipes .. 107
Text analysis program...................... 108
IOstream support for file manipulation109

Introduction to C++ data 110
Basic built-in types........................... 110

bool, true, & false.....................111
Specifiers... 112

Scoping................................... 113
Defining data on the fly 114

Specifying storage allocation... 115

Global variables................................ 116
Local variables.................................. 116
static.. 117
extern.. 118
Constants... 119
volatile .. 122

Operators and their use122
Assignment 122
Mathematical operators.................... 122
Relational operators 124
Logical operators.............................. 124
Bitwise operators.............................. 125
Shift operators 126
Unary operators 128
Conditional operator or ternary
operator ... 129
The comma operator 129
Common pitfalls when using operators130
Casting operators.............................. 130
sizeof -- an operator by itself 131
The asm keyword............................. 131
Explicit operators 131

Creating functions132
Function prototyping........................ 132
Using the C function library 135
Creating your own libraries with the
librarian... 135

The header file136
Function collections & separate
compilation 136
Preventing re-declaration of classes 137
struct: a class with all elements public139
Clarifying programs with enum...... 140
Saving memory with union 141
Debugging flags 144
Turning a variable name into a string145
The Standard C assert() macro 146
Debugging techniques combined 146

Bringing it all together: project-
building tools148

File names... 148
Make: an essential tool for separate
compilation149

Make activities 149
Makefiles in this book..................... 150
An example makefile 150

Summary.................................152
Exercises.................................152

4: Data abstraction 153
Declarations vs. definitions......154
A tiny C library155

Dynamic storage allocation 158
What's wrong?.........................162
The basic object.......................163

What's an object? 168
Abstract data typing 169
Object details 170
Header file etiquette 171

Using headers in projects................. 172
Nested structures..................... 173

Global scope resolution.................... 176
Summary 177
Exercises 177

5: Hiding the implementation
179

Setting limits........................... 179
C++ access control.................. 180

protected .. 181
Friends.................................... 182

Nested friends 184
Is it pure?... 186

Object layout........................... 186
The class................................. 187

Modifying Stash to use access control189
Modifying stack to use access control190

Handle classes......................... 191
Visible implementation.................... 191
Reducing recompilation 192

Summary 194
Exercises 195

6: Initialization & cleanup 197
Guaranteed initialization with the
constructor.............................. 198
Guaranteed cleanup with the
destructor................................ 199
Elimination of the definition block201

for loops.. 203
Storage allocation............................. 204

Stash with constructors and
destructors 205
stack with constructors &
destructors 208
Aggregate initialization 211
Default constructors 213
Summary 214
Exercises 214

7: Function overloading &
default arguments 215

More mangling........................216
Overloading on return values 217
Type-safe linkage 217

Overloading example...............218
Default arguments221

A bit vector class 223
Summary.................................230
Exercises.................................231

8: Constants 233
Value substitution....................233

const in header files 234
Safety consts 234
Aggregates .. 235
Differences with C 236

Pointers...................................237
Pointer to const 237
const pointer 237
Assignment and type checking........ 238

Function arguments & return
values......................................239

Passing by const value..................... 239
Returning by const value................. 240
Passing and returning addresses...... 242

Classes....................................245
const and enum in classes............... 245
Compile-time constants in classes .. 247
const objects & member functions . 249
ROMability....................................... 253

volatile254
Summary.................................255
Exercises.................................255

9: Inline functions 257
Preprocessor pitfalls257

Macros and access............................ 260
Inline functions260

Inlines inside classes 261
Access functions............................... 262

Inlines & the compiler267
Limitations.. 267
Order of evaluation 268
Hidden activities in constructors &
destructors... 269

Reducing clutter270
Preprocessor features...............271

Token pasting 272
Improved error checking..........272

Summary 275
Exercises 275

10: Name control 277
Static elements from C 277

static variables inside functions 277
Controlling linkage........................... 282
Other storage class specifiers 283

Namespaces 283
Creating a namespace....................... 284
Using a namespace 285

Static members in C++............ 289
Defining storage for static data
members.. 289
Nested and local classes................... 292
static member functions 293

Static initialization dependency295
What to do... 296

Alternate linkage specifications299
Summary 299
Exercises 300

11: References & the copy-
constructor 301

Pointers in C++....................... 301
References in C++ 302

References in functions.................... 302
Argument-passing guidelines 305

The copy-constructor 305
Passing & returning by value........... 305
Copy-construction 310
Default copy-constructor 315
Alternatives to copy-construction ... 318

Pointers to members................ 319
Functions... 320

Summary 323
Exercises 323

12: Operator overloading 325
Warning & reassurance............ 325
Syntax 326
Overloadable operators 327

Unary operators 327
Binary operators 332
Arguments & return values.............. 343
Unusual operators............................. 345
Operators you can’t overload 349

Nonmember operators 349
Basic guidelines................................ 351

Overloading assignment 352

Behavior of operator= 353
Automatic type conversion363

Constructor conversion 363
Operator conversion......................... 365
A perfect example: strings............... 367
Pitfalls in automatic type conversion369

Summary.................................371
Exercises.................................371

13: Dynamic object creation
373

Object creation........................374
C’s approach to the heap.................. 375
operator new 376
operator delete 377
A simple example............................. 377
Memory manager overhead 378

Early examples redesigned379
Heap-only string class...................... 379
Stash for pointers............................. 380
The stack... 384

new & delete for arrays387
Making a pointer more like an array388

Running out of storage388
Overloading new & delete389

Overloading global new & delete.... 390
Overloading new & delete for a class391
Overloading new & delete for arrays394
Constructor calls............................... 396
Object placement.............................. 397

Summary.................................398
Exercises.................................399

14: Inheritance & composition
401

Composition syntax.................401
Inheritance syntax403
The constructor initializer list ..405

Member object initialization............ 405
Built-in types in the initializer list... 405

Combining composition &
inheritance406

Order of constructor & destructor calls408
Name hiding 410
Functions that don’t automatically
inherit .. 411

Choosing composition vs.
inheritance412

Subtyping.. 414
Specialization 416
private inheritance........................... 418

protected................................ 419
protected inheritance....................... 420

Multiple inheritance 420
Incremental development 421
Upcasting................................ 421

Why «upcasting»? 423
Upcasting and the copy-constructor
(not indexed)..................................... 423
Composition vs. inheritance (revisited)426
Pointer & reference upcasting 427
A crisis .. 428

Summary 428
Exercises 428

15: Polymorphism & virtual
functions 431

Evolution of C++ programmers 432
Upcasting................................ 432
The problem............................ 434

Function call binding........................ 434
virtual functions..................... 434

Extensibility...................................... 435
How C++ implements late binding438

Storing type information.................. 439
Picturing virtual functions 440
Under the hood 442
Installing the vpointer 443
Objects are different 444

Why virtual functions? 445
Abstract base classes and pure
virtual functions..................... 446

Pure virtual definitions.................... 450
Inheritance and the VTABLE.. 451
virtual functions & constructors455

Order of constructor calls................. 456
Behavior of virtual functions inside
constructors....................................... 456

Destructors and virtual destructors457
Virtuals in destructors 459

Summary 459
Exercises 460

16: Introduction to templates
463

Containers & iterators 463
The need for containers.................... 465

Overview of templates 466
The C approach................................. 466
The Smalltalk approach 466
The template approach 468

Template syntax469
Non-inline function definitions 471
The stack as a template 472
Constants in templates 474

Stash and stack as templates ..476
The ownership problem 476
Stash as a template........................... 476
stack as a template 482

Sstring & integer485
A string on the stack......................... 485
integer .. 487

Templates & inheritance488
Design & efficiency 491
Preventing template bloat 491

Polymorphism & containers493
Function templates496

A memory allocation system........... 497
Applying a function to a TStack..... 500
Member function templates 502

Controlling instantiation502
The export keyword.................504
Summary.................................504
Exercises.................................505

Part 2: The Standard C++
Library 507

17: Library Overview 509
Summary................................. 511

18: Strings 513
What’s in a string513

Creating and initializing C++ strings514
Operating on strings517

Appending, inserting and concatenating
strings.. 518
Replacing string characters.............. 519
Concatenation using non-member
overloaded operators 521

Searching in strings522
Finding in reverse............................. 527
Removing characters from strings .. 528
Comparing strings 530
Using iterators 535
Strings and character traits............... 537

Summary.................................540
Exercises.................................540

19: Iostreams 541
Why iostreams?.......................541

True wrapping................................... 543
Iostreams to the rescue 545

Sneak preview of operator overloading546
Inserters and extractors 547
Common usage 548
Line-oriented input........................... 550

File iostreams.......................... 552
Open modes 554

Iostream buffering................... 554
Using get() with a streambuf 556

Seeking in iostreams 556
Creating read/write files................... 558

stringstreams........................... 559
strstreams................................ 559

User-allocated storage...................... 559
Automatic storage allocation 562

Output stream formatting 565
Internal formatting data.................... 566
An exhaustive example 570

Formatting manipulators 573
Manipulators with arguments 575

Creating manipulators 578
Effectors.. 579

Iostream examples 581
Code generation................................ 581
A simple datalogger 589
Counting editor................................. 596
Breaking up big files 597

Summary 599
Exercises 599

XX: Advanced templates 601
The typename keyword 601
template-templates 601
Controlling template instantiation601

The export keyword 601

20: STL Containers & Iterators
603

STL reference documentation.. 603
The Standard Template Library 604
The basic concepts 606
Containers of strings 610
Inheriting from STL containers 612
A plethora of iterators 614

Iterators in reversible containers 616
Iterator categories 617
Predefined iterators 618

Basic sequences: vector, list &
deque 623

Basic sequence operations 624
vector......................................627

Cost of overflowing allocated storage627
Inserting and erasing elements 632

deque633
Converting between sequences 636
Cost of overflowing allocated storage637
Checked random-access................... 638

list...640
Special list operations 641
Swapping all basic sequences.......... 645
Robustness of lists............................ 646

Performance comparison646
set ...652

Eliminating strtok() 653
StreamTokenizer: a more flexible
solution.. 655
A completely reusable tokenizer 657

stack661
queue665
Priority queues670
Holding bits679

bitset<n> .. 680
vector<bool> 684

Associative containers685
Generators and fillers for associative
containers.. 689
The magic of maps 690
Multimaps and duplicate keys......... 692
Multisets.. 695

Combining STL containers698
Cleaning up containers of pointers700
Creating your own containers ..702
Freely-available STL extensions704
Summary.................................706

Error messages 707
Exercises.................................707

21: STL Algorithms 709
Algorithms are succinct709
Filling a container 711
A test framework for the examples
in this chapter..........................716
Applying an operation to each
element in a container..............721
Summary.................................724
Exercises.................................724

Part 3: Advanced Topics 725

22: Multiple inheritance 726
Perspective.............................. 726
Duplicate subobjects 728
Ambiguous upcasting.............. 729
virtual base classes 730

The "most derived" class and virtual
base initialization.............................. 732
"Tying off" virtual bases with a default
constructor .. 733

Overhead 735
Upcasting................................ 736

Persistence .. 739
Avoiding MI 746
Repairing an interface 746
Summary 751
Exercises 751

23: Exception handling 753
Error handling in C 754
Throwing an exception............ 756
Catching an exception 757

The try block 757
Exception handlers 757
The exception specification 758
Better exception specifications?...... 761
Catching any exception.................... 761
Rethrowing an exception 762
Uncaught exceptions 762

Cleaning up............................. 764
Constructors............................ 767

Making everything an object 769
Exception matching................. 772
Standard exceptions 773
Programming with exceptions . 775

When to avoid exceptions................ 775
Typical uses of exceptions............... 776

Overhead 780
Summary 780
Exercises 781

24: Run-time type
identification 783

The «Shape» example 783
What is RTTI? 784

Two syntaxes for RTTI.................... 784
Syntax specifics 788

typeid() with built-in types............. 788
Producing the proper type name...... 789
Nonpolymorphic types..................... 789
Casting to intermediate levels 790
void pointers..................................... 791
Using RTTI with templates 791

References793
Exceptions... 793

Multiple inheritance794
Sensible uses for RTTI795

Revisiting the trash recycler 796
Mechanism & overhead of RTTI799
Creating your own RTTI..........799
New cast syntax803

static_cast... 804
const_cast... 806
reinterpret_cast 807

Summary.................................809
Exercises.................................809

XX: Maintaining system
integrity 811

25: Design patterns 813
The pattern concept813

The singleton 814
Classifying patterns.......................... 816

The observer pattern................816
The composite.........................820
Simulating the trash recycler....820
Improving the design...............823

«Make more objects»....................... 823
A pattern for prototyping creation... 826

Abstracting usage835
Multiple dispatching................838

Implementing the double dispatch .. 839
The «visitor» pattern845
RTTI considered harmful?852
Summary.................................855
Exercises.................................856

26: Tools & topics 857
The code extractor...................857
Debugging869

assert() ... 869
Trace macros..................................... 869
Trace file... 870
Abstract base class for debugging... 871
Tracking new/delete & malloc/free871

CGI programming in C++877

Encoding data for CGI 878
The CGI parser 879
Using POST...................................... 886
Handling mailing lists 887
A general information-extraction CGI
program... 898
Parsing the data files 904

Summary 910
Exercises 910

A: Coding style 913
Begin and end comment tags ... 913
Parens, braces and indentation. 914
Order of header inclusion 916
Include guards on header files . 916
Use of namespaces 916
Use of require() and assure() 916

B: Programming guidelines917

C: Simulating virtual
constructors 927

All-purpose virtual constructors927
A remaining conundrum 931

A simpler alternative 933

D: Recommended reading 937
General topics 937

My own list of books........................ 937

The STL..................................938
Design Patterns938

Index 939
Unique Features of C++ Functions977

Inline Functions................................ 977
C++ function overloading................ 979
Default arguments 981

The class: defining boundaries.981
Thinking about objects..................... 982
Declaration vs. definition (again).... 984
Constructors and destructors
(initialization & cleanup)................. 984

Defining class member functions990
The scope resolution operator :: 990
Calling other member functions...... 991
friend : access to private elements of
another class 993

Other class-like items997
static member functions997
const and volatile member
functions998

const objects 998
const member functions................... 999
volatile objects and member functions1001

Debugging hints 1002

15

Preface
Like any human language, C++ provides a way to express
concepts. If successful, this medium of expression will be
significantly easier and more flexible than the alternatives as
problems grow larger and more complex.

You can’t just look at C++ as a collection of features; some of the features make no sense in
isolation. You can only use the sum of the parts if you are thinking about design, not simply
coding. And to understand C++ in this way, you must understand the problems with C and
with programming in general. This book discusses programming problems, why they are
problems, and the approach C++ has taken to solve such problems. Thus, the set of features I
explain in each chapter will be based on the way I see a particular type of problem being
solved with the language. In this way I hope to move you, a little at a time, from
understanding C to the point where the C++ mindset becomes your native tongue.

Throughout, I’ll be taking the attitude that you want to build a model in your head that allows
you to understand the language all the way down to the bare metal; if you encounter a puzzle
you’ll be able to feed it to your model and deduce the answer. I will try to convey to you the
insights which have rearranged my brain to make me start «thinking in C++.»

Prerequisites
In the first edition of this book, I decided to assume that someone else had taught you C and
that you have at least a reading level of comfort with it. My primary focus was on simplifying
what I found difficult — the C++ language. In this edition I have added a chapter that is a
very rapid introduction to C, assuming that you have some kind of programming experience
already. In addition, just as you learn many new words intuitively by seeing them in context
in a novel, it’s possible to learn a great deal about C from the context in which it is used in the
rest of the book.

Thinking in C
For those of you who need a gentler introduction to C than the chapter in this book, I have
created with Chuck Allison a CD ROM called «Thinking in C: foundations for Java and C++»
which will introduce you to the aspects of C that are necessary for you to move on to C++ or
Java (leaving out the nasty bits that C programmers must deal with on a day-to-day basis but
that the C++ and Java languages steer you away from). This CD can be ordered at

Preface 16

http://www.BruceEckel.com. [Note: the CD will not be available until late Fall 98, at the
earliest – watch the Web site for updates]

Learning C++
I clawed my way into C++ from exactly the same position as I expect the readers of this book
will: As a C programmer with a very no-nonsense, nuts-and-bolts attitude about
programming. Worse, my background and experience was in hardware-level embedded
programming, where C has often been considered a high-level language and an inefficient
overkill for pushing bits around. I discovered later that I wasn’t even a very good C
programmer, hiding my ignorance of structures, malloc() & free(), setjmp() & longjmp(),
and other «sophisticated» concepts, scuttling away in shame when the subjects came up in
conversation rather than reaching out for new knowledge.

When I began my struggle to understand C++, the only decent book was Stroustrup’s self-
professed «expert’s guide,1 » so I was left to simplify the basic concepts on my own. This
resulted in my first C++ book,2 which was essentially a brain dump of my experience. That
was designed as a reader’s guide, to bring programmers into C and C++ at the same time.
Both editions3 of the book garnered an enthusiastic response and I still feel it is a valuable
resource.

At about the same time that Using C++ came out, I began teaching the language. Teaching
C++ has become my profession; I’ve seen nodding heads, blank faces, and puzzled
expressions in audiences all over the world since 1989. As I began giving in-house training
with smaller groups of people, I discovered something during the exercises. Even those
people who were smiling and nodding were confused about many issues. I found out, by
chairing the C++ track at the Software Development Conference for the last three years, that I
and other speakers tended to give the typical audience too many topics, too fast. So
eventually, through both variety in the audience level and the way that I presented the
material, I would end up losing some portion of the audience. Maybe it’s asking too much, but
because I am one of those people resistant to traditional lecturing (and for most people, I
believe, such resistance results from boredom), I wanted to try to keep everyone up to speed.

For a time, I was creating a number of different presentations in fairly short order. Thus, I
ended up learning by experiment and iteration (a technique that also works well in C++
program design). Eventually I developed a course using everything I had learned from my
teaching experience, one I would be happy giving for a long time. It tackles the learning

1 Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, 1986 (first edition).

2 Using C++, ibid.

3 Using C++ and C++ Inside & Out, ibid.

Preface 17

problem in discrete, easy-to-digest steps and for a hands-on seminar (the ideal learning
situation), there are exercises following each of the short lessons.

This book developed over the course of two years, and the material in this book has been
road-tested in many forms in many different seminars. The feedback that I’ve gotten from
each seminar has helped me change and refocus the material until I feel it works well as a
teaching medium. But it isn’t just a seminar handout — I tried to pack as much information as
I could within these pages, and structure it to draw you through, onto the next subject. More
than anything, the book is designed to serve the solitary reader, struggling with a new
programming language.

Goals
My goals in this book are to:

 1. Present the material a simple step at a time, so the reader can easily digest
each concept before moving on.

 2. Use examples that are as simple and short as possible. This sometimes
prevents me from tackling «real-world» problems,
but I’ve found that beginners are usually happier when they can understand
every detail of an example rather than being impressed by the scope of the
problem it solves. Also, there’s a severe limit to the amount of code that can
be absorbed in a classroom situation. For this I will no doubt receive
criticism for using «toy examples,» but I’m willing to accept that in favor of
producing something pedagogically useful. Those who want more complex
examples can refer to the later chapters of C++ Inside & Out.4

 3. Carefully sequence the presentation of features so that you aren’t seeing
something you haven’t been exposed to. Of course, this isn’t always
possible; in those situations, a brief introductory description will be given.

 4. Give you what I think is important for you to understand about the
language, rather than everything I know. I believe there is an «information
importance hierarchy,» and there are some facts that 95% of programmers
will never need to know, but would just confuse people and add to their
perception of the complexity of the language — and C++ is now considered
to be more complex than ADA! To take an example from C, if you
memorize the operator precedence table (I never did) you can write clever
code. But if you have to think about it, it will confuse the reader/maintainer

4 Ibid.

Preface 18

of that code. So forget about precedence, and use parentheses when things
aren’t clear. This same attitude will be taken with some information in the
C++ language, which I think is more important for compiler writers than for
programmers.

 5. Keep each section focused enough so the lecture time — and the time
between exercise periods — is small. Not only does this keep the audience’
minds more active and involved during a hands-on seminar, but it gives the
reader a greater sense of accomplishment.

 6. Provide the reader with a solid foundation so they can understand the issues
well enough to move on to more difficult coursework and books.

 7. I’ve endeavored not to use any particular vendor’s version of C++ because,
for learning the language, I don’t feel like the details of a particular
implementation are as important as the language itself. Most vendors’
documentation concerning their own implementation specifics is adequate.

Chapters
C++ is a language where new and different features are built on top of an existing syntax.
(Because of this it is referred to as a hybrid object-oriented programming language.) As more
people have passed through the learning curve, we’ve begun to get a feel for the way C
programmers move through the stages of the C++ language features. Because it appears to be
the natural progression of the C-trained mind, I decided to understand and follow this same
path, and accelerate the process by posing and answering the questions that came to me as I
learned the language and that came from audiences as I taught it.

This course was designed with one thing in mind: the way people learn the C++ language.
Audience feedback helped me understand which parts were difficult and needed extra
illumination. In the areas where I got ambitious and included too many features all at once, I
came to know — through the process of presenting the material — that if you include a lot of
new features, you have to explain them all, and the student’s confusion is easily compounded.
As a result, I’ve taken a great deal of trouble to introduce the features as few at a time as
possible; ideally, only one at a time per chapter.

The goal, then, is for each chapter to teach a single feature, or a small group of associated
features, in such a way that no additional features are relied upon. That way you can digest
each piece in the context of your current knowledge before moving on. To accomplish this, I
leave many C features in place much longer than I would prefer. For example, I would like to
be using the C++ iostreams IO library right away, instead of using the printf() family of
functions so familiar to C programmers, but that would require introducing the subject
prematurely, and so many of the early chapters carry the C library functions with them. This
is also true with many other features in the language. The benefit is that you, the C

Preface 19

programmer, will not be confused by seeing all the C++ features used before they are
explained, so your introduction to the language will be gentle and will mirror the way you will
assimilate the features if left to your own devices.

Here is a brief description of the chapters contained in this book.

(0) The evolution of objects. When projects became too big and too complicated to easily
maintain, the «software crisis» was born, saying, «We can’t get projects done, and if we can
they’re too expensive!» This precipitated a number of responses, which are discussed in this
chapter along with the ideas of object-oriented programming (OOP) and how it attempts to
solve the software crisis. You’ll also learn about the benefits and concerns of adopting the
language and suggestions for moving into the world of C++.

(1) Data abstraction. Most features in C++ revolve around this key concept: the ability to
create new data types. Not only does this provide superior code organization, but it lays the
ground for more powerful OOP abilities. You’ll see how this idea is facilitated by the simple
act of putting functions inside structures, the details of how to do it, and what kind of code it
creates.

(2) Hiding the implementation. You can decide that some of the data and functions in your
structure are unavailable to the user of the new type by making them private. This means you
can separate the underlying implementation from the interface that the client programmer
sees, and thus allow that implementation to be easily changed without affecting client code.
The keyword class is also introduced as a fancier way to describe a new data type, and the
meaning of the word «object» is demystified (it’s a variable on steroids).

(3) Initialization & cleanup. One of the most common C errors results from uninitialized
variables. The constructor in C++ allows you to guarantee that variables of your new data
type («objects of your class») will always be properly initialized. If your objects also require
some sort of cleanup, you can guarantee that this cleanup will always happen with the C++
destructor.

(4) Function overloading & default arguments. C++ is intended to help you build big,
complex projects. While doing this, you may bring in multiple libraries that use the same
function name, and you may also choose to use the same name with different meanings within
a single library. C++ makes this easy with function overloading, which allows you to reuse
the same function name as long as the argument lists are different. Default arguments allow
you to call the same function in different ways by automatically providing default values for
some of your arguments.

(5) Introduction to iostreams. One of the original C++ libraries — the one that provides the
essential I/O facility — is called iostreams. Iostreams is intended to replace C’s STDIO.H
with an I/O library that is easier to use, more flexible, and extensible — you can adapt it to
work with your new classes. This chapter teaches you the ins and outs of how to make the
best use of the existing iostream library for standard I/O, file I/O, and in-memory formatting.

(6) Constants. This chapter covers the const and volatile keywords that have additional
meaning in C++, especially inside classes. It also shows how the meaning of const varies
inside and outside classes and how to create compile-time constants in classes.

Preface 20

(7) Inline functions. Preprocessor macros eliminate function call overhead, but the
preprocessor also eliminates valuable C++ type checking. The inline function gives you all
the benefits of a preprocessor macro plus all the benefits of a real function call.

(8) Name control. Creating names is a fundamental activity in programming, and when a
project gets large, the number of names can be overwhelming. C++ allows you a great deal of
control over names: creation, visibility, placement of storage, and linkage. This chapter shows
how names are controlled using two techniques. First, the static keyword is used to control
visibility and linkage, and its special meaning with classes is explored. A far more useful
technique for controlling names at the global scope is C++’s namespace feature, which
allows you to break up the global name space into distinct regions.

 (9) References & the copy-constructor. C++ pointers work like C pointers with the
additional benefit of stronger C++ type checking. There’s a new way to handle addresses;
from Algol and Pascal, C++ lifts the reference which lets the compiler handle the address
manipulation while you use ordinary notation. You’ll also meet the copy-constructor, which
controls the way objects are passed into and out of functions by value. Finally, the C++
pointer-to-member is illuminated.

(10) Operator overloading. This feature is sometimes called «syntactic sugar.» It lets you
sweeten the syntax for using your type by allowing operators as well as function calls. In this
chapter you’ll learn that operator overloading is just a different type of function call and how
to write your own, especially the sometimes-confusing uses of arguments, return types, and
making an operator a member or friend.

(11) Dynamic object creation. How many planes will an air-traffic system have to handle?
How many shapes will a CAD system need? In the general programming problem, you can’t
know the quantity, lifetime or type of the objects needed by your running program. In this
chapter, you’ll learn how C++’s new and delete elegantly solve this problem by safely
creating objects on the heap.

(12) Inheritance & composition. Data abstraction allows you to create new types from
scratch; with composition and inheritance, you can create new types from existing types. With
composition you assemble a new type using other types as pieces, and with inheritance you
create a more specific version of an existing type. In this chapter you’ll learn the syntax, how
to redefine functions, and the importance of construction and destruction for inheritance &
composition.

(13) Polymorphism & virtual functions. On your own, you might take nine months to
discover and understand this cornerstone of OOP. Through small, simple examples you’ll see
how to create a family of types with inheritance and manipulate objects in that family through
their common base class. The virtual keyword allows you to treat all objects in this family
generically, which means the bulk of your code doesn’t rely on specific type information.
This makes your programs extensible, so building programs and code maintenance is easier
and cheaper.

(14) Templates & container classes. Inheritance and composition allow you to reuse object
code, but that doesn’t solve all your reuse needs. Templates allow you to reuse source code by

Preface 21

providing the compiler with a way to substitute type names in the body of a class or function.
This supports the use of container class libraries, which are important tools for the rapid,
robust development of object-oriented programs. This extensive chapter gives you a thorough
grounding in this essential subject.

(15) Multiple inheritance. This sounds simple at first: A new class is inherited from more
than one existing class. However, you can end up with ambiguities and multiple copies of
base-class objects. That problem is solved with virtual base classes, but the bigger issue
remains: When do you use it? Multiple inheritance is only essential when you need to
manipulate an object through more than one common base class. This chapter explains the
syntax for multiple inheritance, and shows alternative approaches — in particular, how
templates solve one common problem. The use of multiple inheritance to repair a «damaged»
class interface is demonstrated as a genuinely valuable use of this feature.

 (16) Exception handling. Error handling has always been a problem in programming. Even
if you dutifully return error information or set a flag, the function caller may simply ignore it.
Exception handling is a primary feature in C++ that solves this problem by allowing you to
«throw» an object out of your function when a critical error happens. You throw different
types of objects for different errors, and the function caller «catches» these objects in separate
error handling routines. If you throw an exception, it cannot be ignored, so you can guarantee
that something will happen in response to your error.

(17) Run-time type identification. Run-time type identification (RTTI) lets you find the
exact type of an object when you only have a pointer or reference to the base type. Normally,
you’ll want to intentionally ignore the exact type of an object and let the virtual function
mechanism implement the correct behavior for that type. But occasionally it is very helpful to
know the exact type of an object for which you only have a base pointer; often this
information allows you to perform a special-case operation more efficiently. This chapter
explains what RTTI is for and how to use it.

Appendix A: Etcetera. At this writing, the C++ Standard is unfinished. Although virtually all
the features that will end up in the language have been added to the standard, some haven’t
appeared in all compilers. This appendix briefly mentions some of the other features you
should look for in your compiler (or in future releases of your compiler).

Appendix B: Programming guidelines. This appendix is a series of suggestions for C++
programming. They’ve been collected over the course of my teaching and programming
experience, and also from the insights of other teachers. Many of these tips are summarized
from the pages of this book.

Appendix C: Simulating virtual constructors. The constructor cannot have any virtual
qualities, and this sometimes produces awkward code. This appendix demonstrates two
approaches to «virtual construction.»

Preface 22

Exercises
I’ve discovered that simple exercises are exceptionally useful during a seminar to complete a
student’s understanding, so you’ll find a set at the end of each chapter.

These are fairly simple, so they can be finished in a reasonable amount of time in a classroom
situation while the instructor observes, making sure all the students are absorbing the material.
Some exercises are a bit more challenging to keep advanced students entertained. They’re all
designed to be solved in a short time and are only there to test and polish your knowledge
rather than present major challenges (presumably, you’ll find those on your own — or more
likely they’ll find you).

Source code
The source code for this book is copyrighted freeware, distributed via the web site
http://www.BruceEckel.com. The copyright prevents you from republishing the code in print
media without permission.

To unpack the code, you download the text version of the book and run the program
ExtractCode (from chapter 23), the source for which is also provided on the Web site. The
program will create a directory for each chapter and unpack the code into those directories. In
the starting directory where you unpacked the code you will find the following copyright
notice:

//:! :CopyRight.txt
Copyright (c) Bruce Eckel, 1998
Source code file from the book "Thinking in C++"
All rights reserved EXCEPT as allowed by the
following statements: You can freely use this file
for your own work (personal or commercial),
including modifications and distribution in
executable form only. Permission is granted to use
this file in classroom situations, including its
use in presentation materials, as long as the book
"Thinking in C++" is cited as the source.
Except in classroom situations, you cannot copy
and distribute this code; instead, the sole
distribution point is http://www.BruceEckel.com
(and official mirror sites) where it is
freely available. You cannot remove this
copyright and notice. You cannot distribute
modified versions of the source code in this
package. You cannot use this file in printed

Preface 23

media without the express permission of the
author. Bruce Eckel makes no representation about
the suitability of this software for any purpose.
It is provided "as is" without express or implied
warranty of any kind, including any implied
warranty of merchantability, fitness for a
particular purpose or non-infringement. The entire
risk as to the quality and performance of the
software is with you. Bruce Eckel and the
publisher shall not be liable for any damages
suffered by you or any third party as a result of
using or distributing software. In no event will
Bruce Eckel or the publisher be liable for any
lost revenue, profit, or data, or for direct,
indirect, special, consequential, incidental, or
punitive damages, however caused and regardless of
the theory of liability, arising out of the use of
or inability to use software, even if Bruce Eckel
and the publisher have been advised of the
possibility of such damages. Should the software
prove defective, you assume the cost of all
necessary servicing, repair, or correction. If you
think you've found an error, please submit the
correction using the form you will find at
www.BruceEckel.com. (Please use the same
form for non-code errors found in the book.)
///:~

You may use the code in your projects and in the classroom as long as the copyright notice is
retained.

Coding standards
In the text of this book, identifiers (function, variable, and class names) will be set in bold.
Most keywords will also be set in bold, except for those keywords which are used so much
that the bolding can become tedious, like class and virtual.

I use a particular coding style for the examples in this book. It was developed over a number
of years, and was inspired by Bjarne Stroustrup’s style in his original The C++ Programming
Language.5 The subject of formatting style is good for hours of hot debate, so I’ll just say I’m
not trying to dictate correct style via my examples; I have my own motivation for using the

5 Ibid.

Preface 24

style that I do. Because C++ is a free-form programming language, you can continue to use
whatever style you’re comfortable with.

The programs in this book are files that are automatically extracted from the text of the book,
which allows them to be tested to ensure they work correctly. (I use a special format on the
first line of each file to facilitate this extraction; the line begins with the characters ‘/’ ‘/’ ‘:’
and the file name and path information.) Thus, the code files printed in the book should all
work without compiler errors when compiled with an implementation that conforms to
Standard C++ (note that not all compilers support all language features). The errors that
should cause compile-time error messages are commented out with the comment //! so they
can be easily discovered and tested using automatic means. Errors discovered and reported to
the author will appear first in the electronic version of the book (at www.BruceEckel.com)
and later in updates of the book.

One of the standards in this book is that all programs will compile and link without errors
(although they will sometimes cause warnings). To this end, some of the programs, which
only demonstrate a coding example and don’t represent stand-alone programs, will have
empty main() functions, like this

main() {}

This allows the linker to complete without an error.

The standard for main() is to return an int, but Standard C++ states that if there is no return
statement inside main(), the compiler will automatically generate code to return 0. This
option will be used in this book (although some compilers may still generate warnings for
this).

Language standards
Throughout this book, when referring to conformance to the ANSI/ISO C standard, I will use
the term Standard C.

At this writing the ANSI/ISO C++ committee was finished working on the language. Thus, I
will use the term Standard C++.

Language support
Your compiler may not support all the features discussed in this book, especially if you don’t
have the newest version of your compiler. Implementing a language like C++ is a Herculean
task, and you can expect that the features will appear in pieces rather than all at once. But if
you attempt one of the examples in the book and get a lot of errors from the compiler, it’s not
necessarily a bug in the code or the compiler — it may simply not be implemented in your
particular compiler yet.

Preface 25

Seminars & CD Roms
My company provides public hands-on training seminars based on the material in this book.
Selected material from each chapter represents a lesson, which is followed by a monitored
exercise period so each student receives personal attention. Information and sign-up forms for
upcoming seminars can be found at http://www.BruceEckel.com. If you have specific
questions, you may direct them to Bruce@EckelObjects.com.

Errors
No matter how many tricks a writer uses to detect errors, some always creep in and these
often leap off the page for a fresh reader. If you discover anything you believe to be an error,
please use the correction form you will find at http://www.BruceEckel.com. Your help is
appreciated.

Acknowledgements
The ideas and understanding in this book have come from many sources: friends like Dan
Saks, Scott Meyers, Charles Petzold, and Michael Wilk; pioneers of the language like Bjarne
Stroustrup, Andrew Koenig, and Rob Murray; members of the C++ Standards Committee like
Tom Plum, Reg Charney, Tom Penello, Chuck Allison, Sam Druker, Nathan Myers, and Uwe
Stienmueller; people who have spoken in my C++ track at the Software Development
Conference; and very often students in my seminars, who ask the questions I need to hear in
order to make the material clearer.

I have been presenting this material on tours produced by Miller Freeman Inc. with my friend
Richard Hale Shaw. Richard’s insights and support have been very helpful (and Kim’s, too).
Thanks also to KoAnn Vikoren, Eric Faurot, Jennifer Jessup, Nicole Freeman, Barbara
Hanscome, Regina Ridley, Alex Dunne, and the rest of the cast and crew at MFI.

The book design, cover design, and cover photo were created by my friend Daniel Will-
Harris, noted author and designer, who used to play with rub-on letters in junior high school
while he awaited the invention of computers and desktop publishing. However, I produced the
camera-ready pages myself, so the typesetting errors are mine. Microsoft® Word for Windows
97 was used to write the book and to create camera-ready pages. The body typeface is [Times
for the electronic distribution] and the headlines are in [Times for the electronic distribution].

The people at Prentice Hall were wonderful. Thanks to Alan Apt, Sondra Chavez, Mona
Pompili, Shirley McGuire, and everyone else there who made life easy for me.

A special thanks to all my teachers, and all my students (who are my teachers as well).

Preface 26

Personal thanks to my friends Gen Kiyooka and Kraig Brockschmidt. The supporting cast of
friends includes, but is not limited to: Zack Urlocker, Andrew Binstock, Neil Rubenking,
Steve Sinofsky, JD Hildebrandt, Brian McElhinney, Brinkley Barr, Larry O’Brien, Bill Gates
at Midnight Engineering Magazine, Larry Constantine & Lucy Lockwood, Tom Keffer, Greg
Perry, Dan Putterman, Christi Westphal, Gene Wang, Dave Mayer, David Intersimone, Claire
Sawyers, Claire Jones, The Italians (Andrea Provaglio, Laura Fallai, Marco Cantu, Corrado,
Ilsa and Christina Giustozzi), Chris & Laura Strand, The Almquists, Brad Jerbic, Marilyn
Cvitanic, The Mabrys, The Haflingers, The Pollocks, Peter Vinci, The Robbins Families, The
Moelter Families (& the McMillans), The Wilks, Dave Stoner, Laurie Adams, The Penneys,
The Cranstons, Larry Fogg, Mike & Karen Sequeira, Gary Entsminger & Allison Brody,
Chester Andersen, Joe Lordi, Dave & Brenda Bartlett, The Rentschlers, The Sudeks, Lynn &
Todd, and their families. And of course, Mom & Dad.

27

1: Introduction
to objects

The genesis of the computer revolution was in a machine.
The genesis of our programming languages thus tends to
look like that machine.

But the computer is not so much a machine as it is a mind amplification tool and a different
kind of expressive medium. As a result, the tools are beginning to look less like machines and
more like parts of our minds, and more like other expressive mediums like writing, painting,
sculpture, animation or filmmaking. Object-oriented programming is part of this movement
toward the computer as an expressive medium.

This chapter will introduce you to the basic concepts of object-oriented programming (OOP),
followed by a discussion of OOP development methods. Finally, strategies for moving
yourself, your projects, and your company to object-oriented programming are presented.

This chapter is background and supplementary material. If you’re eager to get to the specifics
of the language, feel free to jump ahead to later chapters. You can always come back here and
fill in your knowledge later.

The progress of abstraction
All programming languages provide abstractions. It can be argued that the complexity of the
problems you can solve is directly related to the kind and quality of abstraction. By «kind» I
mean: what is it that you are abstracting? Assembly language is a small abstraction of the
underlying machine. Many so-called «imperative» languages that followed (such as
FORTRAN, BASIC, and C) were abstractions of assembly language. These languages are big
improvements over assembly language, but their primary abstraction still requires you to think
in terms of the structure of the computer rather than the structure of the problem you are
trying to solve. The programmer must establish the association between the machine model
(in the «solution space») and the model of the problem that is actually being solved (in the
«problem space»). The effort required to perform this mapping, and the fact that it is extrinsic
to the programming language, produces programs that are difficult to write and expensive to
maintain, and as a side effect created the entire «programming methods» industry.

Chapter 1: Introduction to Objects 28

The alternative to modeling the machine is to model the problem you’re trying to solve. Early
languages such as LISP and APL chose particular views of the world («all problems are
ultimately lists» or «all problems are algorithmic»). PROLOG casts all problems into chains
of decisions. Languages have been created for constraint-based programming and for
programming exclusively by manipulating graphical symbols. (The latter proved to be too
restrictive.) Each of these approaches is a good solution to the particular class of problem
they’re designed to solve, but when you step outside of that domain they become awkward.

The object-oriented approach takes a step farther by providing tools for the programmer to
represent elements in the problem space. This representation is general enough that the
programmer is not constrained to any particular type of problem. We refer to the elements in
the problem space and their representations in the solution space as «objects.» (Of course, you
will also need other objects that don’t have problem-space analogs.) The idea is that the
program is allowed to adapt itself to the lingo of the problem by adding new types of objects,
so when you read the code describing the solution, you’re reading words that also express the
problem. This is a more flexible and powerful language abstraction than what we’ve had
before. Thus OOP allows you to describe the problem in terms of the problem, rather than in
the terms of the solution. There’s still a connection back to the computer, though. Each object
looks quite a bit like a little computer; it has a state, and it has operations you can ask it to
perform. However, this doesn’t seem like such a bad analogy to objects in the real world; they
all have characteristics and behaviors.

Alan Kay summarized five basic characteristics of Smalltalk, the first successful object-
oriented language and one of the languages upon which C++ is based. These characteristics
represent a pure approach to object-oriented programming:

1. Everything is an object. Think of an object as a fancy variable; it
stores data, but you can also ask it to perform operations on itself by
making requests. In theory, you can take any conceptual component in
the problem you’re trying to solve (dogs, buildings, services, etc.) and
represent it as an object in your program.

2. A program is a bunch of objects telling each other what to do by
sending messages. To make a request of an object, you «send a
message» to that object. More concretely, you can think of a message
as a request to call a function that belongs to a particular object.

3. Each object has its own memory made up of other objects. Or, you
make a new kind of object by making a package containing existing
objects. Thus, you can build up complexity in a program while hiding
it behind the simplicity of objects.

4. Every object has a type. Using the parlance, each object is an
instance of a class, where «class» is synonymous with «type.» The
most important distinguishing characteristic of a class is «what
messages can you send to it?»

5. All objects of a particular type can receive the same messages. This
is actually a very loaded statement, as you will see later. Because an
object of type circle is also an object of type shape, a circle is
guaranteed to receive shape messages. This means you can write code
that talks to shapes and automatically handle anything that fits the

Chapter 1: Introduction to Objects 29

description of a shape. This substitutability is one of the most
powerful concepts in OOP.

Some language designers have decided that object-oriented programming itself is not
adequate to easily solve all programming problems, and advocate the combination of various
approaches into multiparadigm programming languages.6

An object has an interface
Aristotle was probably the first to begin a careful study of the concept of type. He was known
to speak of «the class of fishes and the class of birds.» The concept that all objects, while
being unique, are also part of a set of objects that have characteristics and behaviors in
common was directly used in the first object-oriented language, Simula-67, with its
fundamental keyword class that introduces a new type into a program (thus class and type are
often used synonymously7).

Simula, as its name implies, was created for developing simulations such as the classic «bank
teller problem.» In this, you have a bunch of tellers, customers, accounts, transactions, etc.
The members (elements) of each class share some commonality: every account has a balance,
every teller can accept a deposit, etc. At the same time, each member has its own state; each
account has a different balance, each teller has a name. Thus the tellers, customers, accounts,
transactions, etc. can each be represented with a unique entity in the computer program. This
entity is the object, and each object belongs to a particular class that defines its characteristics
and behaviors.

So, although what we really do in object-oriented programming is create new data types,
virtually all object-oriented programming languages use the «class» keyword. When you see
the word «type» think «class» and vice versa.

Once a type is established, you can make as many objects of that type as you like, and then
manipulate those objects as the elements that exist in the problem you are trying to solve.
Indeed, one of the challenges of object-oriented programming is to create a one-to-one
mapping between the elements in the problem space (the place where the problem actually
exists) and the solution space (the place where you’re modeling that problem, such as a
computer).

But how do you get an object to do useful work for you? There must be a way to make a
request of that object so it will do something, such as complete a transaction, draw something
on the screen or turn on a switch. And each object can satisfy only certain requests. The
requests you can make of an object are defined by its interface, and the type is what
determines the interface. The idea of type being equivalent to interface is fundamental in
object-oriented programming.

6 See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley 1995).

7 Some people make a distinction, stating that type determines the interface while class is a
particular implementation of that interface.

Chapter 1: Introduction to Objects 30

A simple example might be a representation of a light bulb:

Light lt;

lt.on();

The name of the type/class is Light, and the requests that you can make of a Light object are
to turn it on, turn it off, make it brighter or make it dimmer. You create a Light object simply
by declaring a name (lt) for that identifier. To send a message to the object, you state the
name and connect it to the message name with a period (dot). From the standpoint of the user
of a pre-defined class, that’s pretty much all there is to programming with objects.

The hidden implementation
It is helpful to break up the playing field into class creators (those who create new data types)
and client programmers8 (the class consumers who use the data types in their applications).
The goal of the client programmer is to collect a toolbox full of classes to use for rapid
application development. The goal of the class creator is to build a class that exposes only
what’s necessary to the client programmer and keeps everything else hidden. Why? If it’s

hidden, the client programmer can’t use it, which means that the class creator can change the
hidden portion at will without worrying about the impact to anyone else.

8 I’m indebted to my friend Scott Meyers for this term.

Light

on()

off()

brighten()

Type Name

Interface

Chapter 1: Introduction to Objects 31

The interface establishes what requests you can make for a particular object. However, there
must be code somewhere to satisfy that request. This, along with the hidden data, comprises
the implementation. From a procedural programming standpoint, it’s not that complicated. A
type has a function associated with each possible request, and when you make a particular
request to an object, that function is called. This process is often summarized by saying that
you «send a message» (make a request) to an object, and the object figures out what to do
with that message (it executes code).

In any relationship it’s important to have boundaries that are respected by all parties involved.
When you create a library, you establish a relationship with the client programmer, who is
another programmer, but one who is putting together an application or using your library to
build a bigger library.

If all the members of a class are available to everyone, then the client programmer can do
anything with that class and there’s no way to force any particular behaviors. Even though
you might really prefer that the client programmer not directly manipulate some of the
members of your class, without access control there’s no way to prevent it. Everything’s
naked to the world.

There are two reasons for controlling access to members. The first is to keep client
programmers’ hands off portions they shouldn’t touch – parts that are necessary for the
internal machinations of the data type but not part of the interface that users need to solve
their particular problems. This is actually a service to users because they can easily see what’s
important to them and what they can ignore.

The second reason for access control is to allow the library designer to change the internal
workings of the structure without worrying about how it will affect the client programmer.
For example, you might implement a particular class in a simple fashion to ease development,
and then later decide you need to rewrite it to make it run faster. If the interface and
implementation are clearly separated and protected, you can accomplish this and require only
a relink by the user.

C++ uses three explicit keywords and one implied keyword to set the boundaries in a class:
public, private, protected and the implied «friendly,» which is what you get if you don’t
specify one of the other keywords. Their use and meaning are remarkably straightforward.
These access specifiers determine who can use the definition that follows. public means the
following definition is available to everyone. The private keyword, on the other hand, means
that no one can access that definition except you, the creator of the type, inside function
members of that type. private is a brick wall between you and the client programmer. If
someone tries to access a private member, they’ll get a compile-time error. «Friendly» has to
do with something called a «package,» which is C++’s way of making libraries. If something
is «friendly» it’s available only within the package. (Thus this access level is sometimes
referred to as «package access.») protected acts just like private, with the exception that an
inheriting class has access to protected members, but not private members. Inheritance will
be covered shortly.

Chapter 1: Introduction to Objects 32

Reusing
the implementation

Once a class has been created and tested, it should (ideally) represent a useful unit of code. It
turns out that this reusability is not nearly so easy to achieve as many would hope; it takes
experience and insight to achieve a good design. But once you have such a design, it begs to
be reused. Code reuse is arguably the greatest leverage that object-oriented programming
languages provide.

The simplest way to reuse a class is to just use an object of that class directly, but you can also
place an object of that class inside a new class. We call this «creating a member object.» Your
new class can be made up of any number and type of other objects, whatever is necessary to
achieve the functionality desired in your new class. This concept is called composition, since
you are composing a new class from existing classes. Sometimes composition is referred to as
a «has-a» relationship, as in «a car has a trunk.»

Composition comes with a great deal of flexibility. The member objects of your new class are
usually private, making them inaccessible to client programmers using the class. This allows
you to change those members without disturbing existing client code. You can also change the
member objects at run time, which provides great flexibility. Inheritance, which is described
next, does not have this flexibility since the compiler must place restrictions on classes
created with inheritance.

Because inheritance is so important in object-oriented programming it is often highly
emphasized, and the new programmer can get the idea that inheritance should be used
everywhere. This can result in awkward and overcomplicated designs. Instead, you should
first look to composition when creating new classes, since it is simpler and more flexible. If
you take this approach, your designs will stay cleaner. It will be reasonably obvious when you
need inheritance.

Inheritance:
reusing the interface

By itself, the concept of an object is a convenient tool. It allows you to package data and
functionality together by concept, so you can represent an appropriate problem-space idea
rather than being forced to use the idioms of the underlying machine. These concepts are
expressed in the primary idea of the programming language as a data type (using the class
keyword).

It seems a pity, however, to go to all the trouble to create a data type and then be forced to
create a brand new one that might have similar functionality. It’s nicer if we can take the
existing data type, clone it and make additions and modifications to the clone. This is

Chapter 1: Introduction to Objects 33

effectively what you get with inheritance, with the exception that if the original class (called
the base or super or parent class) is changed, the modified «clone» (called the derived or
inherited or sub or child class) also reflects the appropriate changes. Inheritance is
implemented in C++ using a special syntax that names another class as what is commonly
referred to as the «base» class.

When you inherit you create a new type, and the new type contains not only all the members
of the existing type (although the private ones are hidden away and inaccessible), but more
importantly it duplicates the interface of the base class. That is, all the messages you can send
to objects of the base class you can also send to objects of the derived class. Since we know
the type of a class by the messages we can send to it, this means that the derived class is the
same type as the base class. This type equivalence via inheritance is one of the fundamental
gateways in understanding the meaning of object-oriented programming.

Since both the base class and derived class have the same interface, there must be some
implementation to go along with that interface. That is, there must be some code to execute
when an object receives a particular message. If you simply inherit a class and don’t do
anything else, the methods from the base-class interface come right along into the derived
class. That means objects of the derived class have not only the same type, they also have the
same behavior, which doesn’t seem particularly interesting.

You have two ways to differentiate your new derived class from the original base class it
inherits from. The first is quite straightforward: you simply add brand new functions to the
derived class. These new functions are not part of the base class interface. This means that the
base class simply didn’t do as much as you wanted it to, so you add more functions. This
simple and primitive use for inheritance is, at times, the perfect solution to your problem.
However, you should look closely for the possibility that your base class might need these
additional functions.

Overriding base-class functionality
Although inheritance may sometimes imply that you are going to add new functions to the
interface, that’s not necessarily true. The second way to differentiate your new class is to
change the behavior of an existing base-class function. This is referred to as overriding that
function.

To override a function, you simply create a new definition for the function in the derived
class. You’re saying «I’m using the same interface function here, but I want it to do
something different for my new type.»

Is-a vs. is-like-a relationships
There’s a certain debate that can occur about inheritance: Should inheritance override only
base-class functions? This means that the derived type is exactly the same type as the base
class since it has exactly the same interface. As a result, you can exactly substitute an object
of the derived class for an object of the base class. This can be thought of as pure substitution.
In a sense, this is the ideal way to treat inheritance. We often refer to the relationship between
the base class and derived classes in this case as an is-a relationship, because you can say «a

Chapter 1: Introduction to Objects 34

circle is a shape.» A test for inheritance is whether you can state the is-a relationship about
the classes and have it make sense.

There are times when you must add new interface elements to a derived type, thus extending
the interface and creating a new type. The new type can still be substituted for the base type,
but the substitution isn’t perfect in a sense because your new functions are not accessible from
the base type. This can be described as an is-like-a relationship; the new type has the interface
of the old type but it also contains other functions, so you can’t really say it’s exactly the
same. For example, consider an air conditioner. Suppose your house is wired with all the
controls for cooling; that is, it has an interface that allows you to control cooling. Imagine that
the air conditioner breaks down and you replace it with a heat pump, which can both heat and
cool. The heat pump is-like-an air conditioner, but it can do more. Because your house is
wired only to control cooling, it is restricted to communication with the cooling part of the
new object. The interface of the new object has been extended, and the existing system
doesn’t know about anything except the original interface.

When you see the substitution principle it’s easy to feel like that’s the only way to do things,
and in fact it is nice if your design works out that way. But you’ll find that there are times
when it’s equally clear that you must add new functions to the interface of a derived class.
With inspection both cases should be reasonably obvious.

Interchangeable objects
with polymorphism

Inheritance usually ends up creating a family of classes, all based on the same uniform
interface. We express this with an inverted tree diagram:9

9 This uses the Unified Notation, which will primarily be used in this book.

Chapter 1: Introduction to Objects 35

One of the most important things you do with such a family of classes is to treat an object of a
derived class as an object of the base class. This is important because it means you can write a
single piece of code that ignores the specific details of type and talks just to the base class.
That code is then decoupled from type-specific information, and thus is simpler to write and
easier to understand. And, if a new type – a Triangle, for example – is added through
inheritance, the code you write will work just as well for the new type of Shape as it did on
the existing types. Thus the program is extensible.

Consider the above example. If you write a function in C++:

void doStuff(Shape* s) {
 s->erase();
 // ...
 s->draw();
}

This function speaks to any Shape, so it is independent of the specific type of object it’s
drawing and erasing. If in some other program we use the doStuff() function:

Circle* c = new Circle();
Triangle* t = new Triangle();
Line* l = new Line();
doStuff(c);
doStuff(t);
doStuff(l);

The calls to doStuff() automatically work right, regardless of the exact type of the object.

This is actually a pretty amazing trick. Consider the line:

doStuff(c);

Shape

draw()

erase()

Circle

draw()

erase()

Square

draw()

erase()

Line

draw()

erase()

Chapter 1: Introduction to Objects 36

What’s happening here is that a Circle pointer is being passed into a function that’s expecting
a Shape pointer. Since a Circle is a Shape it can be treated as one by doStuff(). That is, any
message that doStuff() can send to a Shape, a Circle can accept. So it is a completely safe
and logical thing to do.

We call this process of treating a derived type as though it were its base type upcasting. The
name cast is used in the sense of casting into a mold and the up comes from the way the
inheritance diagram is typically arranged, with the base type at the top and the derived classes
fanning out downward. Thus, casting to a base type is moving up the inheritance diagram:
upcasting.

An object-oriented program contains some upcasting somewhere, because that’s how you
decouple yourself from knowing about the exact type you’re working with. Look at the code
in doStuff():

 s.erase();
 // ...
 s.draw();

Notice that it doesn’t say «If you’re a Circle, do this, if you’re a Square, do that, etc.» If you
write that kind of code, which checks for all the possible types a Shape can actually be, it’s
messy and you need to change it every time you add a new kind of Shape. Here, you just say
«You’re a shape, I know you can erase() yourself, do it and take care of the details
correctly.»

Dynamic binding
What’s amazing about the code in doStuff() is that somehow the right thing happens. Calling
draw() for Circle causes different code to be executed than when calling draw() for a
Square or a Line, but when the draw() message is sent to an anonymous Shape, the correct
behavior occurs based on the actual type that the Shape pointer happens to be connected to.
This is amazing because when the C++ compiler is compiling the code for doStuff(), it
cannot know exactly what types it is dealing with. So ordinarily, you’d expect it to end up
calling the version of erase() for Shape, and draw() for Shape and not for the specific
Circle, Square, or Line. And yet the right thing happens. Here’s how it works.

When you send a message to an object even though you don’t know what specific type it is,
and the right thing happens, that’s called polymorphism. The process used by object-oriented
programming languages to implement polymorphism is called dynamic binding. The compiler
and run-time system handle the details; all you need to know is that it happens and more
importantly how to design with it.

Some languages require you to use a special keyword to enable dynamic binding. In C++ this
keyword is virtual. In C++, you must remember to add a keyword because by default
member functions are not dynamically bound. If a member function is virtual, then when you
send a message to an object, the object will do the right thing, even when upcasting is
involved.

Chapter 1: Introduction to Objects 37

Abstract base classes and interfaces
Often in a design, you want the base class to present only an interface for its derived classes.
That is, you don’t want anyone to actually create an object of the base class, only to upcast to
it so that its interface can be used. This is accomplished by making that class abstract by
giving it at least one pure virtual function. You can recognize a pure virtual function because
it uses the virtual keyword and is followed by = 0. If anyone tries to make an object of an
abstract class, the compiler prevents them. This is a tool to enforce a particular design.

When an abstract class is inherited, all pure virtual functions must be implemented, or the
inherited class becomes abstract as well. Creating a pure virtual function allows you to put a
member function in an interface without being forced to provide a possibly meaningless body
of code for that member function.

Objects: characteristics + behaviors10

The first object-oriented programming language was Simula-67, developed in the sixties to
solve, as the name implies, simulation problems. A classic simulation is the bank teller
problem, which involves a bunch of tellers, customers, transactions, units of money — a lot of
«objects.» Objects that are identical except for their state during a program’s execution are
grouped together into «classes of objects» and that’s where the word class came from.

A class describes a set of objects that have identical characteristics (data elements) and
behaviors (functionality). So a class is really a data type because a floating point number (for
example) also has a set of characteristics and behaviors. The difference is that a programmer
defines a class to fit a problem rather than being forced to use an existing data type that was
designed to represent a unit of storage in a machine. You extend the programming language
by adding new data types specific to your needs. The programming system welcomes the new
classes and gives them all the care and type-checking that it gives to built-in types.

This approach was not limited to building simulations. Whether or not you agree that any
program is a simulation of a system you design, the use of OOP techniques can easily reduce
a large set of problems to a simple solution. This discovery spawned a number of OOP
languages, most notably Smalltalk — the most successful OOP language until C++.

Abstract data typing is a fundamental concept in object-oriented programming. Abstract data
types work almost exactly like built-in types: You can create variables of a type (called
objects or instances in object-oriented parlance) and manipulate those variables (called
sending messages or requests; you send a message and the object figures out what to do with
it).

10 Parts of this description were adapted from my introduction to The Tao of Objects by Gary
Entsminger, M&T/Holt, 1995.

Chapter 1: Introduction to Objects 38

Inheritance: type relationships
A type does more than describe the constraints on a set of objects; it also has a relationship
with other types. Two types can have characteristics and behaviors in common, but one type
may contain more characteristics than another and may also handle more messages (or handle
them differently). Inheritance expresses this similarity between types with the concept of base
types and derived types. A base type contains all the characteristics and behaviors that are
shared among the types derived from it. You create a base type to represent the core of your
ideas about some objects in your system. From the base type, you derive other types to
express the different ways that core can be realized.

For example, a garbage-recycling machine sorts pieces of garbage. The base type is
«garbage,» and each piece of garbage has a weight, a value, and so on and can be shredded,
melted, or decomposed. From this, more specific types of garbage are derived that may have
additional characteristics (a bottle has a color) or behaviors (an aluminum can may be
crushed, a steel can is magnetic). In addition, some behaviors may be different (the value of
paper depends on its type and condition). Using inheritance, you can build a type hierarchy
that expresses the problem you’re trying to solve in terms of its types.

A second example is the classic shape problem, perhaps used in a computer-aided design
system or game simulation. The base type is «shape,» and each shape has a size, a color, a
position, and so on. Each shape can be drawn, erased, moved, colored, and so on. From this,
specific types of shapes are derived (inherited): circle, square, triangle, and so on, each of
which may have additional characteristics and behaviors. Certain shapes can be flipped, for
example. Some behaviors may be different (calculating the area of a shape). The type
hierarchy embodies both the similarities and differences between the shapes.

Casting the solution in the same terms as the problem is tremendously beneficial because you
don’t need a lot of intermediate models (used with procedural languages for large problems)
to get from a description of the problem to a description of the solution; in pre-object-oriented
languages the solution was inevitably described in terms of computers. With objects, the type
hierarchy is the primary model, so you go directly from the description of the system in the
real world to the description of the system in code. Indeed, one of the difficulties people have
with object-oriented design is that it’s too simple to get from the beginning to the end. A mind
trained to look for complex solutions is often stumped by this simplicity at first.

Polymorphism
When dealing with type hierarchies, you often want to treat an object not as the specific type
that it is but as a member of its base type. This allows you to write code that doesn’t depend
on specific types. In the shape example, functions manipulate generic shapes without respect
to whether they’re circles, squares, triangles, and so on. All shapes can be drawn, erased, and
moved, so these functions simply send a message to a shape object; they don’t worry about
how the object copes with the message.

Such code is unaffected by the addition of new types, which is the most common way to
extend an object-oriented program to handle new situations. For example, you can derive a
new subtype of shape called pentagon without modifying the functions that deal only with

Chapter 1: Introduction to Objects 39

generic shapes. The ability to extend a program easily by deriving new subtypes is important
because it greatly reduces the cost of software maintenance. (The so-called «software crisis»
was caused by the observation that software was costing more than people thought it ought
to.)

There’s a problem, however, with attempting to treat derived-type objects as their generic
base types (circles as shapes, bicycles as vehicles, cormorants as birds). If a function is going
to tell a generic shape to draw itself, or a generic vehicle to steer, or a generic bird to fly, the
compiler cannot know at compile-time precisely what piece of code will be executed. That’s
the point — when the message is sent, the programmer doesn’t want to know what piece of
code will be executed; the draw function can be applied equally to a circle, square, or triangle,
and the object will execute the proper code depending on its specific type. If you add a new
subtype, the code it executes can be different without changes to the function call. The
compiler cannot know precisely what piece of code is executed, so what does it do?

The answer is the primary twist in object-oriented programming: The compiler cannot make a
function call in the traditional sense. The function call generated by a non-OOP compiler
causes what is called early binding, a term you may not have heard before because you’ve
never thought about it any other way. It means the compiler generates a call to a specific
function name, and the linker resolves that call to the absolute address of the code to be
executed. In OOP, the program cannot determine the address of the code until run-time, so
some other scheme is necessary when a message is sent to a generic object.

To solve the problem, object-oriented languages use the concept of late binding. When you
send a message to an object, the code being called isn’t determined until run-time. The
compiler does ensure that the function exists and performs type checking on the arguments
and return value (a language where this isn’t true is called weakly typed), but it doesn’t know
the exact code to execute.

To perform late binding, the compiler inserts a special bit of code in lieu of the absolute call.
This code calculates the address of the function body to execute at run-time using information
stored in the object itself (this subject is covered in great detail in Chapter 13). Thus, each
object can behave differently according to the contents of that pointer. When you send a
message to an object, the object actually does figure out what to do with that message.

You state that you want a function to have the flexibility of late-binding properties using the
keyword virtual. You don’t need to understand the mechanics of virtual to use it, but without
it you can’t do object-oriented programming in C++. Virtual functions allow you to express
the differences in behavior of classes in the same family. Those differences are what cause
polymorphic behavior.

Manipulating concepts: what an OOP
program looks like

You know what a procedural program in C looks like: data definitions and function calls. To
find the meaning of such a program you have to work a little, looking through the function
calls and low-level concepts to create a model in your mind. This is the reason we need

Chapter 1: Introduction to Objects 40

intermediate representations for procedural programs — they tend to be confusing because the
terms of expression are oriented more toward the computer than the problem you’re solving.

Because C++ adds many new concepts to the C language, your natural assumption may be
that, of course, the main() in a C++ program will be far more complicated than the
equivalent C program. Here, you’ll be pleasantly surprised: A well-written C++ program is
generally far simpler and much easier to understand than the equivalent C program. What
you’ll see are the definitions of the objects that represent concepts in your problem space
(rather than the issues of the computer representation) and messages sent to those objects to
represent the activities in that space. One of the delights of object-oriented programming is
that it’s generally very easy to understand the code by reading it. Usually there’s a lot less
code, as well, because many of your problems will be solved by reusing existing library code.

Object landscapes
and lifetimes

Technically, OOP is just about abstract data typing, inheritance and polymorphism, but other
issues can be at least as important. The remainder of this section will cover these issues.

One of the most important factors is the way objects are created and destroyed. Where is the
data for an object and how is the lifetime of the object controlled? There are different
philosophies at work here. C++ takes the approach that control of efficiency is the most
important issue, so it gives the programmer a choice. For maximum run-time speed, the
storage and lifetime can be determined while the program is being written, by placing the
objects on the stack (these are sometimes called automatic or scoped variables) or in the static
storage area. This places a priority on the speed of storage allocation and release, and control
of these can be very valuable in some situations. However, you sacrifice flexibility because
you must know the exact quantity, lifetime and type of objects while you’re writing the
program. If you are trying to solve a more general problem such as computer-aided design,
warehouse management or air-traffic control, this is too restrictive.

The second approach is to create objects dynamically in a pool of memory called the heap. In
this approach you don’t know until run time how many objects you need, what their lifetime
is or what their exact type is. Those are determined at the spur of the moment while the
program is running. If you need a new object, you simply make it on the heap at the point that
you need it. Because the storage is managed dynamically, at run time, the amount of time
required to allocate storage on the heap is significantly longer than the time to create storage
on the stack. (Creating storage on the stack is often a single assembly instruction to move the
stack pointer down, and another to move it back up.) The dynamic approach makes the
generally logical assumption that objects tend to be complicated, so the extra overhead of
finding storage and releasing that storage will not have an important impact on the creation of
an object. In addition, the greater flexibility is essential to solve the general programming
problem.

Chapter 1: Introduction to Objects 41

C++ allows you to determine whether the objects are created while you write the program or
at run time to allow the control of efficiency. You might think that since it’s more flexible,
you’d always want to create objects on the heap rather than the stack. There’s another issue,
however, and that’s the lifetime of an object. If you create an object on the stack or in static
storage, the compiler determines how long the object lasts and can automatically destroy it.
However, if you create it on the heap the compiler has no knowledge of its lifetime. A
programmer has two options for destroying objects: you can determine programmatically
when to destroy the object, or the environment can provide a feature called a garbage
collector that automatically discovers when an object is no longer in use and destroys it. Of
course, a garbage collector is much more convenient, but it requires that all applications must
be able to tolerate the existence of the garbage collector and the other overhead for garbage
collection. This does not meet the design requirements of the C++ language and so it was not
included, but C++ does have a garbage collector (as does Smalltalk; Delphi does not but one
could be added. Third-party garbage collectors exist for C++).

The rest of this section looks at additional factors concerning object lifetimes and landscapes.

Containers and iterators
If you don’t know how many objects you’re going to need to solve a particular problem, or
how long they will last, you also don’t know how to store those objects. How can you know
how much space to create for those objects? You can’t, since that information isn’t known
until run time.

The solution to most problems in object-oriented design seems flippant: you create another
type of object. The new type of object that solves this particular problem holds objects, or
pointers to objects. Of course, you can do the same thing with an array, which is available in
most languages. But there’s more. This new type of object, which is typically referred to in
C++ as a container (also called a collection in some languages), will expand itself whenever
necessary to accommodate everything you place inside it. So you don’t need to know how
many objects you’re going to hold in a collection. Just create a collection object and let it take
care of the details.

Fortunately, a good OOP language comes with a set of containers as part of the package. In
C++, it’s the Standard Template Library (STL). Object Pascal has containers in its Visual
Component Library (VCL). Smalltalk has a very complete set of containers. Java has a
standard set of containers. In some libraries, a generic container is considered good enough
for all needs, and in others (C++ in particular) the library has different types of containers for
different needs: a vector for consistent access to all elements, and a linked list for consistent
insertion at all elements, for example, so you can choose the particular type that fits your
needs. These may include sets, queues, hash tables, trees, stacks, etc.

All containers have some way to put things in and get things out. The way that you place
something into a container is fairly obvious. There’s a function called «push» or «add» or a
similar name. Fetching things out of a container is not always as apparent; if it’s an array-like
entity such as a vector, you might be able to use an indexing operator or function. But in
many situations this doesn’t make sense. Also, a single-selection function is restrictive. What
if you want to manipulate or compare a set of elements in the container instead of just one?

Chapter 1: Introduction to Objects 42

The solution is an iterator, which is an object whose job is to select the elements within a
container and present them to the user of the iterator. As a class, it also provides a level of
abstraction. This abstraction can be used to separate the details of the container from the code
that’s accessing that container. The container, via the iterator, is abstracted to be simply a
sequence. The iterator allows you to traverse that sequence without worrying about the
underlying structure – that is, whether it’s a vector, a linked list, a stack or something else.
This gives you the flexibility to easily change the underlying data structure without disturbing
the code in your program.

From the design standpoint, all you really want is a sequence that can be manipulated to solve
your problem. If a single type of sequence satisfied all of your needs, there’d be no reason to
have different kinds. There are two reasons that you need a choice of containers. First,
containers provide different types of interfaces and external behavior. A stack has a different
interface and behavior than that of a queue, which is different than that of a set or a list. One
of these might provide a more flexible solution to your problem than the other. Second,
different containers have different efficiencies for certain operations. The best example is a
vector and a list. Both are simple sequences that can have identical interfaces and external
behaviors. But certain operations can have radically different costs. Randomly accessing
elements in a vector is a constant-time operation; it takes the same amount of time regardless
of the element you select. However, in a linked list it is expensive to move through the list to
randomly select an element, and it takes longer to find an element if it is further down the list.
On the other hand, if you want to insert an element in the middle of a sequence, it’s much
cheaper in a list than in a vector. These and other operations have different efficiencies
depending upon the underlying structure of the sequence. In the design phase, you might start
with a list and, when tuning for performance, change to a vector. Because of the abstraction
via iterators, you can change from one to the other with minimal impact on your code.

In the end, remember that a container is only a storage cabinet to put objects in. If that cabinet
solves all of your needs, it doesn’t really matter how it is implemented (a basic concept with
most types of objects). If you’re working in a programming environment that has built-in
overhead due to other factors (running under Windows, for example, or the cost of a garbage
collector), then the cost difference between a vector and a linked list might not matter. You
might need only one type of sequence. You can even imagine the «perfect» container
abstraction, which can automatically change its underlying implementation according to the
way it is used.

Exception handling:
dealing with errors

Ever since the beginning of programming languages, error handling has been one of the most
difficult issues. Because it’s so hard to design a good error-handling scheme, many languages
simply ignore the issue, passing the problem on to library designers who come up with
halfway measures that can work in many situations but can easily be circumvented, generally
by just ignoring them. A major problem with most error-handling schemes is that they rely on

Chapter 1: Introduction to Objects 43

programmer vigilance in following an agreed-upon convention that is not enforced by the
language. If the programmer is not vigilant, which is often if they are in a hurry, these
schemes can easily be forgotten.

Exception handling wires error handling directly into the programming language and
sometimes even the operating system. An exception is an object that is «thrown» from the site
of the error and can be «caught» by an appropriate exception handler designed to handle that
particular type of error. It’s as if exception handling is a different, parallel path of execution
that can be taken when things go wrong. And because it uses a separate execution path, it
doesn’t need to interfere with your normally-executing code. This makes that code simpler to
write since you aren’t constantly forced to check for errors. In addition, a thrown exception is
unlike an error value that’s returned from a function or a flag that’s set by a function in order
to indicate an error condition, These can be ignored. An exception cannot be ignored so it’s
guaranteed to be dealt with at some point. Finally, exceptions provide a way to reliably
recover from a bad situation. Instead of just exiting you are often able to set things right and
restore the execution of a program, which produces much more robust programs.

It’s worth noting that exception handling isn’t an object-oriented feature, although in object-
oriented languages the exception is normally represented with an object. Exception handling
existed before object-oriented languages.

Introduction to methods
A method is a set of processes and heuristics used to break down the complexity of a
programming problem. Especially in OOP, methodology is a field of many experiments, so it
is important to understand the problem the method is trying to solve before you consider
adopting one. This is particularly true with C++, where the programming language itself is
intended to reduce the complexity involved in expressing a program. This may in fact
alleviate the need for ever-more-complex methodologies. Instead, simpler ones may suffice in
C++ for a much larger class of problems than you could handle with simple methods for
procedural languages.

Its also important to realize that the term «methodology» is often too grand and promises too
much. Whatever you do now when you design and write a program is a method. It may be
your own method, and you may not be conscious of doing it, but it is a process you go
through as you create. If it is an effective process, it may need only a small tune-up to work
with C++. If you are not satisfied with your productivity and the way your programs turn out,
you may want to consider adopting a formal method.

Complexity
To analyze this situation, I shall start with a premise:

Computer programming is about managing complexity by imposing
discipline.

This discipline appears two ways, each of which can be examined separately:

Chapter 1: Introduction to Objects 44

 8. Internal discipline is seen in the structure of the program itself, through the
expressiveness of the programming language and the cleverness and insight
of the programmers.

 9. External discipline is seen in the meta-information about the program,
loosely described as «design documentation» (not to be confused with
product documentation).

I maintain these two forms of discipline are at odds with each other: one is the essence of a
program, driven by the need to make the program work the first time, and the other is the
analysis of a program, driven by the need to understand and maintain the program in the
future. Both creation and maintenance are fundamental properties of a program’s lifetime, and
a useful programming method will integrate both in the most expedient fashion, without going
overboard in one direction or another.

Internal discipline
The evolution of computer programming (in which C++ is just a step on the path) began by
imposing internal discipline on the programming model, allowing the programmer to alias
names to machine locations and machine instructions. This was such a jump from numerical
machine programming that it spawned other developments over the years, generally involving
further abstractions away from the low-level machine and toward a model more suited to
solving the problem at hand. Not all these developments caught on; often the ideas originated
in the academic world and spread into the computing world at large depending on the set of
problems they were well suited for.

The creation of named subroutines as well as linking techniques to support libraries of these
subroutines was a huge leap forward in the 50’s and spawned two languages that would be
heavy-hitters for decades: FORTRAN («FORmula-TRANslation») for the scientific crowd
and COBOL («COmmon Business-Oriented Language») for the business folks. The
successful language in «pure» computer science was Lisp («List-Processing»), while the more
mathematically oriented could use APL («A Programming Language»).

All of these languages had in common their use of procedures. Lisp and APL were created
with language elegance in mind — the «mission statement» of the language is embodied in an
engine that handles all cases of that mission. FORTRAN and COBOL were created to solve
specific types of problems, and then evolved when those problems got more complex or new
ones appeared. Even in their twilight years they continue to evolve: Versions of both
FORTRAN and COBOL are appearing with object-oriented extensions. (A fundamental tenet
of post-modern philosophy is that any organization takes on an independent life of its own; its
primary goal becomes to perpetuate that life.)

The named subroutine was recognized as a major leverage point in programming, and
languages were designed around the concept, Algol and Pascal, in particular. Other languages
also appeared, successfully solved a subset of the programming problem, and took their place
in the order of things. Two of the most interesting of these were Prolog, built around an
inference engine (something you see popping up in other languages, often as a library) and

Chapter 1: Introduction to Objects 45

FORTH, which is an extensible language. FORTH allows the programmer to re-form the
language itself until it fits the problem, a concept akin to object-oriented programming.
However, FORTH also allows you to change the base language itself. Because of this, it
becomes a maintenance nightmare and is thus probably the purest expression of the concept
of internal discipline, where the emphasis is on the one-time solution of the problem rather
than the maintenance of that solution.

Numerous other languages have been invented to solve a portion of the programming
problem. Usually, these languages begin with a particular objective in mind. BASIC
(«Beginners All-purpose Symbolic Instruction Code»), for example, was designed in the 60’s
to make programming simpler for the beginner. APL was designed for mathematical
manipulations. Both languages can solve other problems, but the question becomes whether
they are the most ideal solutions for the entire problem set. The joke is, «To a three-year-old
with a hammer, everything looks like a nail,» but it displays an underlying economic truth: If
your only language is BASIC or APL, then that’s probably the best solution for your problem,
especially if the deadline is short term and the solution has a limited lifetime.

However, two factors eventually creep in: the management of complexity, and maintenance
(discussed in the next section). Of course, complexity is what the language was created to
manage in the first place, and the programmer, loath to give up the years of time invested in
fluency with the language, will go to greater and greater lengths to bend the language to the
problem at hand. In fact, the boundary of chaos is fuzzy rather than clear: who’s to say when
your language begins to fail you? It doesn’t, not all at once.

The solution to a problem begins to take longer and becomes more of a challenge to the
programmer. More cleverness is required to get around the limitations of the language, and
this cleverness becomes standard lore, things you «just have to do to make the language
work.» This seems to be the way humans operate; rather than grumbling every time we
encounter a flaw, we stop calling it a flaw.

But eventually the programming problems became too difficult to solve and to maintain —
that is, the solutions were too expensive. It was finally clear that the complexity was more
than we could handle. Although a large class of programming problems involves doing most
of the work during development and creating a solution that requires minimal maintenance (or
might simply be thrown away or replaced with a different solution), this is only a subset of the
general problem. In the general problem, you view the software as providing a service to
people. As the needs of the users evolve, that service must evolve with it. Thus a project is not
finished when version one ships; it is a living entity that continues to evolve, and the
evolution of a program becomes part of the general programming problem.

External discipline
The need to evolve a program requires new ways of thinking about the problem. It’s not just
«How do we make it work?» but «How do we make it work and make it easy to change?»
And there’s a new problem: When you’re just trying to make a program work, you can
assume that the team is stable (you can hope, anyway), but if you’re thinking in terms of a
program’s lifetime, you must assume that team members will change. This means that a new
team member must somehow learn the essentials about a program that previous team

Chapter 1: Introduction to Objects 46

members communicated to each other (probably using spoken words). Thus the program
needs some form of design documentation.

Because documentation is not essential to making a program work, there are no rules for its
creation as there are rules imposed by a programming language on a program. Thus, if you
require your documentation to satisfy a particular need, you must impose an external
discipline. Whether documentation «works» or not is much more difficult to determine (and
requires a program’s lifetime to verify), so the «best» form of external discipline can be more
hotly debated than the «best» programming language.

The important question to keep in mind when making decisions about external discipline is,
«What problem am I trying to solve?» The essence of the problem was stated above: «How do
we make it work and make it easy to change?» However, this question has often gone through
so many interpretations that it becomes «How can I conform to the FoobleBlah
documentation specifications so the government will pay me for this project?» That is, the
goal of the external discipline becomes the creation of a document rather than a good,
maintainable program design; the document may become more important than the program
itself.

When asking questions about the directions of the future in general, and computing in
particular, I start by applying an economic Occam’s Razor: Which solution costs less?
Assuming the solution satisfies the needs, is the price difference enough to motivate you out
of your current, comfortable way of doing things? If your method involves saving every
document ever created during the analysis and design of the project and maintaining all those
documents as the project evolves, then you will have a system that maximizes the overhead of
evolving a project in favor of complete understanding by new team members (assuming
there’s not so much documentation that it becomes daunting to read). Taken to an extreme,
such a method can conceivably cost as much for program creation and maintenance as the
approaches it is intended to replace.

At the other end of the external-structure spectrum are the minimalist methods. Perform
enough of an analysis to be able to come up with a design, then throw the analysis away so
you don’t spend time and money maintaining it. Do enough of a design to begin coding, then
throw the design away, again, so you don’t spend time and money to maintain the document.
(The following may or may not be ironic, depending on your situation.) Then the code is so
elegant and clear that it needs minimal comments. The code and comments together are
enough for the new team member to get up to speed on the project. Because less time is spent
with all that tedious documentation (which no one really understands anyway), new members
integrate faster.

Throwing everything away, however, is probably not the best idea, although if you don’t
maintain your documents, that’s effectively what you do. Some form of document is usually
necessary. (See the description of scripting, described later in this chapter.)

Communication
Expecting your code to suffice as documentation for a larger project is not particularly
reasonable, even though it happens more often than not in practice. But it contains the essence
of what we really want an external discipline to produce: communication. You’d like to

Chapter 1: Introduction to Objects 47

communicate just enough to a new team member that she can help evolve the program. But
you’d also like to keep the amount of money you spend on external discipline to a minimum
because ultimately people are paying for the service the program provides, not the design
documentation behind it. And to be truly useful, the external discipline should do more than
just generate documentation — it should be a way for team members to communicate about
the design as they’re creating it. The goal of the ideal external discipline is to facilitate
communication about the analysis and design of a program. This helps the people working on
the program now and those who will work on the program in the future. The focus is not just
to enable communication, but to create good designs.

Because people (and programmers, in particular) are drawn to computers because the machine
does work for you — again, an economic motivation — external disciplines that require the
developer to do a lot of work for the machine seem doomed from the beginning. A successful
method (that is, one that gets used) has two important features:

 10. It helps you analyze and design. That is, it’s much easier to think about and
communicate the analysis and design with the method than without it. The
difference between your current productivity and the productivity you’ll
have using the method must be significant; otherwise you might as well stay
where you are. Also, it must be simple enough to use that you don’t need to
carry a handbook. When you’re solving your problem, that’s what you want
to think about, not whether you’re using symbols or techniques properly.

 11. It doesn’t impose overhead without short-term payback. Without some
short-term reward in the form of visible progress toward your goal, you
aren’t going to feel very productive with a method, and you’re going to find
ways to avoid it. This progress cannot be in the guise of the transformation
of one intermediate form to another. You’ve got to see your classes appear,
along with the messages they send each other. To someone creating a
method this may seem like an arbitrary constraint, but it’s simple
psychology: People want to feel like they’re doing real creative work, and if
your method keeps them from a goal rather than helping them gallop toward
it, they’ll find a way to get around your method.

Magnitude
One of the arguments against my view on the subject of methodologies is, «Well, yes, you can
get away with anything as long as you’re working with small projects,» with «small»
apparently meaning anything the listener is capable of imagining. Although this attitude is
often used to intimidate the unconverted, there is a kernel of truth inside: What you need may
depend on the scale of the problem you’re attempting to solve. Tiny projects need no external
discipline at all other than the patterns of problem solving learned in the lifetime of the
individual programmer. Big projects with many people have little communication among
those people and so must have a formal way for that communication to occur effectively and
accurately.

Chapter 1: Introduction to Objects 48

The gray area is the projects in between. Their needs may vary depending on the complexity
of the project and the experience of the developers. Certainly all medium-sized projects don’t
require adherence to a full-blown method, generating many reports, lots of paper, and lots of
work. Some probably do, but many can get away with «methodology lite» (more code, less
documentation). The complexity of all the methodologies we are faced with may fall under an
80% – 20% (or less) rule: We are being deluged with details of methodologies that may be
needed for less than 20% of the programming problems being solved. If your designs are
adequate and maintenance is not a nightmare, maybe you don’t need it, or not all of it
anyway.

Structured OOP?
An even more significant question arises. Suppose a methodology is needed to facilitate
communication. This meta-communication about the program is necessary because the
programming language is inadequate — it is too oriented toward the machine paradigm and is
not very helpful for talking about the problem. The procedural-programming model of the
world, for example, requires you to talk about a program in terms of data and functions that
transform the data. Because this is not the way we discuss the real problem that’s being
solved, you must translate back and forth between the problem description and the solution
description. Once you get a solution description and implement it, proper etiquette requires
that you make changes to the problem description anytime you change the solution. This
means you must translate from the machine paradigm backward into the problem space. To
get a truly maintainable program that can be adapted to changes in the problem space, this is
necessary. The overhead and organization required seem to demand an external discipline of
some sort. The most important methodology for procedural programming is the structured
techniques.

Now consider this: What if the language in the solution space were uprooted from the
machine paradigm? What if you could force the solution space to use the same terminology as
the problem space? For example, an air conditioner in your climate-controlled building
becomes an air conditioner in your climate-control program, a thermostat becomes a
thermostat, and so on. (This is what you do, not coincidentally, with OOP.) Suddenly,
translating from the problem space to the solution space becomes a minor issue. Conceivably,
each phase in the analysis, design, and implementation of a program could use the same
terminology, the same representation. So the question becomes, «Do we still need a document
about the document, if the essential document (the program) can adequately describe itself?»
If OOP does what it claims, then the shape of the programming problem may have changed to
the point that all the difficulties solved by the structured techniques might not exist in this
new world.

This is not just a fanciful argument, as a thought experiment will reveal. Suppose you need to
write a little utility, for example, one that performs an operation on a text file like those you’ll
find in the latter pages of Chapter 5. Some of those took a few minutes to write; the most
difficult took a few hours. Now suppose you’re back in the 50’s and the project must be done
in machine language or assembly, with minimal libraries. It goes from a few minutes for one
person to weeks or months and many people. In the 50’s you’d need a lot of external
discipline and management; now you need none. Clearly, the development of tools has greatly

Chapter 1: Introduction to Objects 49

increased the complexity of the problems we’re able to solve without external discipline (and
just as clearly, we go find problems that are more complicated).

This is not to suggest that no external discipline is necessary, simply that a useful external
discipline for OOP will solve different problems than those solved by a useful external
discipline for procedural programming. In particular, the goal of an OOP method must be first
and foremost to generate a good design. Not only do good designs of any kind promote reuse,
but the need for a good design is directly in line with the needs of developers at all levels of a
project. Thus, they will be more likely to adopt such a system.

With these points in mind, let’s consider some of the issues of an OOP design method.

Five stages of object design
The design life of an object is not limited to the period of time when you’re writing the
program. Instead, the design of an object appears to happen over a sequence of stages. It’s
helpful to have this perspective because you stop expecting perfection right away; instead,
you realize that the understanding of what an object does and what it should look like happens
over time. This view also applies to the design of various types of programs; the pattern for a
particular type of program emerges through struggling again and again with that problem.11

Objects, too, have their patterns that emerge through understanding, use, and reuse.

The following is a description, not a method. It is simply an observation of when you can
expect design of an object to occur.

1. Object discovery
This phase occurs during the initial analysis of a program. Objects may be discovered by
looking for external factors and boundaries, duplication of elements in the system, and the
smallest conceptual units. Some objects are obvious if you already have a set of class
libraries. Commonality between classes suggesting base classes and inheritance may appear
right away, or later in the design process.

2. Object assembly
As you’re building an object you’ll discover the need for new members that didn’t appear
during discovery. The internal needs of the object may require new classes to support it.

3. System construction
Once again, more requirements for an object may appear at this later stage. As you learn, you
evolve your objects. The need for communication and interconnection with other objects in
the system may change the needs of your classes or require new classes.

11 See Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma et
al., Addison-Wesley, 1995.

Chapter 1: Introduction to Objects 50

4. System extension
As you add new features to a system you may discover that your previous design doesn’t
support easy system extension. With this new information, you can restructure parts of the
system, very possibly adding new classes.

5. Object reuse
This is the real stress test for a class. If someone tries to reuse it in an entirely new situation,
they’ll probably discover some shortcomings. As you change a class to adapt to more new
programs, the general principles of the class will become clearer, until you have a truly
reusable object.

Guidelines for object development
These stages suggest some guidelines when thinking about developing your classes:

 12. Let a specific problem generate a class, then let the class grow and mature
during the solution of other problems.

 13. Remember, discovering the classes you need is the majority of the system
design. If you already had those classes, this would be a trivial project.

 14. Don’t force yourself to know everything at the beginning; learn as you go.
That’s the way it will happen anyway.

 15. Start programming; get something working so you can prove or disprove
your design. Don’t fear procedural-style spaghetti code — classes partition
the problem and help control anarchy and entropy. Bad classes do not break
good classes.

 16. Always keep it simple. Little clean objects with obvious utility are better
than big complicated interfaces. You can always start small and simple and
expand the class interface when you understand it better. It can be
impossible to reduce the interface of an existing class.

What a method promises
For various reasons methods have often promised a lot more than they can deliver. This is
unfortunate because programmers are already a suspicious lot when it comes to strategies and
unrealistic expectations; the bad reputation of some methods can cause others to be discarded
out of hand. Because of this, valuable techniques can be ignored at significant financial and
productivity costs.

Chapter 1: Introduction to Objects 51

A manager’s silver bullet
The worst promise is to say, «This method will solve all your problems.» Such a promise will
more likely come couched in the idea that a method will solve problems that don’t really have
a solution, or at least not in the domain of program design: An impoverished corporate
culture; exhausted, alienated, or adversarial team members; insufficient schedule and
resources; or attempting to solve a problem that may in fact be insoluble (insufficient
research). The best methodology, regardless of what it promises, will solve none of these
problems or any problems in the same class. For that matter, OOP and C++ won’t help either.
Unfortunately, a manager in such a situation is precisely the person that’s most vulnerable to
the siren song of the silver bullet.12

A tool for productivity
This is what a method should be. Increased productivity should come not only in the form of
easy and inexpensive maintenance but especially in the creation of a good design in the first
place. Because the motivating factor for the creation of methodologies was improved
maintenance, some methods ignore the beauty and integrity of the program design in favor of
maintenance issues. Instead, a good design should be the foremost goal; a good OOP design
will have easy maintenance as a side-effect.

What a method should deliver
Regardless of what claims are made for a particular method, it should provide a number of
essential features, covered in this section: A contract to allow you to communicate about what
the project will accomplish and how it will do it; a system to support the structuring of that
project; and a set of tools to represent the project in some abstract form so you can easily view
and manipulate it. A more subtle issue, covered last, is the «attitude» of the method
concerning that most precious of all resources, The enthusiasm of the team members.

A communication contract
For very small teams, you can keep in such close contact that communication happens
naturally. This is the ideal situation. One of the great benefits of C++ is that it allows projects
to be built with fewer team members, so this intimate style of communication can be
maintained, which means communication overhead is lower and projects can be built more
quickly.

The situation is not always so ideal. There can come a point where there are too many team
members or the project is too complex, and some form of communication discipline is
necessary. A method provides a way to form a «contract» between the members of a team.
You can view the concept of such a contract in two ways:

12 A reference to vampires made in The Mythical Man-Month, by Fred Brooks, Addison-
Wesley, 1975.

Chapter 1: Introduction to Objects 52

 17. Adversarial. The contract is an expression of suspicion between the parties
involved, to make sure that no one gets out of line and everyone does what
they’re supposed to. The contract spells out the bad things that happen if
they don’t. If you are looking at any contract this way, you’ve already lost
the game because you already think the other party is not trustworthy. If you
can’t trust someone, a contract won’t ensure good behavior.

 18. Informational. The contract is an attempt to make sure everyone knows
what we’ve agreed upon. It is an aid to communication so everyone can
look at it and say, «Yes, that’s what I think we’re going to do.» It’s an
expression of an agreement after the agreement has been made, just to clean
up misunderstandings. This sort of contract can be minimalist and easy to
read.

A useful method will not foment an adversarial contract; the emphasis will be on
communication.

A structuring system
The structure is the heart of your system. If a method accomplishes nothing else it must be
able to tell programmers:

 19. What classes you need.

 20. How you hook them together to build a working system.

A method generates these answers through a process that begins with an analysis of the
problem and ends with some sort of representation of the classes, the system, and the
messages passed between the classes in the system.

Tools for representation
The model should not be more complex than the system it represents. A good model presents
an abstraction.

You are certainly not constrained to using the representation tools that come with a particular
method. You can make up your own to suit your needs. (For example, later in this chapter
there’s a suggested notation for use with a commercial word processor.) Following are
guidelines for a useful notation:

 21. Include no more detail than necessary. Remember the «seven plus or minus
two» rule of complexity. (You can only hold that many items in your mind
at one moment.) Extra detail becomes baggage that must be maintained and
costs money.

 22. You should be able to get as much information as you need by probing
deeper into the representation levels. That is, levels can be created if

Chapter 1: Introduction to Objects 53

necessary, hidden at higher levels of abstraction and made visible on
demand.

 23. The notation should be as minimal as possible. «Too much magic causes
software rot.»

 24. System design and class design are separate issues. Classes are reusable
tools, while systems are solutions to specific problems (although a system
design, too, may be reusable). The notation should focus first on system
design.

 25. Is a class design notation necessary? The expression of classes provided by
the C++ language seems to be adequate for most situations. If a notation
doesn’t give you a significant boost over describing classes in their native
language, then it’s a hindrance.

 26. The notation should hide the implementation internals of the objects. Those
are generally not important during design.

 27. Keep it simple. The analysis is the design. Basically, all you want to do in
your method is discover your objects and how they connect with each other
to form a system. If a method and notation require more from you, then you
should question whether that method is spending your time wisely.

Don’t deplete
the most important resource

My friend Michael Wilk, after allowing that he came from academia and perhaps wasn’t
qualified to make a judgment (the type of preamble you hear from someone with a fresh
perspective), observed that the most important resource that a project, team, or company has
is enthusiasm. It seems that no matter how thorny the problem, how badly you’ve failed in the
past, the primitiveness of your tools or what the odds are, enthusiasm can overcome the
obstacle.

Unfortunately, various management techniques often do not consider enthusiasm at all, or,
because it cannot easily be measured, consider it an «unimportant» factor, thinking that if
enough management structure is in place, the project can be forced through. This sort of
thinking has the effect of damping the enthusiasm of the team, because they can feel like no
more than a means to a company’s profit motive, a cog. Once this happens a team member
becomes an «employee,» watching the clock and seeking interesting distractions.

A method and management technique built upon motivation and enthusiasm as the most
precious resources would be an interesting experiment indeed. At least, you should consider
the effect that an OOP design method will have on the morale of your team members.

Chapter 1: Introduction to Objects 54

«Required» reading
Before you choose any method, it’s helpful to gain perspective from those who are not trying
to sell one. It’s easy to adopt a method without really understanding what you want out of it or
what it will do for you. Others are using it, which seems a compelling reason. However,
humans have a strange little psychological quirk: If they want to believe something will solve
their problems, they’ll try it. (This is experimentation, which is good.) But if it doesn’t solve
their problems, they may redouble their efforts and begin to announce loudly what a great
thing they’ve discovered. (This is denial, which is not good.) The assumption here may be
that if you can get other people in the same boat, you won’t be lonely, even if it’s going
nowhere.

This is not to suggest that all methodologies go nowhere, but that you should be armed to the
teeth with mental tools that help you stay in experimentation mode («It’s not working; let’s
try something else») and out of denial mode («No, that’s not really a problem. Everything’s
wonderful, we don’t need to change»). I think the following books, read before you choose a
method, will provide you with these tools.

Software Creativity, by Robert Glass (Prentice-Hall, 1995). This is the best book I’ve seen
that discusses perspective on the whole methodology issue. It’s a collection of short essays
and papers that Glass has written and sometimes acquired (P.J. Plauger is one contributor),
reflecting his many years of thinking and study on the subject. They’re entertaining and only
long enough to say what’s necessary; he doesn’t ramble and lose your interest. He’s not just
blowing smoke, either; there are hundreds of references to other papers and studies. All
programmers and managers should read this book before wading into the methodology
mire.13

Peopleware, by Tom Demarco and Timothy Lister (Dorset House, 1987). Although they have
backgrounds in software development, this book is about projects and teams in general. But
the focus is on the people and their needs rather than the technology and its needs. They talk
about creating an environment where people will be happy and productive, rather than
deciding what rules those people should follow to be adequate components of a machine. This
latter attitude, I think, is the biggest contributor to programmers smiling and nodding when
XYZ method is adopted and then quietly doing whatever they’ve always done.

Complexity, by M. Mitchell Waldrop (Simon & Schuster, 1992). This chronicles the coming
together of a group of scientists from different disciplines in Santa Fe, New Mexico, to
discuss real problems that the individual disciplines couldn’t solve (the stock market in
economics, the initial formation of life in biology, why people do what they do in sociology,
etc.). By crossing physics, economics, chemistry, math, computer science, sociology, and
others, a multidisciplinary approach to these problems is developing. But more importantly, a
different way of thinking about these ultra-complex problems is emerging: Away from
mathematical determinism and the illusion that you can write an equation that predicts all
behavior and toward first observing and looking for a pattern and trying to emulate that

13 Another good «perspective» book is Object Lessons by Tom Love, SIGS Books, 1993.

Chapter 1: Introduction to Objects 55

pattern by any means possible. (The book chronicles, for example, the emergence of genetic
algorithms.) This kind of thinking, I believe, is useful as we observe ways to manage more
and more complex software projects.

Scripting:
a minimal method

I’ll start by saying this is not tried or tested anywhere. I make no promises — it’s a starting
point, a seed for other ideas, and a thought experiment, albeit after a great deal of thought and
a fair amount of reading and observation of myself and others in the process of development.
It was inspired by a writing class I took called «Story Structure,» taught by Robert McKee,14

primarily to aspiring and practicing screenwriters, but also for novelists and playwrights. It
later occurred to me that programmers have a lot in common with that group: Our concepts
ultimately end up expressed in some sort of textual form, and the structure of that expression
is what determines whether the product is successful or not. There are a few amazingly well-
told stories, many stories that are uninspired but competent and get the job done, and a lot of
badly told stories, some of which don’t get published. Of course, stories seem to want to be
told while programs demand to be written.

Writers have an additional constraint that does not always appear in programming: They
generally work alone or possibly in groups of two. Thus they must be very economical with
their time, and any method that does not bear significant fruit is discarded. Two of McKee’s
goals were to reduce the typical amount of time spent on a screenplay from one year to six
months and to significantly increase the quality of the screenplays in the process. Similar
goals are shared by software developers.

Getting everyone to agree on anything is an especially tough part of the startup process of a
project. The minimal nature of this system should win over even the most independent of
programmers.

Premises
I’m basing the method described here on two significant premises, which you must carefully
consider before you adopt the rest of the ideas:

 28. C++, unlike typical procedural languages (and most existing languages, for
that matter) has many guards in the language and language features so you
can build in your own guards. These guards are intended to prevent the
program you create from losing its structure, both during the process of
creating it and over time, as the program is maintained.

14 Through Two Arts, Inc., 12021 Wilshire Blvd. Suite 868, Los Angeles, CA 90025.

Chapter 1: Introduction to Objects 56

 29. No matter how much analysis you do, there are some things about a system
that won’t reveal themselves until design time, and more things that won’t
reveal themselves until a program is up and running. Because of this, it’s
critical to move fairly quickly through analysis and design to implement a
test of the proposed system. Because of Point 1, this is far safer than when
using procedural languages, because the guards in C++ are instrumental in
preventing the creation of «spaghetti code.»

This second point is worth emphasizing. Because of the history we’ve had with procedural
languages, it is commendable that a team will want to proceed carefully and understand every
minute detail before moving to design and implementation. Certainly, when creating a
DBMS, it pays to understand a customer’s needs thoroughly. But a DBMS is in a class of
problems that is very well-posed and well-understood. The class of programming problem
discussed in this chapter is of the «wild-card» variety, where it isn’t simply re-forming a well-
known solution, but instead involves one or more wild-card factors — elements where there is
no well-understood previous solution, and research is necessary.15 Attempting to thoroughly
analyze a wild-card problem before moving into design and implementation results in
analysis paralysis because you don’t have enough information to solve this kind of problem
during the analysis phase. Solving such a problem requires iteration through the whole cycle,
and that requires risk-taking behavior (which makes sense, because you’re trying to do
something new and the potential rewards are higher). It may seem like the risk is compounded
by «rushing» into a preliminary implementation, but it can instead reduce the risk in a wild-
card project because you’re finding out early whether a particular design is viable.

The goal of this method is to attack wild-card projects by producing the most rapid
development of a proposed solution, so the design can be proved or disproved as early as
possible. Your efforts will not be lost. It’s often proposed that you «build one to throw away.»
With OOP, you may still throw part of it away, but because code is encapsulated into classes,
you will inevitably produce some useful class designs and develop some worthwhile ideas
about the system design during the first iteration that do not need to be thrown away. Thus,
the first rapid pass at a problem not only produces critical information for the next analysis,
design, and implementation iteration, it also creates a code foundation for that iteration.

Another important feature of this method is support for brainstorming at the early part of a
project. By keeping the initial document small and concise, it can be created in a few sessions
of group brainstorming with a leader who dynamically creates the description. This not only
solicits input from everyone, it also fosters initial buy-in and agreement by everyone on the
team. Perhaps most importantly, it can kick off a project with a lot of enthusiasm (as noted
previously, the most essential resource).

15 My rule of thumb for estimating such projects: If there’s more than one wild card, don’t
even try to plan how long it’s going to take or how much it will cost. There are too many
degrees of freedom.

Chapter 1: Introduction to Objects 57

Representation
The writer’s most valuable computer tool is the word processor, because it easily supports the
structure of a document. With programming projects, the structure of the program is usually
supported and described by some form of separate documentation. As the projects become
more complex, the documentation is essential. This raises a classic problem, stated by
Brooks:16

A basic principle of data processing teaches the folly of
trying to maintain independent files in synchronism Yet
our practice in programming documentation violates our
own teaching. We typically attempt to maintain a
machine-readable form of a program and an independent
set of human-readable documentation»

A good tool will connect the code and its documentation.

I consider it very important to use familiar tools and modes of thinking; the change to OOP is
challenging enough by itself. Early OOP methodologies have suffered by using elaborate
graphical notation schemes. You inevitably change your design a lot, so expressing it with a
notation that’s difficult to modify is a liability because you’ll resist changing it to avoid the
effort involved. Only recently have tools been appearing that manipulate these graphical
notations. Tools for easy use of a design notation must already be in place before you can
expect people to use a method. Combining this with the fact that documents are usually
expected during the software design process, the most logical tool is a full-featured word
processor.17 Virtually every company already has these in place (so there’s no cost to trying
this method), most programmers are familiar with them, and as programmers they are
comfortable creating tools using the underlying macro language. This follows the spirit of
C++, where you build on your existing knowledge and tool base rather than throwing it away.

The mode of thinking used by this method also follows that spirit. Although a graphical
notation is useful18 to express a design in a report, it is not fast enough to support
brainstorming. However, everyone understands outlining, and most word processors have
some sort of outlining mode that allows you to grab pieces of the outline and quickly move
them around. This is perfect for rapid design evolution in an interactive brainstorming session.
In addition, you can expand and collapse outlines to see various levels of granularity in the
system. And (as described later), as you create the design, you create the design document, so

16 The Mythical Man-Month, ibid.

17 My observations here are based on what I am most familiar with: the extensive capabilities
of Microsoft Word, which was used to produce the camera-ready pages of this book.

18 I encourage the choice of one that uses simple boxes, lines, and symbols that are available
in the drawing package of the word processor, rather than amorphous shapes that are difficult
to produce.

Chapter 1: Introduction to Objects 58

a report on the state of the project can be produced with a process not unlike running a
compiler.

1. High concept
Any system you build, no matter how complicated, has a fundamental purpose, the business
that it’s in, the basic need that it satisfies. If you can look past the user interface, the
hardware- or system-specific details, the coding algorithms and the efficiency problems, you
will eventually find the core of its being, simple and straightforward. Like the so-called high
concept from a Hollywood movie, you can describe it in one or two sentences. This pure
description is the starting point.

The high concept is quite important because it sets the tone for your project; it’s a mission
statement. You won’t necessarily get it right the first time (you may be developing the
treatment or building the design before it becomes completely clear), but keep trying until it
feels right. For example, in an air-traffic control system you may start out with a high concept
focused on the system that you’re building: «The tower program keeps track of the aircraft.»
But consider what happens when you shrink the system to a very small airfield; perhaps
there’s only a human controller or none at all. A more useful model won’t concern the
solution you’re creating as much as it describes the problem: «Aircraft arrive, unload, service
and reload, and depart.»

2. Treatment
A treatment of a script is a summary of the story in one or two pages, a fleshing out of the
high concept. The best way to develop the high concept and treatment for a computer system
may be in a group situation with a facilitator who has writing ability. Ideas can be suggested
in a brainstorming environment, while the facilitator tries to express the ideas on a computer
that’s networked with the group or projected on screen. The facilitator takes the role of a
ghostwriter and doesn’t judge the ideas but instead simply tries to make them clear and keep
them flowing.

The treatment becomes the jumping-off point for the initial object discovery and first rough
cut at design, which can also be performed in a group setting with a facilitator.

3. Structuring
Structure is the key to the system. Without structure you have a random collection of
meaningless events. With structure you have a story. The structure of a story is expressed
through characters, which correspond to objects, and plot, which corresponds to system
design.

Organizing the system
As mentioned earlier, the primary representation tool for this method is a sophisticated word
processor with outlining facility.

Chapter 1: Introduction to Objects 59

You start with level-1 sections for high concept, treatment, objects, and design. As the
objects are discovered, they are placed as level-2 subsections under objects. Object interfaces
are added as level-3 subsections under the specific type of object. If essential descriptive text
comes up, it is placed as normal text under the appropriate subsection.

Because this technique involves typing and outlining, with no drawing, the brainstorming
process is not hindered by the speed of creating the representation.

Characters: initial object discovery
The treatment contains nouns and verbs. As you find these, the nouns will suggest classes,
and the verbs will become either methods for those classes or processes in the system design.
Although you may not be comfortable that you’ve found everything after this first pass,
remember that it’s an iterative process. You can add additional classes and methods at further
stages and later design passes, as you understand the problem better. The point of this
structuring is that you don’t currently understand the problem, so don’t expect the design to
be revealed to you all at once.

Start by simply moving through the treatment and creating a level-2 subsection in objects for
each unique noun that you find. Take verbs that are clearly acting upon an object and place
them as level-3 method subsections beneath the appropriate noun. Add the argument list (even
if it’s initially empty) and return type for each method. This will give you a rough cut and
something to talk about and push around.

If a class is inherited from another class, its level-2 subsection should be placed as close as
possible after the base class, and its subsection name should indicate the inheritance
relationship just as you would when writing the code: derived : public base. This allows the
code to be properly generated.

Although you can set your system up to express methods that are hidden from the public
interface, the intent here is to create only the classes and their public interfaces; other
elements are considered part of the underlying implementation and not the high-level design.
If expressed, they should appear as text-level notes beneath the appropriate class.

When decision points come up, use a modified Occam’s Razor approach: Consider the
choices and select the one that is simplest, because simple classes are almost always best. It’s
easy to add more elements to a class, but as time goes on, it’s difficult to take them away.

If you need to seed the process, look at the problem from a lazy programmer’s standpoint:
What objects would you like to magically appear to solve your problem? It’s also helpful to
have references on hand for the classes that are available and the various system design
patterns, to clarify proposed classes or designs.

You won’t stay in the objects section the entire time; instead, you’ll move back and forth
between objects and system design as you analyze the treatment. Also, at any time you may
want to write some normal text beneath any of the subsections as ideas or notes about a
particular class or method.

Chapter 1: Introduction to Objects 60

Plot: initial system design
From the high concept and treatment, a number of «subplots» should be apparent. Often they
may be as simple as «input, process, output,» or «user interface, actions.» Each subplot has its
own level-2 subsection under design. Most stories follow one of a set of common plots; in
OOP the analogy is being called a «pattern.» Refer to resources on OOP design patterns to aid
in searching for plots.

At this point, you’re just trying to create a rough sketch of the system. During the
brainstorming session, people in the group make suggestions about activities they think occur
in the system, and each activity is recorded individually, without necessarily working to
connect it to the whole. It’s especially important to have the whole team, including
mechanical design (if necessary), marketing, and managers, included in this session, not only
so everyone is comfortable that the issues have been considered, but because everyone’s input
is valuable at this point.

A subplot will have a set of stages or states that it moves through, conditions for moving
between stages, and the actions involved in each transition. Each stage is given its own level-3
subsection under that particular subplot. The conditions and transitions can be described as
text under the stage subhead. Ideally, you’ll eventually (as the design iteration proceeds) be
able to write the essentials of each subplot as the creation of objects and sending messages to
them. This becomes the initial code body for that subplot.

The design discovery and object discovery processes will stimulate each other, so you’ll be
adding subentries to both sections during the session.

4. Development
This is the initial conversion from the rough design to a compiling body of code that can be
tested, and especially that will prove or disprove your design. This is not a one-pass process,
but rather the beginning of a series of writes and rewrites, so the emphasis is on converting
from the document into a body of code in such a way that the document can be regenerated
using any changes to the structure or associated prose in the code. This way, generating
design documentation after coding begins (and the inevitable changes occur) becomes
reasonably effortless, and the design document can become a tool for reporting on the
progress of the project.

Initial translation
By using the standard section names objects and design at level-1 section headings, you can
key your tools to lift out those sections and generate your header files from them. You
perform different activities depending on what major section you’re in and the level of
subsection you’re working on. The easiest approach may be to have your tool or macro break
the document into pieces and work on each one appropriately.

Each level-2 section in objects should have enough information in the section name (the
name of the class and its base class, if any) to generate the class declaration automatically,
and each level-3 subsection beneath the class name should have enough information in the

Chapter 1: Introduction to Objects 61

section name (member function name, argument list, and return type) to generate the member
function declaration. Your tool will simply move through these and create the class
declarations.

For simplicity, a single class declaration will appear in each header file. The best approach to
naming the header files is probably to include the file name as tagged information in the level-
2 section name for that class.

Plotting can be more subtle. Each subplot may produce an independent function, called from
inside main(), or simply a section in main(). Start with something that gets the job done; a
more refined pattern may emerge in future iterations.

Code generation
Using automatic tools (most word-processor scripting tools are adequate for this),

 30. Generate a header file for each class described in your objects section,
creating a class declaration for each one, with all the public interface
functions and their associated description blocks, surrounding each with
special tags that can be easily parsed later.

 31. Generate a header file for each subplot and copy its description as a
commented block at the beginning of the file, followed by function
declarations.

 32. Mark each subplot, class, and method with its outline heading level as a
tagged, commented identifier: //#[1], //#[2], etc.). All generated files have
document comments in specially identified blocks with tags. Class names
and function declarations also retain comment markers. This way, a
reversing tool can go through, extract all the information and regenerate the
source document, preferably, in a document-description language like Rich
Text Format (RTF).

 33. The interfaces and plots should be compilable at this point (but not
linkable), so syntax checking can occur. This will ensure the high-level
integrity of the design. The document can be regenerated from the correctly
compiling files.

 34. At this point, two things can happen. If the design is still very early, it’s
probably easiest to work on the document (rather than the code) in
brainstorming sessions, or on subparts of the document in groups
responsible for them. However, if the design is complete enough, you can
begin coding. If interface elements are added during coding, they must be
tagged by the programmer along with tagged comments, so the regeneration
program can use the new information to produce the document.

If you had the front end to a compiler, you could certainly do this for classes and functions
automatically, but that’s a big job and the language is evolving. Using explicit tags is fairly

Chapter 1: Introduction to Objects 62

fail-safe, and commercial browsing tools can be used to verify that all public functions have
made it into the document (that is, they were tagged).

5. Rewriting
This is the analogy of rewriting a screenplay to refine it and make it shine. In programming,
it’s the process of iteration. It’s where your program goes from good to great, and where those
issues that you didn’t really understand in the first pass become clear. It’s also where your
classes can evolve from single-project usage to reusable resources.

From a tool standpoint, reversing the process is a bit more complicated. You want to be able
to decompose the header files so they can be reintegrated into the design document, including
all the changes that have been made during coding. Then, if any changes are made to the
design in the design document, the header files must be completely rebuilt, without losing any
of the work that was done to get the header file to compile in the first iteration. Thus, your
tool must not only look for your tagged information to turn into section levels and text, it must
also find, tag, and store the other information such as the #includes at the beginning of each
file. If you keep in mind that the header file expresses the class design and that you must be
able to regenerate the header from your design document, you’ll be OK.

Also notice that the text level notes and discussions, which were turned into tagged comments
on the initial generation, have more than likely been modified by the programmer as the
design evolved. It’s essential that these are captured and put into their respective places, so the
design document reflects the new information. This allows you to change that information,
and it’s carried back to the generated header files.

For the system design (main() and any supporting functions) you may want to capture the
whole file, add section identifiers like A, B, C, and so on, as tagged comments (do not use line
numbers, because these may change), and attach your section descriptions (which will then be
carried back and forth into the main() file as tagged, commented text).

You have to know when to stop when iterating the design. Ideally, you achieve target
functionality and are in the process of refinement and addition of new features when the
deadline comes along and forces you to stop and ship that version. (Remember, software is a
subscription business.)

Logistics
Periodically, you’ll want to get an idea of where the project is by reintegrating the document.
This process can be painless if it’s done over a network using automatic tools. Regularly
integrating and maintaining the master design document is the responsibility of the project
leader or manager, while teams or individuals are responsible for subparts of the document
(that is, their code and comments).

Supplemental features, such as class diagrams, can be generated using third-party tools and
automatically included in the document.

Chapter 1: Introduction to Objects 63

A current report can be generated at any time by simply «refreshing» the document. The state
of all parts of the program can then be viewed; this also provides immediate updates for
support groups, especially end-user documentation. The document is also critically valuable
for rapid start-up of new team members.

A single document is more reasonable than all the documents produced by some analysis,
design, and implementation methods. Although one smaller document is less impressive, it’s
«alive,» whereas an analysis document, for example, is only valuable for a particular phase of
the project and then rapidly becomes obsolete. It’s hard to put a lot of effort into a document
that you know will be thrown away.

Analysis and design
The object-oriented paradigm is a new and different way of thinking about programming and
many folks have trouble at first knowing how to approach a project. Now that you know that
everything is supposed to be an object, you can create a «good» design, one that will take
advantage of all the benefits that OOP has to offer.

Books on OOP analysis and design are coming out of the woodwork. Most of these books are
filled with lots of long words, awkward prose and important-sounding pronouncements.19 I
come away thinking the book would be better as a chapter or at the most a very short book
and feeling annoyed that this process couldn’t be described simply and directly. (It disturbs
me that people who purport to specialize in managing complexity have such trouble writing
clear and simple books.) After all, the whole point of OOP is to make the process of software
development easier, and although it would seem to threaten the livelihood of those of us who
consult because things are complex, why not make it simple? So, hoping I’ve built a healthy
skepticism within you, I shall endeavor to give you my own perspective on analysis and
design in as few paragraphs as possible.

Staying on course
While you’re going through the development process, the most important issue is this: don’t
get lost. It’s easy to do. Most of these methodologies are designed to solve the largest of
problems. (This makes sense; these are the especially difficult projects that justify calling in
that author as consultant, and justify the author’s large fees.) Remember that most projects
don’t fit into that category, so you can usually have a successful analysis and design with a
relatively small subset of what a methodology recommends. But some sort of process, no
matter how limited, will generally get you on your way in a much better fashion than simply
beginning to code.

19 The best introduction is still Grady Booch’s Object-Oriented Design with Applications, 2nd

edition, Wiley & Sons 1996. His insights are clear and his prose is straightforward, although
his notations are needlessly complex for most designs. (yYou can easily get by with a subset.).

Chapter 1: Introduction to Objects 64

That said, if you’re looking at a methodology that contains tremendous detail and suggests
many steps and documents, it’s still difficult to know when to stop. Keep in mind what you’re
trying to discover:

1. What are the objects? (How do you partition your project into its component parts?)

2. What are their interfaces? (What messages do you need to be able to send to each
object?)

If you come up with nothing more than the objects and their interfaces then you can write a
program. For various reasons you might need more descriptions and documents than this, but
you can’t really get away with any less.

The process can be undertaken in four phases, and a phase 0 which is just the initial
commitment to using some kind of structure.

Phase 0: Let’s make a plan
The first step is to decide what steps you’re going to have in your process. It sounds simple
(in fact, all of this sounds simple) and yet, often, people don’t even get around to phase one
before they start coding. If your plan is «let’s jump in and start coding,» fine. (Sometimes
that’s appropriate when you have a well-understood problem.) At least agree that this is the
plan.

You might also decide at this phase that some additional process structure is necessary but not
the whole nine yards. Understandably enough, some programmers like to work in «vacation
mode» in which no structure is imposed on the process of developing their work: «It will be
done when it’s done.» This can be appealing for awhile, but I’ve found that having a few
milestones along the way helps to focus and galvanize your efforts around those milestones
instead of being stuck with the single goal of «finish the project.» In addition, it divides the
project into more bite-sized pieces and make it seem less threatening.

When I began to study story structure (so that I will someday write a novel) I was initially
resistant to the idea, feeling that when I wrote I simply let it flow onto the page. What I found
was that when I wrote about computers the structure was simple enough so I didn’t need to
think much about it, but I was still structuring my work, albeit only semi-consciously in my
head. So even if you think that your plan is to just start coding, you still go through the
following phases while asking and answering certain questions.

Phase 1: What are we making?
In the previous generation of program design (procedural design), this would be called
«creating the requirements analysis and system specification.» These, of course, were places
to get lost: intimidatingly-named documents that could become big projects in their own right.
Their intention was good, however. The requirements analysis says «Make a list of the
guidelines we will use to know when the job is done and the customer is satisfied.» The
system specification says «Here’s a description of what the program will do (not how) to
satisfy the requirements.» The requirements analysis is really a contract between you and the

Chapter 1: Introduction to Objects 65

customer (even if the customer works within your company or is some other object or
system). The system specification is a top-level exploration into the problem and in some
sense a discovery of whether it can be done and how long it will take. Since both of these will
require consensus among people, I think it’s best to keep them as bare as possible – ideally, to
lists and basic diagrams – to save time. You might have other constraints that require you to
expand them into bigger documents.

It’s necessary to stay focused on the heart of what you’re trying to accomplish in this phase:
determine what the system is supposed to do. The most valuable tool for this is a collection of
what are called «use-cases.» These are essentially descriptive answers to questions that start
with «What does the system do if …» For example, «What does the auto-teller do if a
customer has just deposited a check within 24 hours and there’s not enough in the account
without the check to provide the desired withdrawal?» The use-case then describes what the
auto-teller does in that case.

You try to discover a full set of use-cases for your system, and once you’ve done that you’ve
got the core of what the system is supposed to do. The nice thing about focusing on use-cases
is that they always bring you back to the essentials and keep you from drifting off into issues
that aren’t critical for getting the job done. That is, if you have a full set of use-cases you can
describe your system and move onto the next phase. You probably won’t get it all figured out
perfectly at this phase, but that’s OK. Everything will reveal itself in the fullness of time, and
if you demand a perfect system specification at this point you’ll get stuck.

It helps to kick-start this phase by describing the system in a few paragraphs and then looking
for nouns and verbs. The nouns become the objects and the verbs become the methods in the
object interfaces. You’ll be surprised at how useful a tool this can be; sometimes it will
accomplish the lion’s share of the work for you.

Although it’s a black art, at this point some kind of scheduling can be quite useful. You now
have an overview of what you’re building so you’ll probably be able to get some idea of how
long it will take. A lot of factors come into play here: if you estimate a long schedule then the
company might not decide to build it, or a manager might have already decided how long the
project should take and will try to influence your estimate. But it’s best to have an honest
schedule from the beginning and deal with the tough decisions early. There have been a lot of
attempts to come up with accurate scheduling techniques (like techniques to predict the stock
market), but probably the best approach is to rely on your experience and intuition. Get a gut
feeling for how long it will really take, then double that and add 10 percent. Your gut feeling
is probably correct; you can get something working in that time. The «doubling» will turn that
into something decent, and the 10 percent will deal with final polishing and details. However
you want to explain it, and regardless of the moans and manipulations that happen when you
reveal such a schedule, it just seems to work out that way.

Phase 2: How will we build it?
In this phase you must come up with a design that describes what the classes look like and
how they will interact. A useful diagramming tool that has evolved over time is the Unified
Modeling Language (UML). You can get the specification for UML at www.rational.com.
UML can also be helpful as a descriptive tool during phase 1, and some of the diagrams you

Chapter 1: Introduction to Objects 66

create there will probably show up unmodified in phase 2. You don’t need to use UML, but it
can be helpful, especially if you want to put a diagram up on the wall for everyone to ponder,
which is a good idea. An alternative to UML is a textual description of the objects and their
interfaces (as I described in Thinking in C++), but this can be limiting.

The most successful consulting experiences I’ve had when coming up with an initial design
involves standing in front of a team, who hadn’t built an OOP project before, and drawing
objects on a whiteboard. We talked about how the objects should communicate with each
other, and erased some of them and replaced them with other objects. The team (who knew
what the project was supposed to do) actually created the design; they «owned» the design
rather than having it given to them. All I was doing was guiding the process by asking the
right questions, trying out the assumptions and taking the feedback from the team to modify
those assumptions. The true beauty of the process was that the team learned how to do object-
oriented design not by reviewing abstract examples, but by working on the one design that
was most interesting to them at that moment: theirs.

You’ll know you’re done with phase 2 when you have described the objects and their
interfaces. Well, most of them – there are usually a few that slip through the cracks and don’t
make themselves known until phase 3. But that’s OK. All you are concerned with is that you
eventually discover all of your objects. It’s nice to discover them early in the process but OOP
provides enough structure so that it’s not so bad if you discover them later.

Phase 3: Let’s build it!
If you’re reading this book you’re probably a programmer, so now we’re at the part you’ve
been trying to get to. By following a plan – no matter how simple and brief – and coming up
with design structure before coding, you’ll discover that things fall together far more easily
than if you dive in and start hacking, and this provides a great deal of satisfaction. Getting
code to run and do what you want is fulfilling, even like some kind of drug if you look at the
obsessive behavior of some programmers. But it’s my experience that coming up with an
elegant solution is deeply satisfying at an entirely different level; it feels closer to art than
technology. And elegance always pays off; it’s not a frivolous pursuit. Not only does it give
you a program that’s easier to build and debug, but it’s also easier to understand and maintain,
and that’s where the financial value lies.

After you build the system and get it running, it’s important to do a reality check, and here’s
where the requirements analysis and system specification comes in. Go through your program
and make sure that all the requirements are checked off, and that all the use-cases work the
way they’re described. Now you’re done. Or are you?

Phase 4: Iteration
This is the point in the development cycle that has traditionally been called «maintenance,» a
catch-all term that can mean everything from «getting it to work the way it was really
supposed to in the first place» to «adding features that the customer forgot to mention before»
to the more traditional «fixing the bugs that show up» and «adding new features as the need
arises.» So many misconceptions have been applied to the term «maintenance» that it has

Chapter 1: Introduction to Objects 67

taken on a slightly deceiving quality, partly because it suggests that you’ve actually built a
pristine program and that all you need to do is change parts, oil it and keep it from rusting.
Perhaps there’s a better term to describe what’s going on.

The term is iteration. That is, «You won’t get it right the first time, so give yourself the
latitude to learn and to go back and make changes.» You might need to make a lot of changes
as you learn and understand the problem more deeply. The elegance you’ll produce if you
iterate until you’ve got it right will pay off, both in the short and the long run.

What it means to «get it right» isn’t just that the program works according to the requirements
and the use-cases. It also means that the internal structure of the code makes sense to you, and
feels like it fits together well, with no awkward syntax, oversized objects or ungainly exposed
bits of code. In addition, you must have some sense that the program structure will survive the
changes that it will inevitably go through during its lifetime, and that those changes can be
made easily and cleanly. This is no small feat. You must not only understand what you’re
building, but also how the program will evolve (what I call the vector of change). Fortunately,
object-oriented programming languages are particularly adept at supporting this kind of
continuing modification – the boundaries created by the objects are what tend to keep the
structure from breaking down. They are also what allow you to make changes that would
seem drastic in a procedural program without causing earthquakes throughout your code. In
fact, support for iteration might be the most important benefit of OOP.

With iteration, you create something that at least approximates what you think you’re
building, and then you kick the tires, compare it to your requirements and see where it falls
short. Then you can go back and fix it by redesigning and re-implementing the portions of the
program that didn’t work right.20 You might actually need to solve the problem, or an aspect
of the problem, several times before you hit on the right solution. (A study of Design
Patterns, described in Chapter 16, is usually helpful here.)

Iteration also occurs when you build a system, see that it matches your requirements and then
discover it wasn’t actually what you wanted. When you see the system, you realize you want
to solve a different problem. If you think this kind of iteration is going to happen, then you
owe it to yourself to build your first version as quickly as possible so you can find out if it’s
what you want.

Iteration is closely tied to incremental development. Incremental development means that you
start with the core of your system and implement it as a framework upon which to build the
rest of the system piece by piece. Then you start adding features one at a time. The trick to
this is in designing a framework that will accommodate all the features you plan to add to it.
(See Chapter 16 for more insight into this issue.) The advantage is that once you get the core
framework working, each feature you add is like a small project in itself rather than part of a
big project. Also, new features that are incorporated later in the development or maintenance

20 This is something like «rapid prototyping,» where you were supposed to build a quick-and-dirty
version so that you could learn about the system, and then throw away your prototype and build it right.
The trouble with rapid prototyping is that people didn’t throw away the prototype, but instead built upon
it. Combined with the lack of structure in procedural programming, this often leads to messy,expensive-
to-maintain systems that are expensive to maintain.

Chapter 1: Introduction to Objects 68

phases can be added more easily. OOP supports incremental development because if your
program is designed well, your increments will turn out to be discrete objects or groups of
objects.

Plans pay off
Of course you wouldn’t build a house without a lot of carefully-drawn plans. If you build a
deck or a dog house, your plans won’t be so elaborate but you’ll still probably start with some
kind of sketches to guide you on your way. Software development has gone to extremes. For a
long time, people didn’t have much structure in their development, but then big projects
began failing. In reaction, we ended up with methodologies that had an intimidating amount
of structure and detail. These were too scary to use – it looked like you’d spend all your time
writing documents and no time programming. (This was often the case.) I hope that what I’ve
shown you here suggests a middle path – a sliding scale. Use an approach that fits your needs
(and your personality). No matter how minimal you choose to make it, some kind of plan will
make a big improvement in your project as opposed to no plan at all. Remember that, by some
estimates, over 50 percent of projects fail.

Other methods
There are currently a large number (more than 20) of formal methods available for you to
choose from.21 Some are not entirely independent because they share fundamental ideas, but
at some higher level they are all unique. Because at the lowest levels most of the methods are
constrained by the default behavior of the language, each method would probably suffice for a
simple project. The true benefit is claimed to be at the higher levels; one method may excel at
the design of real-time hardware controllers, but that method may not as easily fit the design
of an archival database.

Each approach has its cheerleading squad, but before you worry too much about a large-scale
method, you should understand the language basics a little better, to get a feel for how a
method fits your particular style, or whether you even need a method at all. The following
descriptions of three of the most popular methods are mainly for flavor, not comparison
shopping. If you want to learn more about methods, there are many books and courses
available.

21 These are summarized in Object Analysis and Design: Description of Methods, edited by
Andrew T.F. Hutt of the Object Management Group (OMG), John Wiley & Sons, 1994.

Chapter 1: Introduction to Objects 69

Booch
The Booch22 method is one of the original, most basic, and most widely referenced. Because
it was developed early, it was meant to be applied to a variety of programming problems. It
focuses on the unique features of OOP: classes, methods, and inheritance. The steps are as
follows:

 35. Identify classes and objects at a certain level of abstraction. This is
predictably a small step. You state the problem and solution in natural
language and identify key features such as nouns that will form the basis for
classes. If you’re in the fireworks business, you may want to identify
Workers, Firecrackers, and Customers; more specifically you’ll need
Chemists, Assemblers, and Handlers; AmateurFirecrackers and
ProfessionalFirecrackers; Buyers and Spectators. Even more specifically,
you could identify YoungSpectators, OldSpectators, TeenageSpectators, and
ParentSpectators.

 36. Identify their semantics. Define classes at an appropriate level of
abstraction. If you plan to create a class, you should identify that class’s
audience properly. For example, if you create a class Firecracker, who is
going to observe it, a Chemist or a Spectator? The former will want to know
what chemicals go into the construction, and the latter will respond to the
colors and shapes released when it explodes. If your Chemist requests a
firecracker’s primary color-producing chemicals, it had better not get the
reply, «Some really cool greens and reds.» Similarly, a Spectator would be
puzzled at a Firecracker that spouted only chemical equations when it was
lit. Perhaps your program is for a vertical market, and both Chemists and
Spectators will use it; in that case, your Firecracker will have both objective
and subjective attributes, and will be able to appear in the appropriate guise
for the observer.

 37. Identify relationships between them (CRC cards). Define how the
classes interact with other classes. A common method for tabulating the
information about each class uses the Class, Responsibility, Collaboration
(CRC) card. This is a small card (usually an index card) on which you write
the state variables for the class, the responsibilities it has (i.e., the messages
it gives and receives), and references to the other classes with which it
interacts. Why an index card? The reasoning is that if you can’t fit all you
need to know about a class on a small card, the class is too complex. The
ideal class should be understood at a glance; index cards are not only
readily available, they also happen to hold what most people consider a

22 See Object-Oriented Design with Applications by Grady Booch, Benjamin/Cummings,
1991. A more recent edition focuses on C++.

Chapter 1: Introduction to Objects 70

reasonable amount of information. A solution that doesn’t involve a major
technical innovation is one that’s available to everyone (like the document
structuring in the scripting method described earlier in this chapter).

 38. Implement the classes. Now that you know what to do, jump in and code
it. In most projects the coding will affect the design.

 39. Iterate the design. The design process up to this point has the feeling of the
classic waterfall method of program development. Now it diverges. After a
preliminary pass to see whether the key abstractions allow the classes to be
separated cleanly, iterations of the first three steps may be necessary. Booch
writes of a «round-trip gestalt design process.» Having a gestalt view of the
program should not be impossible if the classes truly reflect the natural
language of the solution. Perhaps the most important thing to remember is
that by default — by definition, really — if you modify a class its super-
and subclasses will still function. You need not fear modification; it cannot
break the program, and any change in the outcome will be limited to
subclasses and/or specific collaborators of the class you change. A glance at
your CRC card for the class will probably be the only clue you need to
verify the new version.

Responsibility-Driven Design (RDD)
This method23 also uses CRC cards. Here, as the name implies, the cards focus on delegation
of responsibilities rather than appearance. To illustrate, the Booch method might produce an
Employee-BankEmployee-BankManager hierarchy; in RDD this might come out Manager-
FinanceManager-BankManager. The bank manager’s primary responsibilities are managerial,
so the hierarchy reflects that.

More formally, RDD involves the following:

 40. Data or state. A description of the data or state variables for each class.

 41. Sinks and sources. Identification of data sinks and sources, classes that
process or generate data.

 42. Observer or view. View or observer classes that separate hardware
dependencies.

23 See Designing Object-Oriented Software by Rebecca Wirfs-Brock et al., Prentice Hall,
1990.

Chapter 1: Introduction to Objects 71

 43. Facilitator or helper. Facilitator or helper classes, such as a linked list, that
contain little or no state information and simply help other classes to
function.

Object Modeling Technique (OMT)
Object Modeling Technique24 (OMT) adds one more level of complexity to the process.
Booch’s method emphasizes the fundamental appearance of classes and defines them simply
as outgrowths of the natural language solution. RDD takes that one step further by
emphasizing the class responsibility more than its appearance. OMT describes not only the
classes but various states of the system using detailed diagramming, as follows:

 44. Object model, «what,» object diagram. The object model is similar to that
produced by Booch’s method and RDD. Object classes are connected by
responsibilities.

 45. Dynamic model, «when,» state diagram. The dynamic model describes
time-dependent states of the system. Different states are connected by
transitions. An example that contains time-dependent states is a real-time
sensor that collects data from the outside world.

 46. Functional model, «how,» data flow diagram. The functional model
traces the flow of data. The theory is that because the real work at the
lowest level of the program is accomplished using procedures, the low-level
behavior of the program is best understood by diagramming the data flow
rather than by diagramming its objects.

Why C++ succeeds
Part of the reason C++ has been so successful is that the goal was not just to turn C into an
OOP language (although it started that way), but to solve many other problems facing
developers today, especially those who have large investments in C. Traditionally, OOP
languages have suffered from the attitude that you should dump everything you know and
start from scratch with a new set of concepts and a new syntax, arguing that it’s better in the
long run to lose all the old baggage that comes with procedural languages. This may be true,
in the long run. But in the short run, a lot of that baggage was valuable. The most valuable
elements may not be the existing code base (which, given adequate tools, could be translated),
but instead the existing mind base. If you’re a functioning C programmer and must drop
everything you know about C in order to adopt a new language, you immediately become
nonproductive for many months, until your mind fits around the new paradigm. Whereas if

24 See Object-Oriented Modeling and Design by James Rumbaugh et al., Prentice Hall, 1991.

Chapter 1: Introduction to Objects 72

you can leverage off of your existing C knowledge and expand upon it, you can continue to be
productive with what you already know while moving into the world of object-oriented
programming. As everyone has his/her own mental model of programming, this move is
messy enough as it is without the added expense of starting with a new language model from
square one. So the reason for the success of C++, in a nutshell, is economic: It still costs to
move to OOP, but C++ costs a lot less.

The goal of C++ is improved productivity. This productivity comes in many ways, but the
language is designed to aid you as much as possible, while hindering you as little as possible
with arbitrary rules or any requirement that you use a particular set of features. The reason
C++ is successful is that it is designed with practicality in mind: Decisions are based on
providing the maximum benefits to the programmer.

A better C
You get an instant win even if you continue to write C code because C++ has closed the holes
in the C language and provides better type checking and compile-time analysis. You’re forced
to declare functions so the compiler can check their use. The preprocessor has virtually been
eliminated for value substitution and macros, which removes a set of difficult-to-find bugs.
C++ has a feature called references that allows more convenient handling of addresses for
function arguments and return values. The handling of names is improved through function
overloading, which allows you to use the same name for different functions. Namespaces also
improve the control of names. There are numerous other small features that improve the
safety of C.

You’re already on the learning curve
The problem with learning a new language is productivity: No company can afford to
suddenly lose a productive software engineer because she’s learning a new language. C++ is
an extension to C, not a complete new syntax and programming model. It allows you to
continue creating useful code, applying the features gradually as you learn and understand
them. This may be one of the most important reasons for the success of C++.

In addition, all your existing C code is still viable in C++, but because the C++ compiler is
pickier, you’ll often find hidden errors when recompiling the code.

Efficiency
Sometimes it is appropriate to trade execution speed for programmer productivity. A financial
model, for example, may be useful for only a short period of time, so it’s more important to
create the model rapidly than to execute it rapidly. However, most applications require some
degree of efficiency, so C++ always errs on the side of greater efficiency. Because C
programmers tend to be very efficiency-conscious, this is also a way to ensure they won’t be
able to argue that the language is too fat and slow. A number of features in C++ are intended
to allow you to tune for performance when the generated code isn’t efficient enough.

Chapter 1: Introduction to Objects 73

Not only do you have the same low-level control as in C (and the ability to directly write
assembly language within a C++ program), but anecdotal evidence suggests that the program
speed for an object-oriented C++ program tends to be within ±10% of a program written in C,
and often much closer. The design produced for an OOP program may actually be more
efficient than the C counterpart.

Systems are easier
to express and understand

Classes designed to fit the problem tend to express it better. This means that when you write
the code, you’re describing your solution in the terms of the problem space («put the grommet
in the bin») rather than the terms of the computer, which is the solution space («set the bit in
the chip that means that the relay will close»). You deal with higher-level concepts and can do
much more with a single line of code.

The other benefit of this ease of expression is maintenance, which (if reports can be believed)
takes a huge portion of the cost over a program’s lifetime. If a program is easier to
understand, then it’s easier to maintain. This can also reduce the cost of creating and
maintaining the documentation.

Maximal leverage with libraries
The fastest way to create a program is to use code that’s already written: a library. A major
goal in C++ is to make library use easier. This is accomplished by casting libraries into new
data types (classes), so bringing in a library is adding a new data type to the language.
Because the compiler takes care of how the library is used — guaranteeing proper
initialization and cleanup, ensuring functions are called properly — you can focus on what
you want the library to do, not how you have to do it.

Because names can be sequestered to portions of your program, you can use as many libraries
as you want without the kinds of name clashes you’d run into with C.

Source-code reuse with templates
There is a significant class of types that require source-code modification in order to reuse
them effectively. The template performs the source code modification automatically, making
it an especially powerful tool for reusing library code. A type you design using templates will
work effortlessly with many other types. Templates are especially nice because they hide the
complexity of this type of code reuse from the client programmer.

Error handling
Error handling in C is a notorious problem, and one that is often ignored — finger-crossing is
usually involved. If you’re building a large, complex program, there’s nothing worse than
having an error buried somewhere with no vector telling you where it came from. C++

Chapter 1: Introduction to Objects 74

exception handling (the subject of Chapter 16) is a way to guarantee that an error is noticed
and that something happens as a result.

Programming in the large
Many traditional languages have built-in limitations to program size and complexity. BASIC,
for example, can be great for pulling together quick solutions for certain classes of problems,
but if the program gets more than a few pages long or ventures out of the normal problem
domain of that language, it’s like trying to run through an ever-more viscous solution. C, too,
has these limitations. For example, when a program gets beyond perhaps 50,000 lines of code,
name collisions start to become a problem. In short, you run out of function and variable
names. Another particularly bad problem is the little holes in the C language — errors can get
buried in a large program that are extremely difficult to find.

There’s no clear line that tells when your language is failing you, and even if there were,
you’d ignore it. You don’t say, «My BASIC program just got too big; I’ll have to rewrite it in
C!» Instead, you try to shoehorn a few more lines in to add that one extra feature. So the extra
costs come creeping up on you.

C++ is designed to aid programming in the large, that is, to erase those creeping-complexity
boundaries between a small program and a large one. You certainly don’t need to use OOP,
templates, namespaces, and exception handling when you’re writing a hello-world-class
utility program, but those features are there when you need them. And the compiler is
aggressive about ferreting out bug-producing errors for small and large programs alike.

Strategies for transition
If you buy into OOP, you next question is probably, «How can I get my
manager/colleagues/department/peers to start using objects?» Think about how you — one
independent programmer — would go about learning to use a new language and a new
programming paradigm. You’ve done it before. First comes education and examples; then
comes a trial project to give you a feel for the basics without doing anything too confusing;
then you try to do a «real world» project that actually does something useful. Throughout
your first projects you continue your education by reading, asking questions of gurus, and
trading hints with friends. In essence, this is the approach many authors suggest for the switch
from C to C++. Switching an entire company will of course introduce certain group dynamics,
but it will help at each step to remember how one person would do it.

Stepping up to OOP
Here are some guidelines to consider when making the transition to OOP and C++:

1. Training
The first step is some form of education. Remember the company’s investment in plain C
code, and try not to throw it all into disarray for 6 to 9 months while everyone puzzles over

Chapter 1: Introduction to Objects 75

how multiple inheritance works. Pick a small group for indoctrination, preferably one
composed of people who are curious, work well together, and can function as their own
support network while they’re learning C++.

An alternative approach that is sometimes suggested is the education of all company levels at
once, including overview courses for strategic managers as well as design and programming
courses for project builders. This is especially good for smaller companies making
fundamental shifts in the way they do things, or at the division level of larger companies.
Because the cost is higher, however, some may choose to start with project-level training, do
a pilot project (possibly with an outside mentor), and let the project team become the teachers
for the rest of the company.

2. Low-risk project
Try a low-risk project first and allow for mistakes. Once you’ve gained some experience, you
can either seed other projects from members of this first team or use the team members as an
OOP technical support staff. This first project may not work right the first time, so it should
be not very important in the grand scheme of things. It should be simple, self-contained, and
instructive; this means that it should involve creating classes that will be meaningful to the
other programmers in the company when they get their turn to learn C++.

3. Model from success
Seek out examples of good object-oriented design before starting from scratch. There’s a
good probability that someone has solved your problem already, and if they haven’t solved it
exactly you can probably apply what you’ve learned about abstraction to modify an existing
design to fit your needs. This is the general concept of design patterns.25

4. Use existing class libraries
The primary economic motivation for switching to C++ is the easy use of existing code in the
form of class libraries; the shortest application development cycle will result when you don’t
have to write anything but main() yourself. However, some new programmers don’t
understand this, are unaware of existing class libraries, or through fascination with the
language desire to write classes that may already exist. Your success with OOP and C++ will
be optimized if you make an effort to seek out and reuse other people’s code early in the
transition process.

5. Don’t rewrite existing code in C++
Although compiling your C code in C++ usually produces (sometimes great) benefits by
finding problems in the old code, it is not usually the best use of your time to take existing,
functional code and rewrite it in C++. There are incremental benefits, especially if the code is
slated for reuse. But chances are you aren’t going to see the dramatic increases in productivity

25 See Gamma et al., ibid.

Chapter 1: Introduction to Objects 76

that you hope for in your first few projects unless that project is a new one. C++ and OOP
shine best when taking a project from concept to reality.

Management obstacles
If you’re a manager, your job is to acquire resources for your team, to overcome barriers to
your team’s success and in general to try to provide the most productive and enjoyable
environment so your team is most likely to perform those miracles that are always being
asked of you. Moving to C++ falls in all three of these categories, and it would be wonderful
if it didn’t cost you anything as well. Although it is arguably cheaper than the OOP
alternatives for team of C programmers (and probably for programmers in other procedural
languages), it isn’t free, and there are obstacles you should be aware of before trying to sell
the move to C++ within your company and embarking on the move itself.

Startup costs
The cost is more than just the acquisition of a C++ compiler. Your medium- and long-term
costs will be minimized if you invest in training (and possibly mentoring for your first
project) and also if you identify and purchase class libraries that solve your problem rather
than trying to build those libraries yourself. These are hard-money costs that must be factored
into a realistic proposal. In addition, there are the hidden costs in loss of productivity while
learning a new language and possibly a new programming environment. Training and
mentoring can certainly minimize these but team members must overcome their own struggles
to understand the issues. During this process they will make more mistakes (this is a feature,
because acknowledged mistakes are the fastest path to learning) and be less productive. Even
then, with some types of programming problems, the right classes, and the right development
environment, it’s possible to be more productive while you’re learning C++ (even considering
that you’re making more mistakes and writing fewer lines of code per day) than if you’d
stayed with C.

Performance issues
A common question is, «Doesn’t OOP automatically make my programs a lot bigger and
slower?» The answer is, «It depends.» Most traditional OOP languages were designed with
experimentation and rapid prototyping in mind rather than lean-and-mean operation. Thus,
they virtually guaranteed a significant increase in size and decrease in speed. C++, however,
is designed with production programming in mind. When your focus is on rapid prototyping,
you can throw together components as fast as possible while ignoring efficiency issues. If
you’re using any third-party libraries, these are usually already optimized by their vendors; in
any case it’s not an issue while you’re in rapid-development mode. When you have a system
you like, if it’s small and fast enough, then you’re done. If not, you begin tuning with a
profiling tool, looking first for speedups that can be done with simple applications of built-in
C++ features. If that doesn’t help, you look for modifications that can be made in the
underlying implementation so no code that uses a particular class needs to be changed. Only if
nothing else solves the problem do you need to change the design. The fact that performance
in that portion of the design is so critical is an indicator that it must be part of the primary
design criteria. You have the benefit of finding this out early through rapid prototyping.

Chapter 1: Introduction to Objects 77

As mentioned earlier in this chapter, the number that is most often given for the difference in
size and speed between C and C++ is ±10%, and often much closer to par. You may actually
get a significant improvement in size and speed for C++ over C because the design you make
for C++ could be quite different from the one you’d make for C.

The evidence for size and speed comparisons between C and C++ is so far all anecdotal and is
likely to remain so. Regardless of the number of people who suggest that a company try the
same project using C and C++, no company is likely to waste money that way, unless it’s very
big and interested in such research projects. Even then it seems like the money could be better
spent. Almost universally, programmers who have moved from C (or some other procedural
language) to C++ have had the personal experience of a great acceleration in their
programming productivity, and that’s the most compelling argument you can find.

Common design errors
When starting your team into OOP and C++, programmers will typically go through a series
of common design errors. This often happens because of too little feedback from experts
during the design and implementation of early projects, because no experts have been
developed within the company. It’s easy to feel that you understand OOP too early in the
cycle and go off on a bad tangent; something that’s obvious to someone experienced with the
language may be a subject of great internal debate for a novice. Much of this trauma can be
skipped by using an outside expert for training and mentoring.

Summary
This chapter attempts to give you a feel for the broad issues of object-oriented programming
and C++, including why OOP is different, and why C++ in particular is different; concepts of
OOP methods and why you should (or should not) use one; a suggestion for a minimal
method that I’ve developed to allow you to get started on an OOP project with minimal
overhead; discussions of other methods; and finally the kinds of issues you will encounter
when moving your own company to OOP and C++.

OOP and C++ may not be for everyone. It’s important to evaluate your own needs and decide
whether C++ will optimally satisfy those needs, or if you might be better off with another
programming system. If you know that your needs will be very specialized for the foreseeable
future and if you have specific constraints that may not be satisfied by C++, then you owe it
to yourself to investigate the alternatives. Even if you eventually choose C++ as your
language, you’ll at least understand what the options were and have a clear vision of why you
took that direction.

79

2: Making & using
objects

This chapter will introduce enough of the concepts of C++
and program construction to allow you to write and run a
simple object-oriented program. In the following chapter we
will cover the basic syntax of C & C++ in detail.

Classes that someone else has created are often packaged into a library. This chapter uses the
iostream library of classes, which comes with all C++ implementations. Iostreams are a very
useful way to read from files and the keyboard, and to write to files and the display. After
covering the basics of building a program in C and C++, iostreams will be used to show how
easy it is to utilize a pre-defined library of classes.

To create your first program you must understand the tools used to build applications.

The process of language
translation

All computer languages are translated from something that tends to be easy for a human to
understand (source code) into something that is executed on a computer (machine
instructions). Traditionally, translators fall into two classes: interpreters and compilers.

Interpreters
An interpreter translates source code (written in the programming language) into activities
(which may comprise groups of machine instructions) and immediately executes those
activities. BASIC is the most popular interpreted language. BASIC interpreters translate and
execute one line at a time, and then forget the line has been translated. This makes them slow,
since they must re-translate any repeated code. More modern interpreters translate the entire
program into an intermediate language, that is executed by a much faster interpreter.

Chapter 1: Data Abstraction 80

Interpreters have many advantages. The transition from writing code to executing code is
almost immediate, and the source code is always available so the interpreter can be much
more specific when an error occurs. The benefits often cited for interpreters are ease of
interaction and rapid development (but not execution) of programs.

Interpreters usually have severe limitations when building large projects. The interpreter (or a
reduced version) must always be in memory to execute the code, and even the fastest
interpreter may introduce unacceptable speed restrictions. Most interpreters require that the
complete source code be brought into the interpreter all at once. Not only does this introduce a
space limitation, it can also cause more difficult bugs if the language doesn’t provide facilities
to localize the effect of different pieces of code.

Compilers
A compiler translates source code directly into assembly language or machine instructions.
This is an involved process, and usually takes several steps. The transition from writing code
to executing code is significantly longer with a compiler.

Depending on the acumen of the compiler writer, programs generated by a compiler tend to
require much less space to run, and run much more quickly. Although size and speed are
probably the most often cited reasons for using a compiler, in many situations they aren’t the
most important reasons. Some languages (such as C) are designed to allow pieces of a
program to be compiled independently. These pieces are eventually combined into a final
executable program by a program called the linker. This is called separate compilation.

Separate compilation has many benefits. A program that, taken all at once, would exceed the
limits of the compiler or the compiling environment can be compiled in pieces. Programs can
be built and tested a piece at a time. Once a piece is working, it can be saved and forgotten.
Collections of tested and working pieces can be combined into libraries for use by other
programmers. As each piece is created, the complexity of the other pieces is hidden. All these
features support the creation of large programs.

Compiler debugging features have improved significantly. Early compilers only generated
machine code, and the programmer inserted print statements to see what was going on. This is
not always effective. Recent compilers can insert information about the source code into the
executable program. This information is used by powerful source-level debuggers to show
exactly what is happening in a program by tracing its progress through the source code.

Some compilers tackle the compilation-speed problem by performing in-memory compilation.
Most compilers work with files, reading and writing them in each step of the compilation
process. In-memory compiler keep the program in RAM. For small programs, this can seem
as responsive as an interpreter.

Chapter 1: Data Abstraction 81

The compilation process
If you are going to create large programs, you need to understand the steps and tools in the
compilation process. Some languages (C and C++, in particular) start compilation by running
a preprocessor on the source code. The preprocessor is a simple program that replaces
patterns in the source code with other patterns the programmer has defined (using
preprocessor directives). Preprocessor directives are used to save typing and to increase the
readability of the code (Later in the book, you’ll learn how the design of C++ is meant to
discourage much of the use of the preprocessor, since it can cause subtle bugs). The pre-
processed code is written to an intermediate file.

Compilers often do their work in two passes. The first pass parses the pre-processed code.
The compiler breaks the source code into small units and organizes it into a structure called a
tree. In the expression «A + B» the elements ‘A’, ‘+’ and ‘B’ are leaves on the parse tree. The
parser generates a second intermediate file containing the parse tree.

A global optimizer is sometimes used between the first and second passes to produce smaller,
faster code.

In the second pass, the code generator walks through the parse tree and generates either
assembly language code or machine code for the nodes of the tree. If the code generator
creates assembly code, the assembler is run. The end result in both cases is an object module
(a file with an extension of .o or .obj). A peephole optimizer is sometimes used in the second
pass to look for pieces of code containing redundant assembly-language statements.

The use of the word «object« to describe chunks of machine code is an unfortunate artifact.
The word came into use before anyone thought of object-oriented programming. «Object» is
used in the same sense as «goal» when discussing compilation, while in object-oriented
programming it means «a thing with boundaries.»

The linker combines a list of object modules into an executable program that can be loaded
and run by the operating system. When a function in one object module makes a reference to
a function or variable in another object module, the linker resolves these references. The
linker brings in a special object module to perform start-up activities.

The linker can also search through special files called libraries. A library contains a collection
of object modules in a single file. A library is created and maintained by a program called a
librarian.

Static type checking
The compiler performs type checking during the first pass. Type checking tests for the proper
use of arguments in functions, and prevents many kinds of programming errors. Since type
checking occurs during compilation rather than when the program is running, it is called static
type checking.

Some object-oriented languages (notably Smalltalk) perform all type checking at run-time
(dynamic type checking). Dynamic type checking is less restrictive during development, since

Chapter 1: Data Abstraction 82

you can send any message to any object (the object figures out, at run time, whether the
message is an error). It also adds overhead to program execution and leaves the program open
for run-time errors that can only be detected through exhaustive testing.

C++ uses static type checking because the language cannot assume any particular run-time
support for bad messages. Static type checking notifies the programmer about misuse of types
right away, and maximizes execution speed. As you learn C++ you will see that most of the
language design decisions favor the same kind of high-speed, robust, production-oriented
programming the C language is famous for.

You can disable static type checking. You can also do your own dynamic type checking —
you just need to write the code.

Tools for separate compilation
Separate compilation is particularly important when building large projects. In C and C++, a
program can be created in small, manageable, independently tested pieces. To create a
program with multiple files, functions in one file must access functions and data in other files.
When compiling a file, the C or C++ compiler must know about the functions and data in the
other files: their names and proper usage. The compiler insures the functions and data are
used correctly. This process of "telling the compiler" the names of external functions and data
and what they should look like is called declaration. Once you declare a function or variable,
the compiler knows how to check to make sure it is used properly.

At the end of the compilation process, the executable program is constructed from the object
modules and libraries. The compiler produces object modules from the source code. These are
files with extensions of .o or .obj, and should not be confused with object-oriented
programming "objects."

The linker must go through all the object modules and resolve all the external references, i.e.,
make sure that all the external functions and data you claimed existed via declarations during
compilation actually exist.

Declarations vs. definitions
A declaration tells the compiler "this function or this piece of data exists somewhere else, and
here is what it should look like." A definition tells the compiler: "make this piece of data here"
or "make this function here." You can declare a piece of data or a function in many different
places, but there must only be one definition in C and C++. When the linker is uniting all the
object modules, it will complain if it finds more than one definition for the same function or
piece of data.

Almost all C/C++ programs require declarations. Before you can write your first program,
you need to understand the proper way to write a declaration.

Chapter 1: Data Abstraction 83

Function declaration syntax
A function declaration in Standard C and C++ gives the function name, the argument types
passed to the function, and the return value of the function. For example, here is a declaration
for a function called func1 that takes two integer arguments (integers are denoted in C/C++
with the keyword int) and returns an integer:

int func1(int,int);

C programmers should note that this is different from function declarations in K&R C. The
first keyword you see is the return value, all by itself: int. The arguments are enclosed in
parentheses after the function name, in the order they are used. The semicolon indicates the
end of a statement; in this case, it tells the compiler "that's all -- there is no function definition
here!"

C/C++ declarations attempt to mimic the form of the item's use. For example, if A is another
integer the above function might be used this way:

A = func1(2,3);

Since func1() returns an integer, the C or C++ compiler will check the use of func1() to
make sure that A is an integer and both arguments are integers.

In C and C++, arguments in function declarations may have names. The compiler ignores the
names but they can be helpful as mnemonic devices for the user. For example, we can declare
func1() in a different fashion that has the same meaning:

int func1(int length, int width);

A gotcha
There is a significant difference between C (both Standard C and K&R) and C++ for
functions with empty argument lists. In C, the declaration:

int func2();

means "a function with any number and type of argument." This prevents type-checking, so in
C++ it means "a function with no arguments." If you declare a function with an empty
argument list in C++, remember it's different from what you may be used to in C.

Function definitions
Function definitions look like function declarations except they have bodies. A body is a
collection of statements enclosed in braces. Braces denote the beginning and ending of a
block of code; they have the same purpose as the begin and end keywords in Pascal. To give
func1() a definition which is an empty body (a body containing no code), write this:

int func1(int length, int width) { }

Chapter 1: Data Abstraction 84

Notice that in the function definition, the braces replace the semicolon. Since braces surround
a statement or group of statements, you don't need a semicolon. Notice also that the
arguments in the function definition must have names if you want to use the arguments in the
function body (since they are never used here, they are optional).

Function definitions are explored later in the book.

Variable declaration syntax
The meaning attributed to the phrase "variable declaration" has historically been confusing
and contradictory, and it's important that you understand the correct definition so you can read
code properly. A variable declaration tells the compiler what a variable looks like. It says "I
know you haven't seen this name before, but I promise it exists someplace, and it's a variable
of X type."

In a function declaration, you give a type (the return value), the function name, the argument
list, and a semicolon. That's enough for the compiler to figure out that it's a declaration, and
what the function should look like. By inference, a variable declaration might be a type
followed by a name. For example:

int A;

could declare the variable A as an integer, using the above logic. Here's the conflict: there is
enough information in the above code for the compiler to create space for an integer called A,
and that's what happens. To resolve this dilemma, a keyword was necessary for C and C++ to
say "this is only a declaration; it's defined elsewhere." The keyword is extern. It can mean the
definition is external to the file, or later in the file.

Declaring a variable without defining it means using the extern keyword before a description
of the variable, like this:

extern int A;

extern can also apply to function declarations. For func1(), it looks like this:

extern int func1(int length, int width);

This statement is equivalent to the previous func1() declarations. Since there is no function
body, the compiler must treat it as a function declaration rather than a function definition. The
extern keyword is superfluous and optional for function declarations. It is probably
unfortunate that the designers of C did not require the use of extern for function declarations;
it would have been more consistent and less confusing (but would have required more typing,
which certainly explains what they did).

Including headers
Most libraries contain significant numbers of functions and variables. To save work and
ensure consistency when making the external declarations for these items, C/C++ uses a
device called the header file. A header file is a file containing the external declarations for a
library; it conventionally has a file name extension of 'h', such as headerfile.h (You may also

Chapter 1: Data Abstraction 85

see some older code using different extensions like .hxx or .hpp, but this is rapidly becoming
very rare)

The programmer who creates the library provides the header file. To declare the functions and
external variables in the library, the user simply includes the header file. To include a header
file, use the #include preprocessor directive. This tells the preprocessor to open the named
header file and insert its contents where the #include statement appears. Files may be named
in a #include statement in two ways: in double quotes, or in angle brackets (< >). File names
in double quotes, such as:

#include "local.h"

tell the preprocessor to search the current directory for the file and report an error if the file
does not exist. File names in angle brackets tell the preprocessor to look through a search path
specified in the environment. Setting the search path varies between machines, operating
systems and C++ implementations. To include the iostream header file, you say:

#include <iostream>

The preprocessor will find the iostream header file (often in a subdirectory called INCLUDE)
and insert it.

In C, a header file should not contain any function or data definitions because the header can
be included in more than one file. At link time, the linker would then find multiple definitions
and complain. In C++, there are two exceptions: inline functions and const constants
(described later in the book) can both be safely placed in header files.

New include format
As C++ has evolved, different compiler vendors chose different extensions for file names. In
addition, various operating systems have different restrictions on file names, in particular on
name length. To smooth over these rough edges, the standard adopts a new format that allows
file names longer than the notorious eight characters and eliminates the extension. For
example, including iostream.h becomes

#include <iostream>

The translator can implement the includes in a way to suit the needs of that particular
compiler and operating system, if necessary truncating the name and adding an extension. Of
course, you can also copy the headers given you by your compiler vendor to ones without
extensions if you want to use this style before a vendor has provided support for it.

The libraries that have been inherited from Standard C are still available with the .h extension.
However, you can also use them in the C++ include style by prepending a «c» before the
name. Thus:

#include <stdio.h>
#include <stdlib.h>

Become:

Chapter 1: Data Abstraction 86

#include <cstdio>
#include <cstdlib>

And so on, for all the Standard C headers. This provides a nice distinction to the reader
indicating when you’re using C versus C++ libraries.

Linking
The linker collects object modules (with file name extensions of .o or .obj), generated by the
compiler, into an executable program the operating system can load and run. It is the last
phase of the compilation process.

Linker characteristics vary from system to system. Generally, you just tell the linker the
names of the object modules and libraries you want linked together, and the name of the
executable, and it goes to work. Some systems require you to invoke the linker yourself. With
most C++ packages you invoke the linker through C++. In many situations, the linker is
invoked for you, invisibly.

Many linkers won't search object files and libraries more than once, and they search through
the list you give them from left to right. This means that the order of object files and libraries
can be important. If you have a mysterious problem that doesn't show up until link time, one
possibility is the order in which the files are given to the linker.

Using libraries
Now that you know the basic terminology, you can understand how to use a library. To use a
library:

 1. Include the library's header file
 2. Use the functions and variables in the library
 3. Link the library into the executable program

These steps also apply when the object modules aren't combined into a library. Including a
header file and linking the object modules are the basic steps for separate compilation in both
C and C++.

How the linker searches a library
When you make an external reference to a function or variable in C or C++, the linker, upon
encountering this reference, can do one of two things. If it has not already encountered the
definition for the function or variable, it adds it to its list of "unresolved references." If the
linker has already encountered the definition, the reference is resolved.

If the linker cannot find the definition in the list of object modules, it searches the libraries.
Libraries have some sort of indexing so the linker doesn't need to look through all the object
modules in the library -- it just looks in the index. When the linker finds a definition in a
library, the entire object module, not just the function definition, is linked into the executable

Chapter 1: Data Abstraction 87

program. Note that the whole library isn't linked, just the object module in the library that
contains the definition you want (otherwise programs would be unnecessarily large). If you
want to minimize executable program size, you might consider putting a single function in
each source code file when you build your own libraries. This requires more editing, but it can
be helpful to the user.

Because the linker searches files in the order you give them, you can pre-empt the use of a
library function by inserting a file with your own function, using the same function name, into
the list before the library name appears. Since the linker will resolve any references to this
function by using your function before it searches the library, your function is used instead of
the library function.

Secret additions
When a C or C++ executable program is created, certain items are secretly linked in. One of
these is the startup module, which contains initialization routines that must be run any time a
C or C++ program executes. These routines set up the stack and initialize certain variables in
the program.

The linker always searches the standard library for the compiled versions of any "standard"
functions called in the program. The iostream functions, for example, are in the standard C++
library.

Because the standard library is always searched, you can use any function (or class, in C++)
in the library by simply including the appropriate header file in your program. To use the
iostream functions, you just include the iostream.h header file.

In non-standard implementations of C (and C++ C-code generators that use non-standard
implementations of C), commonly used functions are not always contained in the library that
is searched by default. Math functions, in particular, are often kept in a separate library. You
must explicitly add the library name to the list of files handed to the linker.

Using plain C libraries
Just because you are writing code in C++, you are not prevented from using C library
functions. There has been a tremendous amount of work done for you in these functions, so
they can save you a lot of time. You should hunt through the manuals for your C and/or C++
compiler before writing new functions.

This book will use C library functions when convenient (Standard C library functions will be
used to increase the portability of the programs).

Using pre-defined C library functions is quite simple: just include the appropriate header file
and use the function.

NOTE: since Standard C header files use function prototyping, their function declarations
agree with C++. If, however, your C header files use the older K&R C "empty-argument-list"
style for function declarations, you will have trouble because the C++ compiler takes these to
mean "functions with no arguments." To fix the problem, you must create new header files

Chapter 1: Data Abstraction 88

and either put the proper argument lists in the declarations or simply put ellipses (...) in the
argument list, which mean "any number and type of arguments."

 Your first C++ program
You now know enough of the basics to create and compile a program. The program will use
the pre-defined C++ iostream classes that comes with all C++ packages. The iostreams class
handles input and output for files, with the console, and with "standard" input and output
(which may be redirected to files or devices). In this very simple program, a stream object
will be used to print a message on the screen.

Using the iostreams class
To declare the functions and external data in the iostreams class, include the header file with
the statement

#include <iostream>

The first program uses the concept of standard output, which means "a general-purpose place
to send output." You will see other examples using standard output in different ways, but here
it will just go to the screen. The iostream package automatically defines a variable (an object)
called cout that accepts all data bound for standard output.

To send data to standard output, use the operator <<. C programmers know this operator as
the bitwise left shift. C++ allows operators to be overloaded. When you overload an operator,
you give it a new meaning when that operator is used with an object of a particular type. With
iostream objects, the operator << means "send to." For example:

cout << "howdy!";

sends the string "howdy!" to the object called cout.

Chapter XX covers operator overloading in detail.

Fundamentals of program structure
A C/C++ program is a collection of variables, function definitions and function calls. When
the program starts, it executes initialization code and calls a special function, "main()." You
put the primary code for the program here. (All functions in this book use parentheses after
the function name.)

A function definition consists of a return value type (which defaults to integer if none is
specified), a function name, an argument list in parentheses, and the function code contained
in braces. Here is a sample function definition:

int function() {

Chapter 1: Data Abstraction 89

 // Function code here (this is a comment)
}

The above function has an empty argument list, and a body that only contains a comment.

There can be many sets of braces within a function definition, but there must always be at
least one set surrounding the function body. Since main() is a function, it must follow these
rules. Unless you intend to return a value from your program (some operating systems can
utilize a return value from a program), main() should have a return type of void, so the
compiler won't issue a warning message.

C and C++ are free form languages. With few exceptions, the compiler ignores carriage
returns and white space, so it must have some way to determine the end of a statement. In
C/C++, statements are delimited by semicolons.

C comments start with /* and end with */. They can include carriage returns. C++ uses C-style
comments and adds a new type of comment: //. The // starts a comment that terminates with a
carriage return. It is more convenient than /* */ for one-line comments, and is used
extensively in this book.

"Hello, world!"
And now, finally, the first program:

//: C02:Hello.cpp
// Saying Hello with C++
#include <iostream> // Stream declarations
using namespace std;

int main() {
 cout << "Hello, World! I am " << 8 << " Today!" << endl;
} ///:~

The cout object is handed a series of arguments, which it prints out in left-to-right order. With
iostreams, you can string together a series of arguments like this, which makes the class easy
to use.

Text inside double quotes is called a string. The compiler creates space for strings and stores
the ASCII equivalent for each character in this space. The string is terminated with a value of
0 to indicate the end of the string. The special iostream function endl outputs the line and a
newline.

Inside a character string, you can insert special characters that do not print using escape
sequences. These consist of a backslash (\) followed by a special code. For example \n means
new line. Your compiler manual or local Standard C guide gives a complete set of escape
sequences; others include \t (tab), \\ (backslash) and \b (backspace).

Notice that the entire phrase terminates with a semicolon.

Chapter 1: Data Abstraction 90

String arguments and constant numbers are mixed in the cout statement. Because the operator
<< is overloaded with a variety of meanings when used with cout, you can send cout a variety
of different arguments, and it will "figure out what to do with the message."

Running the compiler
To compile the program, edit it into a plain text file called HELLO.CPP and invoke the
compiler with HELLO.CPP as the argument. For simple, one-file programs like this one, most
compilers will take you all the way through the process. For example, to use the Gnu C++
compiler (which is freely available), you say:

g++ Hello.cpp

Other compilers will have a similar syntax; consult your compiler’s documenation for details.

More about iostreams
So far you have seen only the most rudimentary aspect of the iostreams class. The output
formatting available with iostreams includes number formatting in decimal, octal and hex.
Here's another example of the use of iostreams:

//: C02:Stream2.cpp
// More streams features
#include <iostream>
using namespace std;

int main() {
 // Specifying formats with manipulators:
 cout << "a number in decimal: "
 << dec << 15 << endl;
 cout << "in octal: " << oct << 15 << endl;
 cout << "in hex: " << hex << 15 << endl;
 cout << "a floating-point number: "
 << 3.14159 << endl;
 cout << "non-printing char (escape): "
 << char(27) << endl;
} ///:~

This example shows the iostreams class printing numbers in decimal, octal and hexadecimal
using iostream manipulators (which don't print anything, but change the state of the output
stream). Floating-point numbers are determined automatically, by the compiler. In addition,
any character can be sent to a stream object using a cast to a character (a char is a data type
designed to hold characters), which looks like a function call: char(), along with the
character's ASCII value. In the above program, an escape is sent to cout.

Chapter 1: Data Abstraction 91

String concatenation
An important feature of the Standard C preprocessor is string concatenation. This feature is
used in some of the C++ examples in this book. If two quoted strings are adjacent, and no
punctuation is between them, the compiler will paste the strings together as a single string.
This is particularly useful when printing code listings in books and magazines that have width
restrictions:

//: C02:Concat.cpp
// String Concatenation
#include <iostream>
using namespace std;

int main() {
 cout << "This string is far too long to put on a single "
 "line but it can be broken up with no ill effects\n"
 "as long as there is no punctuation separating "
 "adjacent strings.\n";
} ///:~

Reading input
The iostreams class provides the ability to read input. The object used for standard input is
cin. cin normally expects input from the console, but input can be redirected from other
sources. An example of redirection is shown later in this chapter.

The iostreams operator used with cin is >>. This operator waits for the same kind of input as
its argument. For example, if you give it an integer argument, it waits for an integer from the
console. Here's an example program that converts number bases:

//: C02:Numconv.cpp
// Converts decimal to octal and hex
#include <iostream>
using namespace std;

int main() {
 int number;
 cout << "Enter a decimal number: ";
 cin >> number;
 // Using format manipulators:
 cout << "value in octal = 0" << oct << number << endl;
 cout << "value in hex = 0x" << hex << number << endl;
} ///:~

Chapter 1: Data Abstraction 92

Notice the declaration of the integer number at the beginning of main(). Since the extern
keyword isn't used, the compiler creates space for number at that point.

Simple file manipulation
Standard I/O provides a very simple way to read and write files, called I/O redirection. If a
program takes input from standard input (cin for iostreams) and sends its output to standard
output (cout for iostreams), that input and output can be redirected. Input can be taken from a
file, and output can be sent to a file. To re-direct I/O on the command line, use the < sign to
redirect input and the > sign to redirect output. For example, if we have a fictitious program
fiction.exe (or simply fiction, in Unix) which reads from standard input and writes to
standard output, you can redirect standard input from the file stuff and redirect the output to
the file such with the command:

fiction < stuff > such

Since the files are opened for you, the job is much easier (although you'll see later that
iostreams has a very simple mechanism for opening files).

As a useful example, suppose you want to record the number of times you perform an
activity, but the program that records the incidents must be loaded and run many times, and
the machine may be turned off, etc. To keep a permanent record of the incidents, you must
store the data in a file. This file will be called INCIDENT.DAT and will initially contain the
character 0. For easy reading, it will always contain ASCII digits representing the number of
incidents.

The program to increment the number is very simple:

//: C02:Incr.cpp
// Read a number, add one and write it
#include <iostream>
using namespace std;

int main() {
 int num;
 cin >> num;
 cout << num + 1;
} ///:~

To test the program, run it and type a number followed by a carriage return. The program
should print a number one larger than the one you type.

The program can be called from inside another program using the Standard C system()
function, which is declared in the header file stdlib.h:

//: C02:Incident.cpp
// Records an incident using INCR
#include <cstdlib> // Declare the system() function

Chapter 1: Data Abstraction 93

using namespace std;

int main() {
 // Other code here...
 system("incr < incident.dat > incident.dat");
} ///:~

To use the system() function, you give it a string that you would normally type at the
operating system command prompt. The command executes and control returns to the
program.

Notice that the file INCIDENT.DAT is read and written using I/O redirection. Since the
single > is used, the file is overwritten. Although it works fine here, reading and writing the
same file isn't always a safe thing to do -- if you aren't careful you can end up with garbage in
the file.

If a double >> is used instead of a single >, the output is appended to the file (and this
program wouldn't work correctly).

This program shows you how easy it is to use plain C library functions in C++: just include
the header file and call the function. The upward compatibility from C to C++ is a big
advantage if you are learning the language starting from a background in C.

Notice that the file INCIDENT.DAT is read and written using I/O redirection. Since the
single > is used, the file is overwritten. Although it works fine here, reading and writing the
same file isn't always a safe thing to do -- if you aren't careful you can end up with garbage in
the file.

If a double >> is used instead of a single >, the output is appended to the file (and this
program wouldn't work correctly).

This program shows you how easy it is to use plain C library functions in C++: just include
the header file and call the function. The upward compatibility from C to C++ is a big
advantage if you are learning the language starting from a background in C.

Summary

Exercises

95

3: The C in C++
The user-defined data type, or class, is what distinguishes C++ from traditional procedural
languages. A class is a new data type that you or someone else creates to solve a particular
type of problem. Once a class is created, anyone can use it without knowing the specifics of
how it works, or even how classes are built. This chapter will teach you enough of the basics
of C and C++ so you can utilize a class that someone else has written. The quick coverage of
C++ features which are similar to C features will continue in chapters 3 and 4.

This chapter treats classes as if they are just another built-in data type available for use in
programs. So you don't see any undefined concepts, the process of writing your own classes
must be delayed until the following chapter. This may cause a tedious delay for experienced C
programmers. However, to leap past the necessary basics would hopelessly confuse
programmers attempting to move to C++ from other languages.

If you program with Pascal or some other procedural language, this chapter gives you a
decent background in the style of C used in C++. If you are familiar with the style of C
described in the first edition of Kernighan & Ritchie (often called K&R C) you will find some
new and different features in C++ as well as Standard C. If you are familiar with Standard C,
and in particular with function prototypes, you should skim through this chapter looking for
features that are particular to C++.

Controlling execution in
C/C++

This section covers the execution control statements in C++. You must be familiar with these
statements before you can read C or C++ code.

C++ uses all C's execution control statements. These include if-else, while, do-while, for, and
a selection statement called switch. C++ also allows the infamous goto, which will be
avoided in this book.

True and false in C
An expression is true if it produces a non-zero integral value. An expression is false if it
produces an integral zero.

All conditional statements use the truth or falsehood of a conditional expression to determine
the execution path. An example of a conditional expression is A == B. This uses the

Chapter 1: Data Abstraction 96

conditional operator == to see if the variable A is equivalent to the variable B. The expression
returns 1 if the statement is true and 0 if it is false. Other conditional operators are >, <, >=,
etc. The next chapter covers conditional statements.

if-else
The if-else statement can exist in two forms: with or without the else. The two forms are:

if(expression)
 statement

or

if(expression)
 statement
else
 statement

The "expression" evaluates to true or false. The "statement" means either a simple statement
terminated by a semicolon or compound statement, which is a group of simple statements
enclosed in braces. Any time the word "statement" is used, it is always implied that the
statement can be simple or compound. Note this statement can also be another if, so they can
be strung together.

Pascal programmers should notice that the "then" is implied in C and C++, which are terse
languages. "Then" isn't essential, so it was left out.

//: C03:Ifthen.cpp
// Demonstration of if and if-else conditionals
#include <iostream>
using namespace std;

int main() {
 int i;
 cout << "type a number and a carriage return" << endl;
 cin >> i;
 if(i > 5)
 cout << "the number was greater than 5 " << endl;
 else
 if(i < 5)
 cout << "the number was less than 5 " << endl;
 else
 cout << "the number must be equal to 5 " << endl;

 cout << "type a number and a carriage return" << endl;
 cin >> i;

Chapter 1: Data Abstraction 97

 if(i < 10)
 if(i > 5) // "if" is just another type of statement
 cout << "5 < i < 10 " << endl;
 else
 cout << "i <= 5 " << endl;
 else // Matches "if(i < 10) "
 cout << "i >= 10 " << endl;
} ///:~

Indentation makes C/C++ code easier to read. Since C and C++ are "free form" languages, the
extra spaces, tabs and carriage returns do not affect the resulting program. It is conventional to
indent the body of a control flow statement so the reader may easily determine where it begins
and ends26.

while
while, do-while and for control looping. A statement repeats until the controlling expression
evaluates to false.

The form for a while loop is

while(expression)
 statement

The expression is evaluated once at the beginning of the loop, and again before each further
iteration of the statement.

This example stays in the body of the while loop until you type the secret number or press
control-C.

//: C03:Guess.cpp
// Guess a number (demonstrates "while")
#include <iostream>
using namespace std;

int main() {
 int secret = 15;
 int guess = 0;
 // "!=" is the "not-equal" conditional:
 while(guess != secret) { // Compound statement
 cout << "guess the number: ";
 cin >> guess;

26 Note that all conventions seem to end after the agreement that some sort of indentation take
place. The feud between styles of code formatting is unending.

Chapter 1: Data Abstraction 98

 }
 cout << "You got it!" << endl;
} ///:~

do-while
The form for do-while is

do
 statement
while(expression);

The do-while is different from the while because the statement always executes at least once,
even if the expression evaluates to false the first time. In a simple while, if the conditional is
false the first time the statement never executes.

If a do-while is used in the "GUESS" program, the variable guess does not need an initial
dummy value, since it is initialized by the cin statement before it is tested:

//: C03:Guess2.cpp
// The guess program using do-while
#include <iostream>
using namespace std;

int main() {
 int secret = 15;
 int guess; // No initialization needed this time
 do {
 cout << "guess the number: ";
 cin >> guess;
 } while(guess != secret);
 cout << "You got it!" << endl;
} ///:~

for
A for loop performs initialization before the first iteration. Then it performs conditional
testing and, at the end of each iteration, some form of "stepping." The form of the for loop is:

for(initialization; expression; step)
 statement

Any of the expressions initialization, expression or step may be empty. The initialization code
executes once at the very beginning. The expression is tested before each iteration (if it
evaluates to false at the beginning, the statement never executes). At the end of each loop, the
step executes.

Chapter 1: Data Abstraction 99

for loops are usually used for "counting" tasks:

//: C03:Charlist.cpp
// Display all the ASCII characters.
// Demonstrates "for."
#include <iostream>
using namespace std;

int main() {
 for(int i = 0; i < 128; i = i + 1)
 if (i != 26) // ANSI Terminal/ANSI.SYS Clear screen
 cout << " value: " << i <<
 " character: " << char(i) << endl; // Type conversion
} ///:~

You may notice that the variable i is defined at the point where it is used, instead of at the
beginning of the block denoted by the open curly brace {. Traditional procedural languages
require that all variables be defined at the beginning of the block so when the compiler creates
a block it can allocate space for those variables.

Declaring all variables at the beginning of the block requires the programmer to write in a
particular way because of the implementation details of the language. Most people don't know
all the variables they are going to use before they write the code, so they must keep jumping
back to the beginning of the block to insert new variables, which is awkward and causes
errors. It is confusing to read the code because each block starts with a clump of variable
declarations, and the variables might not be used until much later in the block.

In C++ (not in C) you can spread your variable declarations throughout the block. Whenever
you need a new variable, you can define it right where you use it. In addition, you can
initialize the variable at the point you declare it, which prevents a certain class of errors.
Defining variables at any point in a scope allows a more natural coding style and makes code
easier to understand. C++ compilers collect all the variable declarations in the block and
secretly place them at the beginning of the block.

The break and continue Keywords
Inside the body of any of the looping constructs you can control the flow of the loop using
break and continue. break quits the loop without executing the rest of the statements in the
loop. continue stops the execution of the current iteration and goes back to the beginning of
the loop to begin a new iteration.

As an example of the use of break and continue, this program is a very simple menu system:

//: C03:Menu.cpp
// Simple menu program demonstrating
// the use of "break" and "continue"
#include <iostream>

Chapter 1: Data Abstraction 100

using namespace std;

int main() {
 char c; // To hold response
 while(1) {
 cout << "MAIN MENU:" << endl;
 cout << "l for left, r for right, q to quit: ";
 cin >> c;
 if(c == 'q')
 break; // Out of "while(1)"
 if(c == 'l') {
 cout << "LEFT MENU:" << endl;
 cout << "select a or b: ";
 cin >> c;
 if(c == 'a') {
 cout << "you chose 'a'" << endl;
 continue; // Back to main menu
 }
 if(c == 'b') {
 cout << "you chose 'b'" << endl;
 continue; // Back to main menu
 }
 else {
 cout << "you didn't choose a or b!"
 << endl;
 continue; // Back to main menu
 }
 }
 if(c == 'r') {
 cout << "RIGHT MENU:" << endl;
 cout << "select c or d: ";
 cin >> c;
 if(c == 'c') {
 cout << "you chose 'c'" << endl;
 continue; // Back to main menu
 }
 if(c == 'd') {
 cout << "you chose 'd'" << endl;
 continue; // Back to main menu
 }
 else {
 cout << "you didn't choose c or d!"
 << endl;

Chapter 1: Data Abstraction 101

 continue; // Back to main menu
 }
 }
 cout << "you must type l or r or q!" << endl;
 }
 cout << "quitting menu..." << endl;
} ///:~

If the user selects 'q' in the main menu, the break keyword is used to quit, otherwise the
program just continues to execute indefinitely. After each of the sub-menu selections, the
continue keyword is used to pop back up to the beginning of the while loop.

The while(1) statement is the equivalent of saying "do this loop forever." The break
statement allows you to break out of this infinite while loop when the user types a 'q.'

switch
A switch statement selects from among pieces of code based on the value of an integral
expression. Its form is:

switch(selector) {
 case integral-value1 : statement; break;
 case integral-value2 : statement; break;
 case integral-value3 : statement; break;
 case integral-value4 : statement; break;
 case integral-value5 : statement; break;
 (...)
 default: statement;
}

Selector is an expression that produces an integral value. The switch compares the result of
selector to each integral-value. If it finds a match, the corresponding statement (simple or
compound) executes. If no match occurs, the default statement executes.

You will notice in the above definition that each case ends with a break, which causes
execution to jump to the end of the switch body. This is the conventional way to build a
switch statement, but the break is optional. If it is missing, the code for the following case
statements execute until a break is encountered. Although you don't usually want this kind of
behavior, it can be useful to an experienced C programmer.

The switch statement is a very clean way to implement multi-way selection (i.e., selecting
from among a number of different execution paths), but it requires a selector that evaluates to
an integral value at compile-time. If you want to use, for example, a string as a selector, it
won't work in a switch statement. For a string selector, you must use instead a series of if
statements and compare the string inside the conditional.

Menus often lend themselves neatly to a switch:

Chapter 1: Data Abstraction 102

//: C03:Menu2.cpp
// A menu using a switch statment
#include <iostream>
using namespace std;

int main() {
 char response; // The user's response
 int quit = 0; // Flag for quitting
 while(quit == 0) {
 cout << "Select a, b, c or q to quit: ";
 cin >> response;
 switch(response) {
 case 'a' : cout << "you chose 'a'" << endl;
 break;
 case 'b' : cout << "you chose 'b'" << endl;
 break;
 case 'c' : cout << "you chose 'c'" << endl;
 break;
 case 'q' : cout << "quitting menu" << endl;
 quit = 1;
 break;
 default : cout << "Please use a,b,c or q!"
 << endl;
 }
 }
} ///:~

Notice that selecting 'q' sets the quit flag to 1. The next time the selector is evaluated, quit ==
0 returns false so the body of the while does not execute.

 Introduction to C and C++
operators

You can think of operators as a special type of function (C++ operator overloading treats
operators precisely that way). An operator takes one or more arguments and produces a new
value. The arguments are in a different form than ordinary function calls, but the effect is the
same.

You should be reasonably comfortable with the operators used so far from your previous
programming experience. The concepts of addition (+), subtraction and unary minus (-),

Chapter 1: Data Abstraction 103

multiplication (*), division (/) and assignment(=) all work much the same in any
programming language. The full set of operators are enumerated in the next chapter.

Precedence
Operator precedence defines the order in which an expression evaluates when several
different operators are present. C and C++ have specific rules to determine the order of
evaluation. The easiest to remember is that multiplication and division happen before addition
and subtraction. After that, if an expression isn't transparent to you it probably won't be for
anyone reading the code, so you should use parentheses to make the order of evaluation
explicit. For example:

A = X + Y - 2/2 + Z;

has a very different meaning from the same statement with a particular grouping of
parentheses:

A = X + (Y - 2)/(2 + Z);

Auto increment and decrement
C, and therefore C++, are full of shortcuts. Shortcuts can make code much easier to type, and
sometimes much harder to read. Perhaps the designers thought it would be easier to
understand a tricky piece of code if your eyes didn't have to scan as large an area of print.

One of the nicer shortcuts is the auto-increment and auto-decrement operators. You often use
these to change loop variables, which control the number of times a loop executes.

The auto-decrement operator is -- and means "decrease by one unit." The auto-increment
operator is ++ and means "increase by one unit." If A is an int, for example, the expression
++A is equivalent to (A = A + 1). Auto-increment and auto-decrement operators produce the
value of the variable as a result. If the operator appears before the variable, (i.e., ++A), the
operation is performed and the value is produced. If the operator appears after the variable
(i.e. A++), the value is produced, then the operation is performed. As an example:

//: C03:Autoinc.cpp
// Shows use of auto-increment
// and auto-decrement operators.
#include <iostream>
using namespace std;

int main() {
 int i = 0;
 int j = 0;
 cout << ++i << endl; // Pre-increment
 cout << j++ << endl; // Post-increment

Chapter 1: Data Abstraction 104

 cout << --i << endl; // Pre-decrement
 cout << j-- << endl; // Post decrement
} ///:~

If you've been wondering about the name "C++," now you understand. It implies "one step
beyond C."

 Using standard I/O for easy
file handling

The iostream class contains functions to read and write files. Often, however, it is easiest to
read from cin and write to cout. The program can be tested by typing at the console, and
when it is working, files can be manipulated via redirection on the command line (in Unix and
MS-DOS).

Simple "cat" program
So far, all the messages you've seen are sent via operator overloading to stream objects. In
C++, a message is usually sent to an object by calling a member function for that object. A
member function looks like a regular function -- it has a name, argument list and return value.
However, it must always be connected to an object. It can never be called by itself. A member
function is always selected for a particular object via the dot (.) member selection operator.

The iostream class has several non-operator member functions. One of these is get(), which
can be used to fetch a single character (or a string, if it is called differently). The following
program uses get() to read characters from the cin object. The program uses the
complementary member function put() to send characters the cout object. Characters are
read from standard input and written to standard output.

//: C03:Cat.cpp
// Demonstrates member function calls
// and simple file i/o.
#include <iostream>
using namespace std;

int main() {
 char c;
 while(cin.get(c))
 cout.put(c);
} ///:~

get() returns a value that is tested to determine the end of the input is reached. As long as the
return value is non-zero (true), there is more input available and the body of the while loop is

Chapter 1: Data Abstraction 105

executed, but when the expression cin.get(c) produces a result of 0, there is no more input so
it stops looping..

To use cat, simply redirect a file into it; the results will appear on the screen:

cat < infile

If you redirect the output file you've created a simple "copy" program:

cat < infile > outfile

Pass by reference
C programmers may find the above program puzzling. According to plain C syntax, the
character variable c looks like it is passed by value to the member function get(). Yet c is
used in the put() member function as if get() had modified the value of c, which is
impossible if it was passed by value! What goes on here?

C++ has added another kind of argument passing: pass-by-reference. If a function argument is
defined as pass-by-reference, the compiler takes the address of the variable when the function
is called. The argument of the stream function get() is defined as pass-by-reference, so the
above program works correctly.

Chapter 4 describes passing by reference in more detail. The first part of that chapter
describes addresses, which you must understand before references make any sense.

Handling spaces in input
To read and use more than a character at a time from standard input, you will need to use a
buffer. A buffer is a data-storage area used to hold and manipulate a group of data items with
identical types.

In C and C++, you can create a buffer to hold text with an array of characters. Arrays in C and
C++ are denoted with the bracket operator ([]). To define an array, give the data type, a name
for the array, and the size in brackets. For an array of characters (a character buffer) called buf
the declaration could be:

char buf[100]; // Space for 100 contiguous characters

To read an entire word instead of a character, use cin and the >> operator, but send the input
to a character buffer instead of just a single character. The operator >> is overloaded so you
can use it with a number of different types of arguments. The idea is the same in each case:
you want to get some input. You need different kinds of input, but you don't have to worry
about it because the language takes care of the differentiation for you.

Here's a program to read and echo a word:

//: C03:Readword.cpp
// Read and echo a word from standard input
#include <iostream>

Chapter 1: Data Abstraction 106

using namespace std;

int main() {
 char buf[100];
 cout << "type a word: ";
 cin >> buf;
 cout << "the word you typed is: " << buf << endl;
} ///:~

You will notice the program works fine if you type a word, but if you type more than one
word it only takes the first one. The >> operator is word-oriented; it looks for white space,
which it doesn't copy into the buffer, to break up the input. You must type a carriage return
before any of the input is read.

To read and manipulate anything more than a simple character or word using iostreams, it is
best to use the get() function. get() doesn't discard white space, and it can be used with a
single character, as shown in the CAT.CPP program, or a character buffer (get() is an
overloaded function). When used with a character buffer, get() needs to know the maximum
number of characters it should read (usually the size of the buffer) and optionally the
terminating character it should look for before it stops reading input.

This terminating character that get() looks for (the delimiter) defaults to a new line (\n). You
don't need to change the delimiter if you just want to read the input a line at a time. To change
the delimiter, add the character you wish to be the delimiter in single quotes as the third
argument in the list. When get() matches the delimiter with the terminating character, the
terminating character isn't copied into the character buffer; it stays on the input stream. This
means you must read the terminating character and throw it away, otherwise the next time you
try to fill your character buffer using get(), the function will immediately read the terminating
character and stop.

Here's a program that reads input a line at a time using get():

//: C03:Getline.cpp
// Stream input by lines
#include <iostream>
using namespace std;

int main() {
 char buf[100];
 char trash;
 while(cin.get(buf,100)) { // Get chars until '\n'
 cin.get(trash); // Throw away the terminator
 cout << buf << "\n"; // Add the '\n' at the end
 }
} ///:~

Chapter 1: Data Abstraction 107

The get() function reads input and places it into buf until either 100 characters are read, or a
'\n' is found. get() puts the zero byte, required for all strings, at the end of the string in buf.
The character trash is only used for throwing away the line terminator. Because the new line
was never put in buf, you must send a new line out when you print the line.

The return value of cin.get() for lines is the same as the overloaded version of the same
function for single characters. It is true as long as it read some input (so the body of the loop
is executed) and false when the end of the input is reached.

Try redirecting the contents of a text file into GETLINE.

Aside: examining header files
As your knowledge of C++ increases, you will find that the best way to discover the
capabilities of the iostreams class, or any class, is to look at the header file where the class is
defined. The header file will contain the class declaration. You won't completely understand
the class declaration until you've read the next chapter. The class declaration contains some
private and protected elements, which you don't have access to, and a list of public
elements, usually functions, that you as the user of the class may utilize. Although there isn't
necessarily a description of the functions in the class definition, the function names are often
helpful and the class definition acts as a sort of "table of contents."

Header files for pre-defined classes like iostreams are usually located in a subdirectory, often
called INCLUDE, under the installation directory for your C++ package or the associated C
package, if you use a C-code generator. On Unix, you must ask your system administrator
where the C++ INCLUDE files are located.

 Utility programs using
iostreams and standard I/O

Now that you've had an introduction to iostreams and you know how to manipulate files with
I/O redirection, you can write some simple programs. This section contains examples of
useful utilities.

Pipes
Notice that in Unix and MS-DOS, you can also use pipes on the command line for I/O
redirection. Pipes feed the output of one program into the input of another program if both
programs use standard I/O. If prog1 writes to standard I/O and prog2 reads from standard
I/O, you can pipe the output of prog1 into the input of prog2 with the following command:

prog1 | prog2

Chapter 1: Data Abstraction 108

where '|' is the pipe symbol. If all the following programs use standard I/O, you can chain
them together like this:

prog1 | prog2 | prog3 | prog4

Text analysis program
The following program counts the number of words and lines in a file and checks to make
sure no line is greater than maxwidth. It uses two functions from the Standard C library, both
of which are declared in the header file string.h. strlen() finds the length of a string, not
including the zero byte that terminates all strings. strtok() is used to count the number of
words in a line; it breaks the line up into chunks that are separated by any of the characters in
the second argument. For this program, a word is separated by white space, which is a space
or a tab. The first time you call strtok(), you hand it the character buffer, and all the
subsequent times you hand it a zero, which tells it to use the same buffer it used for the last
call (moving ahead each time strtok() is called). When it can't find any more words in the
line, strtok() returns zero.

//: C03:Textchek.cpp
// Counts words and lines in a text file.
// Ensures no line is wider than maxwidth.
#include <iostream>
#include <cstring> // strlen() & strtok()
using namespace std;

int main() {
 // const means "you can't change it":
 const int maxwidth = 64;
 int linecount = 0;
 int wordcount = 0;
 char buf[100], c, trash;
 while(cin.get(buf,100)) {
 cin.get(trash); // Discard terminator
 linecount++; // We just read a whole line
 if(strtok(buf," \t")) {
 wordcount++; // Count the first word
 while(strtok(0," \t"))
 wordcount++; // Count the rest
 }
 if(strlen(buf) > maxwidth)
 cout << "line " << linecount
 << "is too long." << endl;
 }
 cout << "Lines: " << linecount << endl;

Chapter 1: Data Abstraction 109

 cout << "Words: " << wordcount << endl;
} ///:~

Notice the use of the auto-increment to count lines and words. Since the value produced by
auto-incrementing the variable is ignored, it doesn't matter whether you put the increment first
or last.

To count words, strtok() is set up for the first call by handing it the text buffer buf. If it finds
a word, the word is counted. If there are more words, they are counted.

The keyword const is used to prevent maxwidth from being changed. const was invented for
C++ and later added to Standard C. It has two purposes: the compiler will generate an error
message if you ever try to change the value, and an optimizer can use the fact that a variable
is const to create better code. It is always a good idea to make a variable const if you know it
should never change.

Notice the way buf, c, and trash are all declared with a single char statement. You can
declare all types of data this way, just by separating the variable names with commas.

IOstream support for file manipulation
All the examples in this chapter have used IO redirection to handle input and output.
Although this approach works fine, iostreams have a much faster and safer way to read and
write files. This is accomplished by including fstream.h instead of (or in addtion to)
iostream.h, then creating and using fstream objects in almost the identical fashion you use
ordinary iostream objects. Here's a program that copies one file onto another (you'll learn later
how to use command-line arguments so the file names aren't fixed):

//: C03:IOcopy.cpp
// fstreams for opening files.
// Copies itself to TMP.TXT
#include <fstream>
#include "../require.h"
using namespace std;

int main() {
 ifstream infile("IOcopy.cpp");
 assure(infile, "IOcopy.cpp");
 ofstream outfile("tmp.txt");
 assure(outfile, "tmp.txt");
 char ch;
 while(infile.get(ch))
 outfile.put(ch);
} ///:~

Chapter 1: Data Abstraction 110

The first line creates an ifstream object called infile and hands it the name of the file (which
happens to be the same name as the source-code file). ifstream is a special type of iostream
object declared in fstream.h that opens and reads from a file. The second line checks to see if
the file was successfully opened, using a function in require.h that will be described later in
the book. The third line creates an ofstream operator that is just like an ifstream except it
writes to a file. This is also checked for successful opening.

The while loop simply gets characters from infile with the member function get(), and puts
them into outfile with put(), until the get() returns false (that is, zero). The files are
automatically closed when the objects are destroyed, which is another benefit of using
fstreams for manipulating files -- you don't have to remember to close the files.

There's also a set of iostream classes for doing in-memory formatting, in the header file
strstream.h.

Introduction to C++ data
Data types can be built-in or abstract . A built-in data type is one that the compiler
intrinsically understands, one that «comes with the compiler.» The types of built-in data are
identical in C and C++. A user-defined data type is one you or another programmer create as a
class. These are commonly referred to as abstract data types. The compiler knows how to
handle built-in types when it starts up; it «learns» how to handle abstract data types by
reading header files containing class declarations.

Basic built-in types
The Standard C specification doesn't say how many bits each of the built-in types must
contain. Instead, it stipulates the minimum and maximum values the built-in type must be able
to hold. When a machine is based on binary, this maximum value is directly translated into
bits. If a machine uses, for instance, binary-coded decimal (BCD) to represent numbers then
the amount of space in the machine required to hold the maximum numbers for each data type
will change. The minimum and maximum values that can be stored in the various data types
are defined in the system header files LIMITS.H and FLOAT.H

C & C++ have four basic built-in data types, described here for binary-based machines. A
char is for character storage and uses a minimum of one byte of storage. An int stores an
integral number and uses a minimum of two bytes of storage. The float and double types store
floating-point numbers, often in IEEE floating-point format. float is for single-precision
floating point and double is for double precision floating point.

You can define and initialize variables at the same time. Here's how to define variables using
the four basic data types:

//: C03:Basic.cpp
// Defining the four basic data

Chapter 1: Data Abstraction 111

// types in C & C++

int main() {
 // Definition without initialization:
 char protein;
 int carbohydrates;
 float fiber;
 double fat;
 // Definition & initialization at the same time:
 char pizza = 'A', pop = 'Z';
 int DongDings = 100, Twinkles = 150, HeeHos = 200;
 float chocolate = 3.14159;
 double fudge_ripple = 6e-4; // Exponential notation
} ///:~

The first part of the program defines variables of the four basic data types without initializing
them. If you don't initialize a variable, its contents are undefined (although some compilers
will initialize to 0). The second part of the program defines and initializes variables at the
same time. Notice the use of exponential notation in the constant 6e-4, meaning: «6 times 10
to the minus fourth power.»

bool, true, & false
Virtually everyone uses Booleans, and everyone defines them differently. 27 Some use
enumerations, others use typedefs. A typedef is a particular problem because you can’t
overload on it (a typedef to an int is still an int) or instantiate a unique template with it.

A class could have been created for bool in the standard library, but this doesn’t work very
well either, because you can only have one automatic type conversion operator from a class
without causing overload resolution problems.

The best approach for such a useful type is to build it into the language. A bool type can have
two states expressed by the built-in constants true (which converts to an integral one) and
false (which converts to an integral zero). All three names are keywords. In addition, some
language elements have been adapted:

Element Usage with bool
&& || ! Take bool arguments and return bool.

27 See Josée Lajoie, «The new cast notation and the bool data type,» C++ Report, September
1994.

Chapter 1: Data Abstraction 112

Element Usage with bool
< > <= >=

== !=
Produce bool results

if, for,
while, do

Conditional expressions convert to bool
values

? : First operand converts to bool value

Because there’s a lot of existing code that uses an int to represent a flag, the compiler will
implicitly convert from an int to a bool. Ideally, the compiler will give you a warning as a
suggestion to correct the situation.

An idiom that falls under «poor programming style» is the use of ++ to set a flag to true. This
is still allowed, but deprecated, which means that at some time in the future it will be made
illegal. The problem is the same as incrementing an enum: You’re making an implicit type
conversion from bool to int, incrementing the value (perhaps beyond the range of the normal
bool values of zero and one), and then implicitly converting it back again.

Pointers will also be automatically converted to bool when necessary.

Specifiers
Specifiers modify the meanings of the basic built-in types, and expand the built-in types to a
much larger set. There are four specifiers: long, short, signed and unsigned.

Long and short modify the maximum and minimum values a data type will hold. A plain int
must be at least the size of a short. The size hierarchy for integral types is: short int, int, long
int. All the sizes could conceivably be the same, as long as they satisfy the
minimum/maximum value requirements. On a machine with a 64-bit word, for instance, all
the data types might be 64 bits.

The size hierarchy for floating point numbers is: float, double, and long double. Long float is
not allowed in Standard C. There are no short floating-point numbers.

The signed and unsigned specifiers tell the compiler how to use the sign bit with integral
types and characters (floating-point numbers always contain a sign). An unsigned number
does not keep track of the sign and can store positive numbers twice as large as the positive
numbers that can be stored in a signed number. Signed is the default and is only necessary
with char; char may or may not default to signed. By specifying signed char, you force the
sign bit to be used.

The following example shows the size of the data in bytes using the sizeof() operator,
introduced later in this chapter:

//: C03:Specify.cpp

Chapter 1: Data Abstraction 113

// Demonstrates the use of specifiers
#include <iostream>
using namespace std;

int main() {
 char c;
 unsigned char cu;
 int i;
 unsigned int iu;
 short int is;
 short iis; // Same as short int
 unsigned short int isu;
 unsigned short iisu;
 long int il;
 long iil; // Same as long int
 unsigned long int ilu;
 unsigned long iilu;
 float f;
 double d;
 long double ld;
 cout << "sizeof(char) = " << sizeof(c) << endl;
 cout << "sizeof(unsigned char) = " << sizeof(cu) << endl;
 cout << "sizeof(int) = " << sizeof(i) << endl;
 cout << "sizeof(unsigned int) = " << sizeof(iu) << endl;
 cout << "sizeof(short) = " << sizeof(is) << endl;
 cout << "sizeof(unsigned short) = " << sizeof(isu) <<
endl;
 cout << "sizeof(long) = " << sizeof(il) << endl;
 cout << "sizeof(unsigned long) = " << sizeof(ilu) <<
endl;
 cout << "sizeof(float) = " << sizeof(f) << endl;
 cout << "sizeof(double) = " << sizeof(d) << endl;
 cout << "sizeof(long double) = " << sizeof(ld) << endl;
} ///:~

When you are modifying an int with short or long, the keyword int is optional, as shown
above.

Scoping
Scoping rules tell you where a variable is valid, where it is created and where it gets destroyed
(i.e., goes out of scope). The scope of a variable extends from the point where it is defined to

Chapter 1: Data Abstraction 114

the first closing brace matching the closest opening brace before the variable is declared. To
illustrate:

//: C03:Scope.cpp
// How variables are scoped.

int main() {
 int scp1;
 // scp1 visible here
 {
 // scp1 still visible here
 //.....
 int scp2;
 // scp2 visible here
 //.....
 {
 // scp1 & scp2 still visible here
 //..
 int scp3;
 // scp1, scp2 & scp3 visible here
 // ...
 } // <-- scp3 destroyed here
 // scp3 not available here
 // scp1 & scp2 still visible here
 // ...
 } // <-- scp2 destroyed here
 // scp3 & scp2 not available here
 // scp1 still visible here
 //..
} // <-- scp1 destroyed here
///:~

The above example shows when variables are visible, and when they are unavailable (go out
of scope). A variable can only be used when inside its scope. Scopes can be nested, indicated
by matched pairs of braces inside other matched pairs of braces. Nesting means you can
access a variable in a scope that encloses the scope you are in. In the above example, the
variable scp1 is available inside all of the other scopes, while scp3 is only available in the
innermost scope.

Defining data on the fly
There is a significant difference between C and C++ when defining variables. Both languages
require that variables be defined before they are used, but C requires all the variable
definitions at the beginning of a scope. While reading C code, a block of variable definitions

Chapter 1: Data Abstraction 115

is often the first thing you see when entering a scope. These variable definitions don't usually
mean much to the reader because they appear apart from the context in which they are used.

C++ allows you to define variables anywhere in the scope, so you can define a variable right
before you use it. This makes the code much easier to write and reduces the errors you get
from being forced to jump back and forth within a scope. It makes the code easier to
understand because you see the variable definition in the context of its use. This is especially
important when you are defining and initializing a variable at the same time ÄÄ you can see
the meaning of the initialization value by the way the variable is used.

Here's an example showing on-the-fly data definitions:

//: C03:OnTheFly.cpp
// On-the-fly data definitions

int main() {
 //..
 { // Begin a new scope
 int q = 0; // Plain C requires definitions here
 //..
 for(int i = 0; i < 100; i++) { // Define at point of
use
 q++;
 // Notice q comes from a larger scope
 int p = 12; // Definition at the end of the scope
 }
 int p = 1; // A different p
 } // End scope containing q & outer p
} ///:~

In the innermost scope, p is defined right before the scope ends, so it is really a useless
gesture (but it shows you can define a variable anywhere). The p in the outer scope is in the
same situation.

The definition of i in the for loop is rather tricky. You might think that i is only valid within
the scope bounded by the opening brace that appears after the for. The variable i is actually
valid from the point where it is declared to the end of the scope that encloses the for loop.
This is consistent with C, where the variable i must be declared at the beginning of the scope
enclosing the for if it is to be used by the for.

Specifying storage allocation
When creating data, you have a number of options to specify the lifetime of the data, how the
data is allocated, and how the data is treated by the compiler.

Chapter 1: Data Abstraction 116

Global variables
Global variables are defined outside all function bodies and are available to all parts of the
program (even code in other files). Global variables are unaffected by scopes and are always
available (i.e., the lifetime of a global variable lasts until the program ends). If the existence
of a global variable in one file is declared using the extern keyword in another file, the data is
available for use by the second file. Here's an example of the use of global variables:

//: C03:Global.cpp
// Demonstration of global variables
int global;
int main() {
 global = 12;
} ///:~

Here's a file that accesses global as an extern:

//: C03:Global2.cpp {O}
// Accessing external global variables
extern int global;
// (The linker resolves the reference)
void foo() {
 global = 47;
} ///:~

Storage for the variable global is created by the definition in GLOBAL.CPP, and that same
variable is accessed by the code in GLOBAL2.CPP. Since the code in GLOBAL2.CPP is
compiled separately from the code in GLOBAL.CPP, the compiler must be informed that the
variable exists elsewhere by the declaration

extern int global;

Local variables
Local variables occur within a scope; they are «local» to a function. They are often called
«automatic» variables because they automatically come into being when the scope is entered,
and go away when the scope closes. The keyword auto makes this explicit, but local variables
default to auto so it is never necessary to declare something as an auto.

Register variables
A register variable is a type of local variable. The register keyword tells the compiler «make
accesses to this variable as fast as possible.» Increasing the access speed is implementation
dependent but, as the name suggests, it is often done by placing the variable in a register.
There is no guarantee that the variable will be placed in a register or even that the access
speed will increase. It is a hint to the compiler.

Chapter 1: Data Abstraction 117

There are restrictions to the use of register variables. You cannot take or compute the address
of a register variable. A register variable can only be declared within a block (you cannot have
global or static register variables). You can use a register variable as a formal argument in a
function (i.e., in the argument list).

static
The static keyword has several distinct meanings. Normally, variables defined local to a
function disappear at the end of the function scope. When you call the function again, storage
for the variables is created anew and the data is re-initialized. If you want the data to be extant
throughout the life of the program, you can define that variable to be static and give it an
initial value. The initialization is only performed when the program begins to execute, and the
data retains its value between function calls. This way, a function can «remember» some
piece of information between function calls.

You may wonder why global data isn't used instead. The beauty of static data is that it is
unavailable outside the scope of the function, so it can't be inadvertently changed. This
localizes errors.

An example of the use of static data is:

//: C03:Static.cpp
// Using static data in a function
#include <iostream>
using namespace std;

void func() {
 static int i = 0;
 cout << "i = " << ++i << endl;
}
int main() {
 for(int x = 0; x < 10; x++)
 func();
} ///:~

Each time func() is called in the for loop, it prints a different value. If the keyword static is
not used, the value printed will always be '1'.

The second meaning of static is related to the first in the «unavailable outside a certain scope»
sense. When static is applied to a function name or to a variable that is outside of all
functions, it means «this name is unavailable outside of this file.» The function name or
variable is local to the file or has file scope. As a demonstration, compiling and linking the
following two files will cause a linker error:

//: C03:FileStatic.cpp
// File scope demonstration. Compiling and
// linking this file with FSTAT2.CPP

Chapter 1: Data Abstraction 118

// will cause a linker error

static int fs; // File scope: only available in this file

int main() {
 fs = 1;
} ///:~

Even though the variable fs is claimed to exist as an extern in the following file, the linker
won't find it because it has been declared static in FileStatic.cpp.

//: C03:FileStatic2.cpp {O}
// Trying to reference fs
extern int fs;
void func() {
 fs = 100;
} ///:~

The static specifier may also be used inside a class. This definition will be delayed until after
classes have been described later in the chapter.

extern
The extern keyword was briefly described in chapter XX. It tells the compiler that a piece of
data or a function exists, even if the compiler hasn't yet seen it in the file currently being
compiled. This piece of data or function may exist in some other file or further on in the
current file. As an example of the latter:

//: C03:Forward.cpp
// Forward function & data declarations
#include <iostream>
using namespace std;

// This is not actually external, but the
// compiler must be told it exists somewhere:
extern int i;
extern void foo();
int main() {
 i = 0;
 foo();
}
int i; // The data definition
void foo() {
 i++;
 cout << i;

Chapter 1: Data Abstraction 119

} ///:~

When the compiler encounters the declaration extern int i; it knows that the definition for i
must exist somewhere as a global variable. This definition can be in the current file, later on,
or in a separate file. When the compiler reaches the definition of i, no other declaration is
visible so it knows it has found the same i declared earlier in the file. If you were to define i as
static, you would be telling the compiler that i is defined globally (via the extern), but it also
has file scope (via the static), so the compiler will generate an error.

Linkage
To understand the behavior of C & C++ programs, you need to know about linkage. Linkage
describes the storage created in memory to represent an identifier as it is seen by the linker.
An identifier is represented by storage in memory to hold a variable or a compiled function
body. There are two types of linkage: internal linkage and external linkage.

Internal linkage means that storage is created to represent the identifier for the file being
compiled only. Other files may use the same identifier with internal linkage or for a global
variable, and no conflicts will be found by the linker ÄÄ separate storage is created for each
identifier. Internal linkage is specified by the keyword static in C and C++.

External linkage means that a single piece of storage is created to represent the identifier for
all files being compiled. The storage is created once, and the linker must resolve all other
references to that storage. Global variables and function names have external linkage. These
are accessed from other files by declaring them with the keyword extern. Variables defined
outside all functions (with the exception of const in C++) and function definitions default to
external linkage. You can specifically force them to have internal linkage using the static
keyword. You can explicitly state that an identifier has external linkage by defining it with the
extern keyword. Defining a variable or function with extern is not necessary in C, but it is
sometimes necessary for const in C++.

Automatic (local) variables exist only temporarily, on the stack, while a function is being
called. The linker doesn't know about automatic variables, and they have no linkage.

Constants
In old (pre-Standard) C, if you wanted to make a constant, you had to use the preprocessor:

#define PI 3.14159

Everywhere you used PI, the value was substituted by the preprocessor (you can still use this
method in C & C++).

When you use the preprocessor to create constants, you place control of those constants
outside the scope of the compiler. No type checking is performed on the name PI and you
can't take the address of PI (so you can't pass a pointer or a reference to PI). PI cannot be a
variable of a user-defined type. The meaning of PI lasts from the point it is defined to the end
of the file; the preprocessor doesn't recognize scoping.

Chapter 1: Data Abstraction 120

C++ introduces the concept of a named constant that is just like a variable, except its value
cannot be changed. The modifier const tells the compiler that a name represents a constant.
Any data type, built-in or user-defined, may be defined as const. If you define something as
const and then attempt to modify it, the compiler will generate an error.

You cannot use the const modifier alone (at one time, it defaulted to int when used by itself).
You must specify the type, like this:

const int x = 10;

In Standard C and C++, you can use a named constant in an argument list, even if the
argument it fills is a pointer or a reference (i.e., you can take the address of a const). A const
has a scope, just like a regular variable, so you can «hide» a const inside a function and be
sure that the name will not affect the rest of the program.

The const was taken from C++ and incorporated into Standard C, albeit quite differently. In
Standard C, the compiler treats a const just like a variable that has a special tag attached that
says «don't change me.» When you define a const in Standard C, the compiler creates storage
for it, so if you define more than one const with the same name in two different files (or put
the definition in a header file), the linker will generate error messages about conflicts. The
intended use of const in Standard C is quite different from its intended use in C++.

Differences in const between C++ and Standard C
In C++, const replaces the use of #define in most situations requiring a constant value with an
associated name. In C++, const is meant to go into header files, and to be used in places
where you would normally use a #define name. For instance, C++ lets you use a const in
declarations such as arrays:

const sz = 100;
int buf[sz]; // Not allowed in Standard C !

In Standard C, a const cannot be used where the compiler is expecting a constant expression.

A const must have an initializer in C++. Standard C doesn't require an initializer; if none is
given it initializes the const to 0.

In C++, a const doesn't necessarily create storage. In Standard C a const always creates
storage. Whether or not storage is reserved for a const in C++ depends on how it is used. In
general, if a const is used simply to replace a name with a value (just as you would use a
#define), then storage doesn't have to be created for the const. If no storage is created (this
depends on the complexity of the data type and the sophistication of the compiler), the values
may be folded into the code for greater efficiency after type checking, not before, as with
#define. If, however, you take an address of a const (even unknowingly, by passing it to a
function that takes a reference argument) or you define it as extern, then storage is created for
the const.

In C++, a const that is outside all functions has file scope (i.e., it is invisible outside the file).
That is, it defaults to internal linkage. This is very different from all other identifiers in C++
(and from const in Standard C!) that default to external linkage. Thus, if you declare a const

Chapter 1: Data Abstraction 121

of the same name in two different files and you don't take the address or define that name as
extern, the ideal compiler won't allocate storage for the const, but simply fold it into the code
(admittedly very difficult for complicated types). Because const has implied file scope, you
can put it in header files (in C++ only) with no conflicts at link time.

Since a const in C++ defaults to internal linkage, you can't just define a const in one file and
reference it as an extern in another file. To give a const external linkage so it can be
referenced from another file, you must explicitly define it as extern, like this:

extern const x = 1;

Notice that by giving it an initializer and saying it is extern, you force storage to be created for
the const (although the compiler still has the option of doing constant folding here). The
initialization establishes this as a definition, not a declaration. The declaration:

extern const x;

in C++ means that the definition exists elsewhere (again, this is not necessarily true in
Standard C). You can now see why C++ requires a const definition to have an initializer: the
initializer distinguishes a declaration from a definition (in Standard C it's always a definition,
so no initializer is necessary). With an external const declaration, the compiler cannot do
constant folding because it doesn't know the value.

Constant values
In C++, a const must always have an initialization value (in Standard C, this is not true).
Constant values for built-in types are expressed as decimal, octal, hexadecimal, or floating-
point numbers (sadly, binary numbers were not considered important), or as characters.

In the absence of any other clues, the compiler assumes a constant value is a decimal number.
The numbers 47, 0 and 1101 are all treated as decimal numbers.

A constant value with a leading 0 is treated as an octal number (base 8). Base 8 numbers can
only contain digits 0-7; the compiler flags other digits as an error. A legitimate octal number
is 017 (15 in base 10).

A constant value with a leading 0x is treated as a hexadecimal number (base 16). Base 16
numbers contain the digits 0-9 and a-f or A-F. A legitimate hexadecimal number is 0x1fe (510
in base 10).

Floating point numbers can contain decimal points and exponential powers (represented by e,
which means «10 to the power»). Both the decimal point and the e are optional. If you assign
a constant to a floating-point variable, the compiler will take the constant value and convert it
to a floating-point number (this process is called implicit type conversion). However, it is a
good idea to use either a decimal point or an e to remind the reader you are using a floating-
point number; some older compilers also need the hint.

Legitimate floating-point constant values are: 1e4, 1.0001, 47.0, 0.0 and -1.159e-77. You can
add suffixes to force the type of floating-point number: f or F forces a float, L or l forces a
long double, otherwise the number will be a double.

Chapter 1: Data Abstraction 122

Character constants are characters surrounded by single quotes, as: 'A', '0', ' '. Notice there is a
big difference between the character '0' (ASCII 96) and the value 0. Special characters are
represented with the «backslash escape»: '\n' (new-line), '\t' (tab), '\\' (backslash), '\r' (carriage
return), '\»' (double quote), '\'' (single quotes), etc. You can also express char constants in
octal: '\17' or hexadecimal: '\xff'.

volatile
Whereas the qualifier const tells the compiler «this never changes» (which allows the
compiler to perform extra optimizations) the qualifier volatile tells the compiler «you never
know when this will change,» and prevents the compiler from performing any optimizations.
Use this keyword when you read some value outside the control of the system, such as a
register in a piece of communication hardware. A volatile variable is always read whenever its
value is required, even if it was just read the line before.

Operators and their use
Operators were briefly introduced in chapter 2. This section covers all the operators in C &
C++.

All operators produce a value from their operands. This value is produced without modifying
the operands, except with assignment, increment and decrement operators. Modifying an
operand is called a side effect. The most common use for operators that modify their operands
is to generate the side effect, but you should keep in mind that the value produced is available
for your use just as in operators without side effects.

Assignment
Assignment is performed with the operator =. It means «take the right-hand side (often called
the rvalue) and copy it into the left-hand side (often called the lvalue). An rvalue is any
constant, variable, or expression that can produce a value, but an lvalue must be a distinct,
named variable (that is, there must be a physical space to store a value). For instance, you can
assign a constant value to a variable (A = 4;), but you cannot assign anything to constant
value — it cannot be an lvalue (you can't say 4 = A;).

Mathematical operators
The basic mathematical operators are the same as the ones available in most programming
languages: addition (+), subtraction (-), division (/), multiplication (*) and modulus (%, this
produces the remainder from integer division). Integer division truncates the result (it doesn't
round). The modulus operator cannot be used with floating-point numbers.

Chapter 1: Data Abstraction 123

C/C++ also introduces a shorthand notation to perform an operation and an assignment at the
same time. This is denoted by an operator followed by an equal sign, and is consistent with all
the operators in the language (whenever it makes sense). For example, to add 4 to the variable
x and assign x to the result, you say: x += 4;.

This example shows the use of the mathematical operators:

//: C03:Mathops.cpp
// Mathematical operators
#include <iostream>
using namespace std;

// A macro to display a string and a value.
#define print(str, var) cout << str " = " << var << endl

int main() {
 int i, j, k;
 float u,v,w; // Applies to doubles, too
 cout << "enter an integer: ";
 cin >> j;
 cout << "enter another integer: ";
 cin >> k;
 print("j",j); print("k",k);
 i = j + k; print("j + k",i);
 i = j - k; print("j - k",i);
 i = k / j; print("k / j",i);
 i = k * j; print("k * j",i);
 i = k % j; print("k % j",i);
 // The following only works with integers:
 j %= k; print("j %= k", j);
 cout << "enter a floating-point number: ";
 cin >> v;
 cout << "enter another floating-point number: ";
 cin >> w;
 print("v",v); print("w",w);
 u = v + w; print("v + w", u);
 u = v - w; print("v - w", u);
 u = v * w; print("v * w", u);
 u = v / w; print("v / w", u);
 // The following works for ints, chars, and doubles too:
 u += v; print("u += v", u);
 u -= v; print("u -= v", u);
 u *= v; print("u *= v", u);
 u /= v; print("u /= v", u);

Chapter 1: Data Abstraction 124

} ///:~

The rvalues of all the assignments can, of course, be much more complex.

Introduction to preprocessor macros
Notice the use of the macro print() to save typing (and typing errors!). The arguments in the
parenthesized list following the macro name are substituted in all the code following the
closing parenthesis. The preprocessor removes the name print and substitutes the code
wherever the macro is called, so the compiler cannot generate any error messages using the
macro name, and it doesn't do any type checking on the arguments (the latter can be
beneficial, as shown in the debugging macros at the end of the chapter).

Operators are just a different kind of function call
There are two differences between the use of an operator and an ordinary function call. The
syntax is different; an operator is often «called» by placing it between or sometimes after the
arguments. The second difference is that the compiler determines what function to call. For
instance, if you are using the operator + with floating-point arguments, the compiler «calls»
the function to perform floating-point addition (this «call» is sometimes the action of inserting
in-line code, or a floating-point coprocessor instruction). If you use operator + with a floating-
point number and an integer, the compiler «calls» a special function to turn the int into a float,
and then «calls» the floating-point addition code.

It is important to be aware that operators are simply a different kind of function call. In C++
you can define your own functions for the compiler to call when it encounters operators used
with your abstract data types. This feature is called operator overloading and is described in
chapter 5.

Relational operators
Relational operators establish a relationship between the values of the operands. They produce
a value of 1 if the relationship is true, and a value of 0 if the relationship is false. The
relational operators are less than (<), greater than (>), less than or equal to (<=), greater than
or equal to (>=), equivalent (==) and not equivalent (!=). They may be used with all built-in
data types in C and C++. They may be given special definitions for user-defined data types in
C++.

Logical operators
The logical operators AND (&&) and OR (||) produce a true (1) or false (0) based on the
logical relationship of its arguments. Remember that in C and C++, a statement is true if it has
a non-zero value, and false if it has a value of zero.

This example uses the relational and logical operators:

//: C03:Boolean.cpp

Chapter 1: Data Abstraction 125

// Relational and logical operators.
#include <iostream>
using namespace std;

int main() {
 int i,j;
 cout << "enter an integer: ";
 cin >> i;
 cout << "enter another integer: ";
 cin >> j;
 cout << "i > j is " << (i > j) << endl;
 cout << "i < j is " << (i < j) << endl;
 cout << "i >= j is " << (i >= j) << endl;
 cout << "i <= j is " << (i <= j) << endl;
 cout << "i == j is " << (i == j) << endl;
 cout << "i != j is " << (i != j) << endl;
 cout << "i && j is " << (i && j) << endl;
 cout << "i || j is " << (i || j) << endl;
 cout << " (i < 10) && (j < 10) is "
 << ((i < 10) && (j < 10)) << endl;
} ///:~

You can replace the definition for int with float or double in the above program. Be aware,
however, that the comparison of a floating-point number with the value of zero is very strict: a
number that is the tiniest fraction different from another number is still «not equal.» A
number that is the tiniest bit above zero is still true.

Bitwise operators
The bitwise operators allow you to manipulate individual bits in a number (thus they only
work with integral numbers). Bitwise operators perform boolean algebra on the corresponding
bits in the two arguments to produce the result.

The bitwise AND operator (&) produces a one in the output bit if both input bits are one;
otherwise it produces a zero. The bitwise OR operator (|) produces a one in the output bit if
either input bit is a one and only produces a zero if both input bits are zero. The bitwise,
EXCLUSIVE OR, or XOR (^) produces a one in the output bit if one or the other input bit is a
one, but not both. The bitwise NOT (~, also called the ones complement operator) is a unary
operator — it only takes one argument (all other bitwise operators are binary operators).
Bitwise NOT produces the opposite of the input bit — a one if the input bit is zero, a zero if
the input bit is one.

Bitwise operators can be combined with the = sign to unite the operation and assignment: &=,
|= and ^= are all legitimate (since ~ is a unary operator it cannot be combined with the = sign).

Chapter 1: Data Abstraction 126

Shift operators
The shift operators also manipulate bits. The left-shift operator (<<) produces the operand to
the left of the operator shifted to the left by the number of bits specified after the operator.
The right-shift operator (>>) produces the operand to the left of the operator shifted to the
right by the number of bits specified after the operator. These are shifts, and not rotates —
even though a rotate command is usually available in assembly language, you can build your
own rotate command so presumably the designers of C felt justified in leaving «rotate» off
(aiming, as they said, for a minimal language).

If the value after the shift operator is greater than the number of bits in the left-hand operand,
the result is undefined. If the left-hand operand is unsigned, the right shift is a logical shift so
the upper bits will be filled with zeros. If the left-hand operand is signed, the right shift may
or may not be a logical shift.

Shifts can be combined with the equal sign (<<= and >>=). The lvalue is replaced by the
lvalue shifted by the rvalue.

Here's an example that demonstrates the use of all the operators involving bits:

//: C03:Bitwise.cpp
// Demonstration of bit manipulation
#include <iostream>
using namespace std;

// A macro to print a new-line (saves typing):
#define NL cout << endl
// Notice the trailing ';' is omitted -- this forces the
// programmer to use it and maintain consistent syntax
// This function takes a single byte and displays it
// bit-by-bit. The (1 << i) produces a one in each
// successive bit position; in binary: 00000001, 00000010,
etc.
// If this bit bitwise ANDed with val is nonzero, it means
// there was a one in that position in val.
void print_binary(const unsigned char val) {
 for(int i = 7; i >= 0; i--)
 if(val & (1 << i))
 cout << "1";
 else
 cout << "0";
}
// Generally, you don't want signs when you are working
with
// bytes, so you use an unsigned char.

Chapter 1: Data Abstraction 127

int main() {
 // An int must be used instead of a char here because the
 // "cin >>" statement will otherwise treate the first
digit
 // As a character. By assigning getval to a and b, the
value
 // is converted to a single byte (by truncating it)
 unsigned int getval;
 unsigned char a,b;
 cout << "enter a number between 0 and 255: ";
 cin >> getval; a = getval;
 cout << "a in binary: "; print_binary(a); cout << endl;
 cout << "enter another number between 0 and 255: ";
 cin >> getval; b = getval;
 cout << "b in binary: "; print_binary(b); NL;
 cout << "a | b = "; print_binary(a | b); NL;
 cout << "a & b = "; print_binary(a & b); NL;
 cout << "a ^ b = "; print_binary(a ^ b); NL;
 cout << "~a = "; print_binary(~a); NL;
 cout << "~b = "; print_binary(~b); NL;
 unsigned char c = 0x5A; // Interesting bit pattern
 cout << "c in binary: "; print_binary(c); NL;
 a |= c;
 cout << "a |= c; a = "; print_binary(a); NL;
 b &= c;
 cout << "b &= c; b = "; print_binary(b); NL;
 b ^= a;
 cout << "b ^= a; b = "; print_binary(b); NL;
} ///:~

Here are functions to perform left and right rotations:

//: C03:Rolror.cpp {O}
// Perform left and right rotations

unsigned char ROL(unsigned char val) {
 int highbit;
 if(val & 0x80) // 0x80 is the high bit only
 highbit = 1;
 else
 highbit = 0;
 val <<= 1; // Left shift (bottom bit becomes 0)
 val |= highbit; // Rotate the high bit onto the bottom
 return val; // This becomes the function value

Chapter 1: Data Abstraction 128

}

unsigned char ROR(unsigned char val) {
 int lowbit;
 if(val & 1) // Check the low bit
 lowbit = 1;
 else
 lowbit = 0;
 val >>= 1; // Right shift by one position
 val |= (lowbit << 7); // Rotate the low bit onto the top
 return val;
} ///:~

Try using these functions in the BITWISE program. Notice the definitions (or at least
declarations) of ROL() and ROR() must be seen by the compiler in BITWISE.CPP before
the functions are used.

The bitwise functions are generally extremely efficient to use because they translate directly
into assembly language statements. Sometimes a single C or C++ statement will generate a
single line of assembly code.

Unary operators
Bitwise NOT isn't the only operator that takes a single argument. Its companion, the logical
NOT (!), will take a true value (nonzero) and produce a false value (zero). The unary minus (-
) and unary plus (+) are the same operators as binary minus and plus — the compiler figures
out which usage is intended by the way you write the expression. For instance, the statement

x = -a;

has an obvious meaning. The compiler can figure out:

x = a * -b;

but the reader might get confused, so it is safer to say:

x = a * (-b);

The unary minus produces the negative of the value. Unary plus provides symmetry with
unary minus, although it doesn't do much.

The increment and decrement operators (++ and --) were introduced in chapter 2. These are
the only operators other than those involving assignment that have side effects. The increment
operator increases the variable by one unit («unit» can have different meanings according to
the data type — see the chapter on pointers) and the decrement operator decreases the variable
by one unit. The value produced depends on whether the operator is used as a prefix or postfix
operator (before or after the variable). Used as a prefix, the operator changes the variable and
produces the changed value. As a postfix, the operator produces the unchanged value and then
the variable is modified.

Chapter 1: Data Abstraction 129

The last unary operators are the address-of (&), dereference (*) and cast operators in C and
C++, and new and delete in C++. Address-of and dereference are used with pointers, which
will be described in Chapter 4. Casting is described later in this chapter, and new and delete
are described in Chapter 6.

Conditional operator or ternary operator
This operator is unusual because it has 3 operands. It is truly an operator because it produces a
value, unlike the ordinary if-else statement. It consists of three expressions: if the first
expression (followed by a ?) evaluates to true, the expression following the ? is evaluated and
its result becomes the value produced by the operator. If the first expression is false, the third
expression (following a :) is executed and its result becomes the value produced by the
operator.

The conditional operator can be used for its side effects or for the value it produces. Here's a
code fragment that demonstrates both:

A = --B ? B : (B = -99);

Here, the conditional produces the rvalue. A is assigned to the value of B if the result of
decrementing B is nonzero. If B became zero, A and B are both assigned to -99. B is always
decremented, but it is only assigned to -99 if the decrement causes B to become 0. A similar
statement can be used without the «A =« just for its side effects:

--B ? B : (B = -99);

Here the second B is superfluous, since the value produced by the operator is unused. An
expression is required between the ? and :. In this case the expression could simply be a
constant that might make the code run a bit faster.

The comma operator
The comma is not restricted to separating variable names in multiple definitions (i.e.: int i, j,
k;). When used as an operator to separate expressions, it produces only the value of the last
expression. All the rest of the expressions in the comma-separated list are only evaluated for
their side effects. This code fragment increments a list of variables and uses the last one as the
rvalue:

A = (B++,C++,D++,E++);

The parentheses are critical here. Without them, the statement will evaluate to:

 (A = B++), C++, D++, E++;

Chapter 1: Data Abstraction 130

Common pitfalls when using operators
As illustrated above, one of the pitfalls when using operators is trying to get away without
parentheses when you are even the least bit uncertain about how an expression will evaluate
(consult your local C manual for the order of expression evaluation).

Another extremely common error looks like this:

//: C03:Pitfall.cpp
// Operator mistakes

int main() {
 int a = 1, b = 1;
 while(a = b) {
 //
 }
} ///:~

The statement a = b will always evaluate to true when b is non-zero. The variable a is
assigned to the value of b, and the value of b is also produced by the operator =. Generally
you want to use the equivalence operator == inside a conditional statement, not assignment.
This one bites a lot of programmers.

A similar problem is using bitwise AND and OR instead of logical. Bitwise AND and OR use
one of the characters (& or |) while logical AND and OR use two (&& and ||). Just as with =
and ==, it's easy to just type one character instead of two.

Casting operators
The word Cast in C is used in the sense of «casting into a mold.» C will automatically change
one type of data into another if it makes sense to the compiler. For instance, if you assign an
integral value to a floating-point variable, the compiler will secretly call a function (or more
probably, insert code) to convert the int to a float. Casting allows you to make this type
conversion explicit, or to force it when it wouldn't normally happen.

To perform a cast, put the desired data type (including all modifiers) inside parentheses to the
left of the value. This value can be a variable, constant, the value produced by an expression
or the return value of a function. Here's an example:

int B = 200;
A = (unsigned long int)B;

You can even define casting operators for user-defined data types. Casting is very powerful,
but it can cause some headaches because in some situations it forces the compiler to treat data
as if it were (for instance) larger than it really is, so it will occupy more space in memory —
this can trample over other data. This usually occurs when casting pointers, not when making
simple casts like the one shown above.

Chapter 1: Data Abstraction 131

C++ has an additional kind of casting syntax, which follows the «function-call» syntax used
with constructors (defined later in this chapter). This syntax puts the parentheses around the
argument, like a function call, rather than around the data type:

float A = float(200);

This is equivalent to:

float A = (float)200;

sizeof -- an operator by itself
The sizeof() operator stands alone because it satisfies an unusual need. sizeof() gives you
information about the amount of memory allocated for data items. As described earlier in this
chapter, sizeof() tells you the number of bytes used by any particular variable. It can also give
the size of a data type (with no variable name):

printf("sizeof(double) = %d\n", sizeof(double));

sizeof() can also give you the sizes of user-defined data types. This is used later in the book.

The asm keyword
This is an escape mechanism that allows you to write assembly code for your hardware within
a C++ program. Often you’re able to reference C++ variables within the assembly code,
which means you can easily communicate with your C++ code and limit the assembly code to
that necessary for efficiency tuning or to utilize special processor instructions. The exact
syntax of the assembly language is compiler-dependent and can be discovered in your
compiler’s documentation.

Explicit operators
These are keywords for bitwise and logical operators. Non-U.S. programmers without
keyboard characters like &, |, ^, and so on, were forced to use C’s horrible trigraphs, which
were not only annoying to type, but obscure when reading. This is repaired in C++ by the
addition of new keywords:

Keyword Meaning
and && (logical AND)

or || (logical OR)

not ! (logical NOT)

 not_eq != (logical not-equivalent)

Chapter 1: Data Abstraction 132

Keyword Meaning
bitand & (bitwise AND)

and_eq &= (bitwise AND-assignment)

bitor | (bitwise OR)

or_eq |= (bitwise OR-assignment)

xor ^ (bitwise exclusive-OR)

xor_eq ^= (bitwise exclusive-OR-assignment)

compl ~ (ones complement)

Creating functions
Most modern languages have an ability to create named subroutines or subprograms. In C++,
a subprogram is called a function. All functions have return values (although that value can be
«nothing») so functions in C++ are very similar to functions in Pascal. (The Pascal procedure
is the specialized case of a function with no return value. It hardly seems worthwhile to give it
a separate name.)

Function prototyping
You have been seeing function prototyping in this book described as «telling the compiler that
a function exists, and how it is called.» Now it's time for more details.

In old (pre-Standard) C, you could call a function with any number or type of arguments, and
the compiler wouldn't complain. Everything seemed fine until you ran the program. You got
mysterious results (or worse, the program crashed) with no hints as to why. The lack of help
with argument passing and the enigmatic bugs that resulted is probably one reason why C was
dubbed a «high-level assembly language.» Pre-Standard C programmers just adapted to it.

With function prototyping, you always use a prototype when declaring and defining a
function. When the function is called, the compiler uses the prototype to insure the proper
arguments are passed in, and that the return value is treated correctly. If the programmer
makes a mistake when calling the function, the compiler catches the mistake.

Telling the compiler how arguments are passed
In a function prototype, the argument list (which follows the name and is surrounded by
parentheses) contains the types of arguments that must be passed to the function and
(optionally for the declaration) the names of the arguments. The order and type of the

Chapter 1: Data Abstraction 133

arguments must match in the declaration, definition and function call. Here's an example of a
function prototype in a declaration:

int translate(float x, float y, float z);

You cannot use the same form as when defining variables in function argument lists as you do
in ordinary variable definitions, i.e., float x, y, z. You must indicate the type of each
argument. In a function declaration, the following form is also acceptable:

int translate(float, float, float);

since the compiler doesn't do anything but check for types when the function is called.

In the function definition, names are required because the arguments are referenced inside the
function:

int translate(float x, float y, float z) {
 x = y = z;
 // ...
}

The only exception to this rule occurs in C++: an argument may be unnamed in the argument
list of the function definition. Since it is unnamed, you cannot use it in the function body, of
course. The reason unnamed arguments are allowed is to give the programmer a way to
«reserve space in the argument list.» You must still call the function with the proper
arguments, but you can use the argument in the future without modifying any of the other
code. This option of ignoring an argument in the list is possible if you leave the name in, but
you will get an obnoxious warning message about the value being unused every time you
compile the function. The warning is eliminated if you remove the name.

Standard C and C++ have two other ways to declare an argument list. If you have an empty
argument list you can declare it as foo() in C++, which tells the compiler there are exactly
zero arguments. Remember this only means an empty argument list in C++. In Standard C it
means «an indeterminate number of arguments (which is a «hole» in Standard C since it
disables type checking in that case). In both Standard C and C++, the declaration foo(void);
means an empty argument list. The void keyword means «nothing» in this case (it can also
mean «no type» when applied to certain variables).

The other option for argument lists occurs when you don't know how many arguments or
what type of arguments you will have; this is called a variable argument list. This «uncertain
argument list» is represented by ellipses (...). Defining a variable argument list is significantly
more complicated than a plain function. You can use a variable argument list declaration for a
function that has a fixed set of arguments if (for some reason) you want to disable the error
checks of function prototyping. Handling variable argument lists is described in the library
section of your local Standard C guide.

Function return values
A function prototype may also specify the return value of a function. The type of this value
precedes the function name. If no type is given, the return value type defaults to int (most

Chapter 1: Data Abstraction 134

things in C default to int). If you want to specify that no value is returned, as in a Pascal
procedure, the void keyword is used. This will generate an error if you try to return a value
from the function. Here are some complete function prototypes:

foo1(void); // Returns an int, takes no arguments
foo2(); // Like foo2() in C++ but not in Standard C!
float foo3(float, int, char, double); // Returns a float
void foo4(void); // Takes no arguments, returns nothing

At this point, you may wonder how to specify a return value in the function definition. This is
done with the return statement. return exits the function, back to the point right after the
function call. If return has an argument, it becomes the return value of the function. You can
have more than one return statement in a function definition:

//: C03:Return.cpp
// Use of "return"
#include <iostream>
using namespace std;

char cfunc(const int i) {
 if(i == 0)
 return 'a';
 if(i == 1)
 return 'g';
 if(i == 5)
 return 'z';
 return 'c';
}

int main() {
 cout << "type an integer: ";
 int val;
 cin >> val;
 cout << cfunc(val) << endl;
} ///:~

The code in cfunc() acts like an if-else statement. The else is unnecessary because the first if
that evaluates true causes an exit of the function via the return statement. Notice that a
function declaration is not necessary because the function definition appears before it is used
in main(), so the compiler knows about it. Arguments and return values are covered in detail
in chapter 9.

Chapter 1: Data Abstraction 135

Using the C function library
All the functions in your local C function library are available while you are programming in
C++. You should look hard at the function library before defining your own function —
chances are, someone has solved the problem for you, and probably given it a lot more
thought (as well as debugging!).

A word of caution, though: many compilers include a lot of extra functions that make life
even easier and are very tempting to use, but are not part of the Standard C library. If you are
certain you will never want to move the application to another platform (and who is certain of
that?), go ahead —use those functions and make your life easier. If you want your application
to be portable, you should restrict yourself to Standard C functions (this is safe because the
Standard C library is part of C++). Keep a guide to Standard C handy and refer to that when
looking for a function rather than your local C or C++ guide. If you must perform platform-
specific activities, try to isolate that code in one spot so it can easily be changed when porting
to another platform. Platform-specific activities are often encapsulated in a class — this is the
ideal solution.

The formula for using a library function is as follows: first, find the function in your
guidebook (many guidebooks will index the function by category as well as alphabetically).
The description of the function should include a section that demonstrates the syntax of the
code. The top of this section usually has at least one #include line, showing you the header
file containing the function prototype. Duplicate this #include line in your file, so the function
is properly declared. Now you can call the function in the same way it appears in the syntax
section. If you make a mistake, the compiler will discover it by comparing your function call
to the function prototype in the header, and tell you about your error. The linker searches the
standard library by default, so that's all you need to do: include the header file, and call the
function.

Creating your own libraries with the
librarian

You can collect your own functions together into a library, or add new functions to the library
the linker secretly searches (you should back up the old one before doing this). Most packages
come with a librarian that manages groups of object modules. Each librarian has its own
commands, but the general idea is this: if you want to create a library, make a header file
containing the function prototypes for all the functions in your library. Put this header file
somewhere in the preprocessor's search path, either in the local directory (so it can be found
by #include «header») or in the include directory (so it can be found by #include <header>).
Now take all the object modules and hand them to the librarian along with a name for the
finished library (most librarians require a common extension, such as .LIB). Place the finished
library in the same spot the other libraries reside, so the linker can find it. When you use your
library, you will have to add something to the command line so the linker knows to search the

Chapter 1: Data Abstraction 136

library for the functions you call. You must find all the details in your local manual, since
they vary from system to system.

The header file
When you create a class, you are creating a new data type. Generally, you want this type to be
easily accessible to yourself and others. In addition, you want to separate the interface (the
class declaration) from the implementation (the definition of the class member functions) so
the implementation can be changed without forcing a re-compile of the entire system. You
achieve this end by putting the class declaration in a header file.

Function collections & separate
compilation

Instead of putting the class declaration, the definition of the member functions and the
main() function in the same file, it is best to isolate the class declaration in a header file that
is included in every file where the class is used. The definitions of the class member functions
are also separated into their own file. The member functions are debugged and compiled once,
and are then available as an object module (or in a library, if the librarian is used) for anyone
who wants to use the class. The user of the class simply includes the header file, creates
objects (instances) of that class, and links in the object module or library (i.e.: the compiled
code).

The concept of a collection of associated functions combined into the same object module or
library, and a header file containing all the declarations for the functions, is very standard
when building large projects in C. It is de rigueur in C++: you could throw any function into a
collection in C, but the class in C++ determines which functions are associated by dint of their
common access to the private data. Any member function for a class must be declared in the
class declaration; you cannot put it in some separate file. The use of function libraries was
encouraged in C and institutionalized in C++.

Importance of using a common header file
When using a function from a library, C allows you the option of ignoring the header file and
simply declaring the function by hand. You may want the compiler to speed up just a bit by
avoiding the task of opening and including the file. For example, here's an extremely lazy
declaration of the C function printf():

printf(...);

It says: printf() has some number of arguments, and they all have some type but just take
whatever arguments you see and accept them. By using this kind of declaration, you suspend
all error checking on the arguments.

Chapter 1: Data Abstraction 137

This practice can cause subtle problems. If you declare functions by hand in each different
file, you may make a mistake the compiler accepts in a particular file. The program will link
correctly, but the use of the function in that one file will be faulty. This is a tough error to
find, and is easily avoided.

If you place all your function declarations in a header file, and include that file everywhere
you use the function (and especially where you define the function) you insure a consistent
declaration across the whole system. You also insure that the declaration and the definition
match by including the header in the definition file.

C does not enforce this practice. It is very easy, for instance, to leave the header file out of the
function definition file. Header files often confuse the novice programmer (who may ignore
them or use them improperly).

If a class is declared in a header file in C++, you must include the header file everywhere a
class is used and where class member functions are defined. The compiler will give an error
message if you try to call a function without declaring it first. By enforcing the proper use of
header files, the language ensures consistency in libraries, and reduces bugs by forcing the
same interface to be used everywhere.

There was an additional problem in earlier releases of the language. When you overloaded
ordinary (non-member) functions, the order of overloading was important. If you used the
same function names in separate header files, you could change the order of overloading
without knowing it, simply by including the files in a different order. The compiler didn't
complain, but the linker did — it was mystifying. This problem existed in C++ compilers
following AT&T releases up through 1.2. It was solved by a change in the language called
type-safe linkage (described later in the book).

Preventing re-declaration of classes
When you put a class declaration in a header file, it is possible for the file to be included more
than once in a complicated program. The streams class is a good example. Any time a class
does I/O (especially in inline functions) it may include the streams class. If the file you are
working on uses more than one kind of class, you run the risk of including the streams header
more than once and re-declaring streams.

The compiler considers the re-declaration of a class to be an error, since it would otherwise
allow you to use the same name for different classes. To prevent this error when multiple
header files are included, you need to build some intelligence into your header files using the
preprocessor (the streams class already has this «intelligence»).

The preprocessor directives
#define, #ifdef and #endif

As shown earlier in this chapter, #define will create preprocessor macros that look similar to
function definitions. #define can also create flags. You have two choices: you can simply tell
the preprocessor that the flag is defined, without specifying a value:

Chapter 1: Data Abstraction 138

#define FLAG

or you can give it a value (which is the pre-Standard C way to define a constant):

#define PI 3.14159

In either case, the label can now be tested by the preprocessor to see if it has been defined:

#ifdef FLAG

will yield a true result, and the code following the #ifdef will be included in the package sent
to the compiler. This inclusion stops when the preprocessor encounters the statement

#endif

or

#endif // FLAG

Any non-comment after the #endif on the same line is illegal, even though some compilers
may accept it. The #ifdef/#endif pairs may be nested within each other.

The complement of #define is #undef (short for «un-define»), which will make an #ifdef
statement using the same variable yield a false result. #undef will also cause the preprocessor
to stop using a macro. The complement of #ifdef is #ifndef, which will yield a true if the label
has not been defined (this is the one we use in header files).

There are other useful features in the C preprocessor. You should check your local guide for
the full set.

Standard for each class header file
In each header file that contains a class, you should first check to see if the file has already
been included in this particular code file. You do this by checking a preprocessor flag. If the
flag isn't set, the file wasn't included and you should set the flag (so the class can't get re-
declared) and declare the class. If the flag was set the class has already been declared so you
should just ignore the code declaring the class. Here's how the header file should look:

#ifndef CLASS_FLAG_

#define CLASS_FLAG_

// Class declaration here...

#endif // CLASS_FLAG_

As you can see, the first time the header file is included, the class declaration will be included
by the preprocessor but all the subsequent times the class declaration will be ignored. The
name CLASS_FLAG_ can be any unique name, but a reliable standard to follow is to take the
name of the header file and replace periods with underscores, and follow it with a trailing
underscore (leading underscores are reserved by Standard C for system names). Here's an
example:

//: C03:Simple.h
// Simple class that prevents re-definition

Chapter 1: Data Abstraction 139

#ifndef SIMPLE_H_
#define SIMPLE_H_

class Simple {
 int i,j,k;
public:
 Simple() { i = j = k = 0; }
};

#endif // SIMPLE_H_ ///:~

Although the SIMPLE_H_ after the #endif is commented out and thus by the preprocessor, it
is useful for documentation.

Portable inclusion of header files
C++ was created in a Unix environment, where the file names have case sensitivity. Thus,
Unix programmers could name C header files as header.h and C++ header files with a capital
H, as header.H. This didn't translate to some other systems such as MS-DOS, so programmers
there distinguished C++ header files with .HXX or .HPP. Thus you will sometimes see old
header files with these extensions. However, the common practice now is to name C++ header
files the same as C header files: header.h. It turns out that using the same naming convention
as C is not a problem since programmers must know what they are doing when including a
header file, and the compiler will catch the error if you try to include a C++ header in a C
compilation. All header files in this book use the .h convention.

struct: a class with all elements public
The data structure keyword struct was developed for C so a programmer could group
together several pieces of data and treat them as a single data item. As you can imagine, the
struct is an early attempt at abstract data typing (without the associated member functions). In
C, you must create non-member functions that take your struct as an argument. There is no
concept of private data, so anyone (not just the functions you define) can change the elements
of a struct.

C++ will accept any struct you can declare in C (so it's upward compatible). However, C++
expands the definition of a struct so it is just like a class, except a class defaults to private
while a struct defaults to public. Any struct you define in C++ can have member functions,
constructors and a destructor, etc. Although the struct is an artifact from C it emphasizes that
all elements are public. You can make a class in C++ work just like a struct in C++ by
putting public: at the beginning of your class. Notice that a struct in Standard C doesn't have
constructors, destructors or member functions.

As you can see from this example, all the elements in a struct are public:

//: C03:Struct.cpp

Chapter 1: Data Abstraction 140

// Demonstration of structures vs classes

class CL {
 int i, j, k;
public:
 CL(int init = 0) { i = j = k = init; }
};

struct ST {
 int i, j, k;
 // Don't need to say "public." Everything is public!
 ST (int init = 0) { i = j = k = init; }
};

int main() {
 CL A(10);
 ST B(11);
 B.i = 44; // This is OK
//! A.i = 44; // This will cause an error!
} ///:~

Clarifying programs with enum
An enumerated data type is a way of attaching names to numbers, thereby giving more
meaning to anyone reading the code. The enum keyword (from C) automatically enumerates
any list of words you give it by assigning them values of 0, 1, 2, etc. You can declare enum
variables (which are always ints). The declaration of an enum looks similar to a class
declaration, but an enum cannot have any member functions.

An enumerated data type is very useful when you want to keep track of some sort of feature:

//: C03:Enum.cpp
// Keeping track of shapes.

enum shape_type {
 circle,
 square,
 rectangle
}; // Must end with a semicolon like a class

int main() {
 shape_type shape = circle;
 // Activities here....
 // Now do something based on what the shape is:

Chapter 1: Data Abstraction 141

 switch(shape) {
 case circle: /* circle stuff */ break;
 case square: /* square stuff */ break;
 case rectangle: /* rectangle stuff */ break;
 }
} ///:~

Shape is a variable of the shape_type enumerated data type, and its value is compared with the
value in the enumeration. Since shape is really just an int, however, it can be any value an int
can hold (including a negative number). You can also compare an int variable with a value in
the enumeration.

If you don't like the way the compiler assigns values, you can do it yourself, like this:

enum shape_type { circle = 10, square = 20, rectangle =
50};

If you give values to some names and not to others, the compiler will use the next integral
value. For example,

enum snap { crackle = 25, pop };

The compiler gives pop the value 26.

You can see how much more readable the code is when you use enumerated data types.

Saving memory with union
Sometimes a program will handle different types of data using the same variable. In this
situation, you have two choices: you can create a class or struct containing all the possible
different types you might need to store, or you can use a union. A union piles all the data into
a single space; it figures out the amount of space necessary for the largest item you've put in
the union, and makes that the size of the union. Use a union to save memory.

Anytime you place a value in a union, the value always starts in the same place at the
beginning of the union, but only uses as much space as is necessary. Thus, you create a
«super-variable,» capable of holding any of the union variables. All the addresses of the union
variables are the same (in a class or struct, the addresses are different).

Here's a simple use of a union. Try removing various elements and see what effect it has on
the size of the union. Notice that it makes no sense to declare more than one instance of a
single data type in a union (unless you're just doing it to use a different name).

//: C03:Union.cpp
// The size and simple use of a union
#include <iostream>
using namespace std;

union packed { // Declaration similar to a class

Chapter 1: Data Abstraction 142

 char i;
 short j;
 int k;
 long l;
 float f;
 double d; // The union will be the size of a double,
 // since it's the largest element
}; // Semicolon ends a union, like a class

int main() {
 cout << "sizeof(packed) = " << sizeof(packed) << endl;
 packed X;
 X.i = 'c';
 X.d = 3.14159;
} ///:~

The compiler performs the proper assignment according to the union member you select.

Once you perform an assignment, the compiler doesn't care what you do with the union. In the
above example, you could assign a floating-point value to X:

X.f = 2.222;

and then send it to the output as if it were an int:

cout << X.i;

This would produce complete garbage.

C++ allows a union to have a constructor, destructor and member functions just like a class:

//: C03:Union2.cpp
// Unions with constructors and member functions

union U {
 int i;
 float f;
 U(int a) { i = a; }
 U(float b) { f = b;}
 ~U() { f = 0; }
 int read_int() { return i; }
 float read_float() { return f; }
};

int main() {
 U X(12), Y(1.9F);
 X.i = 44;
 X.read_int();

Chapter 1: Data Abstraction 143

 Y.read_float();
} ///:~

Although the member functions civilize access to the union somewhat, there is still no way to
prevent the user from selecting the wrong element once the union is initialized. A «safe»
union can be encapsulated in a class like this (notice how the enum clarifies the code):

//: C03:SuperVar.cpp
// A super-variable
#include <iostream>
using namespace std;

class SuperVar {
 enum {
 character,
 integer,
 floating_point
 } vartype; // Define one
 union { // Anonymous union
 char c;
 int i;
 float f;
 };
public:
 SuperVar(char ch) {
 vartype = character;
 c = ch;
 }
 SuperVar(int ii) {
 vartype = integer;
 i = ii;
 }
 SuperVar(float ff) {
 vartype = floating_point;
 f = ff;
 }
 void print();
};

void SuperVar::print() {
 switch (vartype) {
 case character:
 cout << "character: " << c << endl;
 break;

Chapter 1: Data Abstraction 144

 case integer:
 cout << "integer: " << i << endl;
 break;
 case floating_point:
 cout << "float: " << f << endl;
 break;
 }
}

int main() {
 SuperVar A('c'), B(12), C(1.44F);
 A.print();
 B.print();
 C.print();
} ///:~

In the above code, the enum has no type name (it is an untagged enumeration). This is
acceptable if you are going to immediately define instances of the enum, as is done here.
There is no need to refer to the enum's type in the future, so the type is optional.

The union has no type name and no variable name. This is called an anonymous union, and
creates space for the union but doesn't require accessing the union elements with a variable
name and the dot operator. For instance, if your anonymous union is:

union { int i, float f };

you access members by saying:

i = 12;
f = 1.22;

just like other variables. The only difference is that both variables occupy the same space. If
the anonymous union is at file scope (outside all functions and classes) then it must be
declared static so it has internal linkage.

Debugging flags
If you hard-wire your debugging code into a program, you can run into problems. You start to
get too much information, which makes the bugs difficult to isolate. When you think you've
found the bug you start tearing out debugging code, only to find you need to put it back in
again. You can solve these problems with two types of flags: preprocessor debugging flags
and run-time debugging flags.

Preprocessor debugging flags
By using the preprocessor to #define one or more debugging flags (preferably in a header
file), you can test a flag using a #ifdef statement to conditionally include debugging code.

Chapter 1: Data Abstraction 145

When you think your debugging is finished, you can simply #undef the flag(s) and the code
will automatically be removed (and you'll reduce the size of your executable file).

It is best to decide on names for debugging flags before you begin building your project so the
names will be consistent. Preprocessor flags are often distinguished from variables by writing
them in all upper case. A common flag name is simply DEBUG (but be careful you don't use
NDEBUG, which is reserved in Standard C). The sequence of statements might be:

#define DEBUG // Probably in a header file
//...
#ifdef DEBUG // Check to see if flag is defined
/* debugging code here */
#endif // DEBUG

Many C and C++ implementations will even let you #define and #undef flags from the
compiler command line, so you can re-compile code and insert debugging information with a
single command (preferably via the makefile). Check your local guide for details.

Run-time debugging flags
In some situations it is more convenient to turn debugging flags on and off during program
execution (it is much more elegant to turn flags on and off when the program starts up using
the command line. See chapter 4 for details of using the command line). Large programs are
tedious to recompile just to insert debugging code.

You can create integer flags and use the fact that nonzero values are true to increase the
readability of your code. For instance:

int debug = 0; // Default off
//..
cout << "turn debugger on? (y/n): ";
cin >> reply;
if(reply == 'y') debug++; // Turn flag on
//..
if(debug) {
 // Debugging code here
}

Notice that the variable is in lower case letters to remind the reader it isn't a preprocessor flag.

Turning a variable name into a string
When writing debugging code, it is tedious to write print expressions consisting of a string
containing the variable name followed by the variable. Fortunately, Standard C has introduced
the «string-ize» operator #. When you put a # before an argument in a preprocessor macro,
that argument is turned into a string by putting quotes around it. This, combined with the fact
that strings with no intervening punctuation are concatenated into a single string, allows us to
make a very convenient macro for printing the values of variables during debugging:

Chapter 1: Data Abstraction 146

#define PR(x) cout << #x " = " << x << "\n";

If you print the variable A by calling the macro PR(A), it will have the same effect as the
code:

cout << "A = " << A << "\n";

The Standard C assert() macro
assert() is a very convenient debugging macro. When you use assert(), you give it an
argument that is an expression you are «asserting to be true.» The preprocessor generates code
that will test the assertion. If the assertion isn't true, the program will stop after issuing an
error message telling you what the assertion was and that it failed. Here's a trivial example:

//: C03:Assert.cpp
// Use of the assert() debugging macro
#include <cassert> // Contains the macro
using namespace std;

int main() {
 int i = 100;
 assert(i != 100);
} ///:~

The Standard C library header file assert.h contains the macro for assertion. When you are
finished debugging, you can remove the code generated by the macro simply by placing the
line:

#define NDEBUG

in the program before the inclusion of assert.h, or by defining NDEBUG on the compiler
command line. NDEBUG is a flag used in assert.h to change the way code is generated by the
macros.

Debugging techniques combined
By combining the techniques discussed in this section, a framework arises that you can follow
when writing your own debugging code. Keep in mind that if you want to isolate certain types
of debugging code you can create variables debug1, debug2, etc., and preprocessor flags
DEBUG1, DEBUG2, etc.

The following example shows the use of command-line flags, formally introduced in the next
chapter. It is better to show you the right way to do something and risk confusing you for a bit
rather than teaching you some method that will later need to be un-learned.

The flags on the command line are accessed through the arguments to main(), called argc
and argv.

Chapter 1: Data Abstraction 147

//: C03:Debug2.cpp
// Framework for writing debug code
#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;
#define DEBUG

int main(int argc, char * argv[]) {
 int debug = 0;
 if(argc > 1) { // If more than one argument
 if (*argv[1] == 'd')
 debug++; // Set the debug flag
 else {
 cout << "usage: debug2 OR debug2 d" << endl;
 "optional flag turns debugger on.";
 exit(1); // Quit program
 }
 }
 //
#ifdef DEBUG
 if(debug)
 cout << "debugger on" << endl;
#endif // DEBUG
 // ...
} ///:~

All the debugging code occurs between the

#ifdef DEBUG

and

#endif //DEBUG

lines. If you type on the command line:

debug2

nothing will happen, but if you type

debug2 d

The «debugger» will be turned on. When you want to remove the debugging code at some
later date to reduce the size of the executable program, simply change the #define DEBUG to
a #undef DEBUG (or better yet, do it from the compiler command line).

Chapter 1: Data Abstraction 148

Bringing it all together:
project-building tools

When using separate compilation (breaking code into a number of translation units), you need
some way to compile them all and to tell the linker to put them with the appropriate libraries
and startup code into an executable file. Most compilers allow you to do this with a single
command-line statement. For a compiler named cpp, for example, you might say

cpp Libtest.cpp lib.cpp

The problem with this approach is that the compiler will first compile each individual
translation unit, regardless of whether it needs to be rebuilt or not. With many files in a
project, it can get very tedious to recompile everything if you’ve only changed a single file.

The first solution to this problem, developed on Unix (which is where C was created), was a
program called make. Make compares the date on the source-code file to the date on the
object file, and if the object-file date is earlier than the source-code file, make invokes the
compiler on the source.

Because make is available in some form for virtually all C++ compilers (and even if it isn’t,
you can use freely-available makes with any compiler), it will be the tool used throughout
this book. However, compiler vendors also came up with their own project building tools.
These tools ask you which translation units are in your project, and determine all the
relationships themselves. They have something similar to a makefile, generally called a
project file, but the programming environment maintains this file so you don’t have to worry
about it. The configuration and use of project files vary from system to system, so it will be
assumed here that you are using the project-building tool of your choice to create these
programs, and that you will find the appropriate documentation on how to use them (although
project file tools provided by compiler vendors are usually so simple to use that you can learn
them quite effortlessly). The makefiles used within this book should work regardless of
whether you are also using a specific vendor’s project-building tool.

File names
One other issue you should be aware of is file naming. In C, it has been traditional to name
header files (containing declarations) with an extension of .h and implementation files (that
cause storage to be allocated and code to be generated) with an extension of .c. C++ went
through an evolution. It was first developed on Unix, where the operating system was aware
of upper and lower case in file names. The original file names were simply capitalized
versions of the C extensions: .H and .C. This of course didn’t work for operating systems that
didn’t distinguish upper and lower case, like MS-DOS. DOS C++ vendors used extensions of
.hxx and .cxx for header files and implementation files, respectively, or .hpp and .cpp. Later,
someone figured out that the only reason you needed a different extension for a file was so the

Chapter 1: Data Abstraction 149

compiler could determine whether to compile it as a C or C++ file. Because the compiler
never compiled header files directly, only the implementation file extension needed to be
changed. The custom, virtually across all systems, has now become to use .cpp for
implementation files and .h for header files.

Make: an essential tool for
separate compilation

There is one more tool you should understand before creating programs in C++. The make
utility manages all the individual files in a project. When you edit the files in a project, make
insures that only the source files that were changed, and other files that are affected by the
modified files, are re-compiled. By using make, you don't have to re-compile all the files in
your project every time you make a change. make also remembers all the commands to put
your project together. Learning to use make will save you a lot of time and frustration.

make was developed on Unix. The C language was developed to write the Unix operating
system. As programs encompassed more and more files, the job of deciding which files
should be recompiled because of changes became tedious and error-prone, so make was
invented. Most C compilers come with a make program. All C++ packages either come with
a make, or are used with a C compiler that has a make.

Make activities
When you type make, the make program looks in the current directory for a file named
makefile, which you've created if it's your project. This file lists dependencies between source
code files. make looks at the dates on files. If a dependent file has an older date than a file it
depends on, make executes the rule given after the dependency.

All comments in makefiles start with a # and continue to the end of the line.

As a simple example, the makefile for the "hello" program might contain:

A comment
hello.exe: hello.cpp
 g++ hello.cpp

This says that hello.exe (the target) depends on hello.cpp. When hello.cpp has a newer date
than hello.exe, make executes the rule g++ hello.cpp. There may be multiple dependencies
and multiple rules. All the rules must begin with a tab.

By creating groups of interdependent dependency-rule sets, you can modify source code files,
type make and be certain that all the affected files will be re-compiled correctly.

Chapter 1: Data Abstraction 150

Macros
A makefile may contain macros. Macros allow convenient string replacement. The makefiles
in this book use a macro to invoke the C++ compiler. For example,

#Macro to invoke Gnu C++
CPP = g++
hello.exe: hello.cpp
 $(CPP) hello.cpp

The $ and parentheses expand the macro. To expand means to replace the macro call $(CPP)
with the string g++. With the above macro, if you want to change to a different compiler you
just change the macro to:

CPP = cpp

You can also add compiler flags, etc., to the macro.

Makefiles in this book
Using the program ExtractCode.cpp which is shown in Chapter XX, all the code listings in
this book are automatically extracted from the ASCII text version of this book and placed in
subdirectories according to their chapters. In addition, ExtractCode.cpp creates a makefile in
each subdirectory so that you can simply move into that subdirectory and type make. Finally,
ExtractCode.cpp creates a «master» makefile in the root directory where the book’s files are
expanded, and this makefile descends into each subdirectory and calls make. This way you
can compile all the code in the book by invoking a single make command, and the process
will stop whenever your compiler is unable to handle a particular file (note that a Standard
C++ conforming compiler should be able to compile all the files in this book). Because
implementations of make vary from system to system, only the the most basic, common
features are used in the generated makefiles. You should be aware that there are many
advanced shortcuts that can save a lot of time when using make. Your local documentation
will describe the further features of your particular make.

An example makefile
As mentioned before, the makefile for each chapter will be automatically generated by the
code-extraction tool ExtractCode.cpp that is shown and described in Chapter XX. Thus, the
makefile for each chapter will not be placed in the book. However, it’s useful to see an
example of one makefile, which is a very abbreviated version of the one that was
automatically generated for this chapter by the extraction tool:

Automatically-generated MAKEFILE
For examples in directory C03
CPP = g++
OFLAG = -o

Chapter 1: Data Abstraction 151

all: \
 Hello.exe \
 Stream2.exe \
 Concat.exe

Hello.exe: Hello.obj
 $(CPP) $(OFLAG)Hello.exe Hello.obj

Hello.obj: Hello.cpp
 $(CPP) -c Hello.cpp

Stream2.exe: Stream2.obj
 $(CPP) $(OFLAG)Stream2.exe Stream2.obj

Stream2.obj: Stream2.cpp
 $(CPP) -c Stream2.cpp

Concat.exe: Concat.obj
 $(CPP) $(OFLAG)Concat.exe Concat.obj

Concat.obj: Concat.cpp
$(CPP) -c Concat.cpp

The macro CPP is set to the name of the compiler. To use a different compiler, you can either
edit the makefile or change the value of the macro on the command line, like this:

make CPP=cpp

The second macro OFLAG is the flag that’s used to indicate the name of the output file.
Although many compilers automatically assume the output file has the same base name as the
input file, others don’t (such as Linux/Unix compilers, which default to creating a file called
a.out).

You can see that this makefile takes the absolute safest route of using as few make features
as possible – it only uses the basic make concepts of targets and dependencies, as well as
macros. This way it is virtually assured of working with as many make programs as possible.
It tends to produce a much larger makefile, but that’s not so bad since it’s automatically
generated by ExtractCode.cpp.

One of the features not used here is called rules (or implicit rules or inference rules). Here’s
an example:

.cpp.exe:
 $(CPP) $<

Chapter 1: Data Abstraction 152

A rule is the way to teach make how to convert a file with one type of extension (.cpp) into a
file with another type of extension (.obj or .exe). This eliminates a lot of redundancy in a
makefile. Once you teach make the rules for producing one kind of file from another, all you
have to do is tell make which files depend on which other files. When make finds a file with
a date earlier than the file it depends on (which means the source file has been changed and
not yet recompiled), it uses the rule to create a new file.

The implicit rule tells make that it doesn't need explicit rules to build everything, but instead
it can figure out how to build things based on their file extension. In this case it says: "to build
a file that ends in .exe from one which ends in .cpp, invoke the following command." The
command is the compiler name, followed by a special built-in macro. This macro, $<, will
produce the name of the source file (sometimes called the dependent). Although the makefile
contains no explicit dependencies, the implicit conversion implies the proper dependencies.
(Unfortunately, not all make programs use the same rule syntax so they are avoided in the
book’s generated makefiles.)

The make program looks at the first target (item to be made) in the makefile unless you
specify one on the command line, such as:

make textchek.exe

Thus, if you want to make all the files in a subdirectory by typing make, the first target
should be a dummy name that depends on all the other targets in the file. In the above
makefile the dummy target is called all.

When a line is too long in a makefile, you can continue it on the next line by using a
backslash (\). White space is ignored here, so you can format for readability.

Summary

Exercises

153

4: Data abstraction
C++ is a productivity enhancement tool. Why else would
you make the effort (and it is an effort, regardless of how
easy we attempt to make the transition) to

switch from some language that you already know and are productive in (C, in this case) to a
new language where you’re going to be less productive for a while, until you get the hang of
it? It’s because you’ve become convinced that you’re going to get big gains by using this new
tool.

Productivity, in computer programming terms, means that fewer people can make much more
complex and impressive programs in less time. There are certainly other issues when it comes
to choosing a language, like efficiency (does the nature of the language cause code bloat?),
safety (does the language help you ensure that your program will always do what you plan,
and handle errors gracefully?), and maintenance (does the language help you create code that
is easy to understand, modify and extend?). These are certainly important factors that will be
examined in this book.

But raw productivity means a program that might take three of you a week takes one of you a
day or two. This touches several levels of economics. You’re happy because you get the rush
of power that comes from building something, your client (or boss) is happy because products
are produced faster and with fewer people, and the customers are happy because they get
products more cheaply. The only way to get massive increases in productivity is to leverage
off other people’s code, that is, to use libraries.

A library is simply a bunch of code that someone else has written, packaged together
somehow. Often, the most minimal package is a file with an extension like .LIB and one or
more header files to declare what’s in the library to your compiler. The linker knows how to
search through the LIB file and extract the appropriate compiled code. But that’s only one
way to deliver a library. On platforms that span many architectures, like Unix, often the only
sensible way to deliver a library is with source code, so it can be recompiled on the new
target. And on Microsoft Windows, the dynamic-link library (DLL) is a much more sensible
approach — for one thing, you can often update your program by sending out a new DLL,
which your library vendor may have sent you.

So libraries are probably the most important way to improve productivity, and one of the
primary design goals of C++ is to make library use easier. This implies that there’s something
hard about using libraries in C. Understanding this factor will give you a first insight into the
design of C++, and thus insight into how to use it.

Chapter 1: Data Abstraction 154

Declarations vs. definitions
First, it’s important to understand the difference between declarations and definitions because
the terms will be used precisely throughout the book. A declaration introduces a name to the
compiler. It says, «Here’s what this name means.» A definition, on the other hand, allocates
storage for the name. This meaning works whether you’re talking about a variable or a
function; in either case, at the point of definition the compiler allocates storage. For a
variable, it determines how big that variable is and generates space in memory to hold
information. For a function, the compiler generates code, which ends up allocating storage in
memory. The storage for a function has an address that can be produced using the function
name with no argument list, or with the address-of operator.

A definition can also be a declaration. If the compiler hasn’t seen the name A before and you
define int A, the compiler sees the name for the first time and allocates storage for it all at
once.

Declarations are often made using the extern keyword. extern is required if you’re declaring
a variable but not defining it. With a function declaration, extern is optional because a
function name, argument list, or a return value without a function body is automatically a
declaration.

A function prototype contains all the information about argument types and return values. int
f(float, char); is a function prototype because it not only introduces f as the name of the
function, it tells the compiler what the arguments and return value are so they can be handled
properly. C++ provides function prototyping because it adds a significant level of safety.

Here are some examples of declarations:

/*: C04:Declare.c
Declaration/definition examples */
extern int i; /* Declaration without definition */
extern float f(float); /* Function declaration */

float b; /* Declaration & definition */
float f(float a) { /* Definition */
 return a + 1.0;
}

int i; /* Definition */
int h(int x) { /* Declaration & definition */
 return x + 1;
}

int main() {
 b = 1.0;

Chapter 1: Data Abstraction 155

 i = 2;
 f(b);
 h(i);
} /* ///:~ */

In the function declarations, the argument names are optional. In the definitions, they are
required. This is true only in C, not C++.

Throughout this book you’ll notice that the first line of a file will be a comment that starts
with the open-comment syntax followed by a colon. This is a technique I use to allow easy
extraction of information from code files using a text-manipulation tool like «grep» or «awk.»
The first line also has the name of the file, so it can be referred to in text and in other files,
and so you can easily locate it on the source-code disk for the book.

A tiny C library
A small library usually starts out as a collection of functions, but those of you who have used
third-party C libraries know that there’s usually more to it than that because there’s more to
life than behavior, actions and functions. There are also characteristics (blue, pounds, texture,
luminance), which are represented by data. And when you start to deal with a set of
characteristics in C, it is very convenient to clump them together into a struct, especially if
you want to represent more than one similar thing in your problem space. Then you can make
a variable of this struct for each thing.

Thus, most C libraries have a set of structs and a set of functions that act on those structs. As
an example of what such a system looks like, consider a programming tool that acts like an
array, but whose size can be established at run-time, when it is created. I’ll call it a stash:

/*: C04:Lib.h
Header file: example C library */
/* Array-like entity created at run-time */

typedef struct STASHtag {
 int size; /* Size of each space */
 int quantity; /* Number of storage spaces */
 int next; /* Next empty space */
 /* Dynamically allocated array of bytes: */
 unsigned char* storage;
} stash;

void initialize(stash* S, int Size);
void cleanup(stash* S);
int add(stash* S, void* element);
void* fetch(stash* S, int index);

Chapter 1: Data Abstraction 156

int count(stash* S);
void inflate(stash* S, int increase);
/* ///:~ */

The tag name for the struct is generally used in case you need to reference the struct inside
itself. For example, when creating a linked list, you need a pointer to the next struct. But
almost universally in a C library you’ll see the typedef as shown above, on every struct in the
library. This is done so you can treat the struct as if it were a new type and define variables of
that struct like this:

stash A, B, C;

Note that the function declarations use the Standard C style of function prototyping, which is
much safer and clearer than the «old» C style. You aren’t just introducing a function name;
you’re also telling the compiler what the argument list and return value look like.

The storage pointer is an unsigned char*. This is the smallest piece of storage a C compiler
supports, although on some machines it can be the same size as the largest. It’s
implementation dependent. You might think that because the stash is designed to hold any
type of variable, a void* would be more appropriate here. However, the purpose is not to treat
this storage as a block of some unknown type, but rather as a block of contiguous bytes.

The source code for the implementation file (which you may not get if you buy a library
commercially — you might get only a compiled OBJ or LIB or DLL, etc.) looks like this:

/*: C04:Lib.c {O}
Implementation of example C library */
/* Declare structure and functions: */
#include "Lib.h"
/* Error testing macros: */
#include <assert.h>
/* Dynamic memory allocation functions: */
#include <stdlib.h>
#include <string.h> /* memcpy() */
#include <stdio.h>

void initialize(stash* S, int Size) {
 S->size = Size;
 S->quantity = 0;
 S->storage = 0;
 S->next = 0;
}

void cleanup(stash* S) {
 if(S->storage) {
 puts("freeing storage");
 free(S->storage);

Chapter 1: Data Abstraction 157

 }
}

int add(stash* S, void* element) {
 /* enough space left? */
 if(S->next >= S->quantity)
 inflate(S, 100);
 /* Copy element into storage,
 starting at next empty space: */
 memcpy(&(S->storage[S->next * S->size]),
 element, S->size);
 S->next++;
 return(S->next - 1); /* Index number */
}

void* fetch(stash* S, int index) {
 if(index >= S->next || index < 0)
 return 0; /* Not out of bounds? */
 /* Produce pointer to desired element: */
 return &(S->storage[index * S->size]);
}

int count(stash* S) {
 /* Number of elements in stash */
 return S->next;
}

void inflate(stash* S, int increase) {
 void* v =
 realloc(S->storage,
 (S->quantity + increase)
 * S->size);
 /* Was it successful? */
 assert(v != 0);
 S->storage = v;
 S->quantity += increase;
} /* ///:~ */

Notice the style for local #includes: Even though the header file exists in a local directory, its
path is given relative to the root directory of this book. By doing this, you can easily create
another directory off the book’s root and copy code to it for experimentation without
worrying about changing #include paths.

Chapter 1: Data Abstraction 158

initialize() performs the necessary setup for struct stash by setting the internal variables to
appropriate values. Initially, the storage pointer is set to zero, and the size indicator is also
zero — no initial storage is allocated.

The add() function inserts an element into the stash at the next available location. First, it
checks to see if there is any available space left. If not, it expands the storage using the
inflate() function, described later.

Because the compiler doesn’t know the specific type of the variable being stored (all the
function gets is a void*), you can’t just do an assignment, which would certainly be the
convenient thing. Instead, you must use the Standard C library function memcpy() to copy
the variable byte-by-byte. The first argument is the destination address where memcpy() is to
start copying bytes. It is produced by the expression:

&(S->storage[S->next * S->size])

This indexes from the beginning of the block of storage to the next available piece. This
number, which is simply a count of the number of pieces used plus one, must be multiplied by
the number of bytes occupied by each piece to produce the offset in bytes. This doesn’t
produce the address, but instead the byte at the address. To produce the address, you must use
the address-of operator &.

The second and third arguments to memcpy() are the starting address of the variable to be
copied and the number of bytes to copy, respectively. The next counter is incremented, and
the index of the value stored is returned, so the programmer can use it later in a call to fetch()
to select that element.

fetch() checks to see that the index isn’t out of bounds and then returns the address of the
desired variable, calculated the same way as it was in add().

count() may look a bit strange at first to a seasoned C programmer. It seems like a lot of
trouble to go through to do something that would probably be a lot easier to do by hand. If
you have a struct stash called intStash, for example, it would seem much more
straightforward to find out how many elements it has by saying intStash.next instead of
making a function call (which has overhead) like count(&intStash). However, if you wanted
to change the internal representation of stash and thus the way the count was calculated, the
function call interface allows the necessary flexibility. But alas, most programmers won’t
bother to find out about your «better» design for the library. They’ll look at the struct and
grab the next value directly, and possibly even change next without your permission. If only
there were some way for the library designer to have better control over things like this! (Yes,
that’s foreshadowing.)

Dynamic storage allocation
You never know the maximum amount of storage you might need for a stash, so the memory
pointed to by storage is allocated from the heap. The heap is a big block of memory used for
allocating smaller pieces at run-time. You use the heap when you don’t know the size of the
memory you’ll need while you’re writing a program. That is, only at run-time will you find

Chapter 1: Data Abstraction 159

out that you need space to hold 200 airplane variables instead of 20. Dynamic-memory
allocation functions are part of the Standard C library and include malloc(), calloc(),
realloc(), and free().

The inflate() function uses realloc() to get a bigger chunk of space for the stash. realloc()
takes as its first argument the address of the storage that’s already been allocated and that you
want to resize. (If this argument is zero — which is the case just after initialize() has been
called — it allocates a new chunk of memory.) The second argument is the new size that you
want the chunk to be. If the size is smaller, there’s no chance the block will need to be copied,
so the heap manager is simply told that the extra space is free. If the size is larger, as in
inflate(),there may not be enough contiguous space, so a new chunk might be allocated and
the memory copied. The assert() checks to make sure that the operation was successful.
(malloc(), calloc() and realloc() all return zero if the heap is exhausted.)

Note that the C heap manager is fairly primitive. It gives you chunks of memory and takes
them back when you free() them. There’s no facility for heap compaction, which compresses
the heap to provide bigger free chunks. If a program allocates and frees heap storage for a
while, you can end up with a heap that has lots of memory free, just not anything big enough
to allocate the size of chunk you’re looking for at the moment. However, a heap compactor
moves memory chunks around, so your pointers won’t retain their proper values. Some
operating environments have heap compaction built in, but they require you to use special
memory handles (which can be temporarily converted to pointers, after locking the memory
so the heap compactor can’t move it) instead of pointers.

assert() is a preprocessor macro in ASSERT.H. assert() takes a single argument, which can
be any expression that evaluates to true or false. The macro says, «I assert this to be true, and
if it’s not, the program will exit after printing an error message.» When you are no longer
debugging, you can define a flag so asserts are ignored. In the meantime, it is a very clear and
portable way to test for errors. Unfortunately, it’s a bit abrupt in its handling of error
situations: «Sorry, mission control. Our C program failed an assertion and bailed out. We’ll
have to land the shuttle on manual.» In Chapter 16, you’ll see how C++ provides a better
solution to critical errors with exception handling.

When you create a variable on the stack at compile-time, the storage for that variable is
automatically created and freed by the compiler. It knows exactly how much storage it needs,
and it knows the lifetime of the variables because of scoping. With dynamic memory
allocation, however, the compiler doesn’t know how much storage you’re going to need, and
it doesn’t know the lifetime of that storage. It doesn’t get cleaned up automatically. Therefore,
you’re responsible for releasing the storage using free(), which tells the heap manager that
storage can be used by the next call to malloc(), calloc() or realloc(). The logical place for
this to happen in the library is in the cleanup() function because that is where all the closing-
up housekeeping is done.

To test the library, two stashes are created. The first holds ints and the second holds arrays of
80 chars. (You could almost think of this as a new data type. But that happens later.)

/*: C04:Libtestc.c
//{L} Lib

Chapter 1: Data Abstraction 160

Test demonstration library */
#include <stdio.h>
#include <assert.h>
#include "Lib.h"
#define BUFSIZE 80

int main() {
 stash intStash, stringStash;
 int i;
 FILE* file;
 char buf[BUFSIZE];
 char* cp;
 /* */
 initialize(&intStash, sizeof(int));
 for(i = 0; i < 100; i++)
 add(&intStash, &i);
 /* Holds 80-character strings: */
 initialize(&stringStash,
 sizeof(char) * BUFSIZE);
 file = fopen("Libtestc.c", "r");
 assert(file);
 while(fgets(buf, BUFSIZE, file))
 add(&stringStash, buf);
 fclose(file);

 for(i = 0; i < count(&intStash); i++)
 printf("fetch(&intStash, %d) = %d\n", i,
 (int)fetch(&intStash, i));

 i = 0;
 while((cp = fetch(&stringStash, i++)) != 0)
 printf("fetch(&stringStash, %d) = %s",
 i - 1, cp);
 putchar('\n');
 cleanup(&intStash);
 cleanup(&stringStash);
} /* ///:~ */

At the beginning of main(), the variables are defined, including the two stash structures. Of
course, you must remember to initialize these later in the block. One of the problems with
libraries is that you must carefully convey to the user the importance of the initialization and
cleanup functions. If these functions aren’t called, there will be a lot of trouble. Unfortunately,
the user doesn’t always wonder if initialization and cleanup are mandatory. They know what
they want to accomplish, and they’re not as concerned about you jumping up and down

Chapter 1: Data Abstraction 161

saying, «Hey, wait, you have to do this first!» Some users have even been known to initialize
the elements of the structure themselves. There’s certainly no mechanism to prevent it (more
foreshadowing).

The intStash is filled up with integers, and the stringStash is filled with strings. These
strings are produced by opening the source code file, Libtest.c, and reading the lines from it
into the stringStash. Notice something interesting here: The Standard C library functions for
opening and reading files use the same techniques as in the stash library! fopen() returns a
pointer to a FILE struct, which it creates on the heap, and this pointer is passed to any
function that refers to that file (fgets(), in this case). One of the things fclose() does is release
the FILE struct back to the heap. Once you start noticing this pattern of a C library
consisting of structs and associated functions, you see it everywhere!

After the two stashes are loaded, you can print them out. The intStash is printed using a for
loop, which uses count() to establish its limit. The stringStash is printed with a while, which
breaks out when fetch() returns zero to indicate it is out of bounds.

There are a number of other things you should understand before we look at the problems in
creating a C library. (You may already know these because you’re a C programmer.) First,
although header files are used here because it’s good practice, they aren’t essential. It’s
possible in C to call a function that you haven’t declared. A good compiler will warn you that
you probably ought to declare a function first, but it isn’t enforced. This is a dangerous
practice, because the compiler can assume that a function that you call with an int argument
has an argument list containing int, and it will treat it accordingly — a very difficult bug to
find.

Note that the Lib.h header file must be included in any file that refers to stash because the
compiler can’t even guess at what that structure looks like. It can guess at functions, even
though it probably shouldn’t, but that’s part of the history of C.

Each separate C file is a translation unit. That is, the compiler is run separately on each
translation unit, and when it is running it is aware of only that unit. Thus, any information you
provide by including header files is quite important because it provides the compiler’s
understanding of the rest of your program. Declarations in header files are particularly
important, because everywhere the header is included, the compiler will know exactly what to
do. If, for example, you have a declaration in a header file that says void foo(float);, the
compiler knows that if you call it with an integer argument, it should promote the int to a
float. Without the declaration, the compiler would simply assume that a function foo(int)
existed, and it wouldn’t do the promotion.

For each translation unit, the compiler creates an object file, with an extension of .o or .obj or
something similar. These object files, along with the necessary start-up code, must be
collected by the linker into the executable program. During linking, all the external references
must be resolved. For example, in Libtest.c, functions like initialize() and fetch() are
declared (that is, the compiler is told what they look like) and used, but not defined. They are
defined elsewhere, in Lib.c. Thus, the calls in Libtest.c are external references. The linker
must, when it puts all the object files together, take the unresolved external references and

Chapter 1: Data Abstraction 162

find the addresses they actually refer to. Those addresses are put in to replace the external
references.

It’s important to realize that in C, the references are simply function names, generally with an
underscore in front of them. So all the linker has to do is match up the function name where it
is called and the function body in the object file, and it’s done. If you accidentally made a call
that the compiler interpreted as foo(int) and there’s a function body for foo(float) in some
other object file, the linker will see _foo in one place and _foo in another, and it will think
everything’s OK. The foo() at the calling location will push an int onto the stack, and the
foo() function body will expect a float to be on the stack. If the function only reads the value
and doesn’t write to it, it won’t blow up the stack. In fact, the float value it reads off the stack
might even make some kind of sense. That’s worse because it’s harder to find the bug.

What's wrong?
We are remarkably adaptable, even with things where perhaps we shouldn’t adapt. The style
of the stash library has been a staple for C programmers, but if you look at it for a while, you
might notice that it’s rather . . . awkward. When you use it, you have to pass the address of the
structure to every single function in the library. When reading the code, the mechanism of the
library gets mixed with the meaning of the function calls, which is confusing when you’re
trying to understand what’s going on.

One of the biggest obstacles, however, to using libraries in C is the problem of name clashes.
C has a single name space for functions; that is, when the linker looks for a function name, it
looks in a single master list. In addition, when the compiler is working on a translation unit, it
can only work with a single function with a given name.

Now suppose you decide to buy two libraries from two different vendors, and each library has
a structure that must be initialized and cleaned up. Both vendors decided that initialize() and
cleanup() are good names. If you include both their header files in a single translation unit,
what does the C compiler do? Fortunately, Standard C gives you an error, telling you there’s a
type mismatch in the two different argument lists of the declared functions. But even if you
don’t include them in the same translation unit, the linker will still have problems. A good
linker will detect that there’s a name clash, but some linkers take the first function name they
find, by searching through the list of object files in the order you give them in the link list.
(Indeed, this can be thought of as a feature because it allows you to replace a library function
with your own version.)

In either event, you can’t use two C libraries that contain a function with the identical name.
To solve this problem, C library vendors will often prepend a string of unique characters to
the beginning of all their function names. So initialize() and cleanup() might become
stash_initialize() and stash_cleanup(). This is a logical thing to do because it «mangles»
the name of the struct the function works on with the name of the function.

Now it’s time to take the very first step into C++. Variable names inside a struct do not clash
with global variable names. So why not take advantage of this for function names, when those

Chapter 1: Data Abstraction 163

functions operate on a particular struct? That is, why not make functions members of
structs?

The basic object
Step one in C++ is exactly that. Functions can now be placed inside structs as «member
functions.» Here’s what it looks like after converting the C version of stash to the C++ Stash
(note the C++ version starts with a capital letter):

//: C04:Libcpp.h
// C library converted to C++

struct Stash {
 int size; // Size of each space
 int quantity; // Number of storage spaces
 int next; // Next empty space
 // Dynamically allocated array of bytes:
 unsigned char* storage;
 // Functions!
 void initialize(int Size);
 void cleanup();
 int add(void* element);
 void* fetch(int index);
 int count();
 void inflate(int increase);
}; ///:~

The first thing you’ll notice is the new comment syntax, //. This is in addition to C-style
comments, which still work fine. The C++ comments only go to the end of the line, which is
often very convenient. In addition, in this book we put a colon after the // on the first line of
the file, followed by the name of the file and a brief description. This allows an exact
inclusion of the file from the source code. In addition, you can easily identify the file in the
electronic source code from its name in the book listing.

Next, notice there is no typedef. Instead of requiring you to create a typedef, the C++
compiler turns the name of the structure into a new type name for the program (just like int,
char, float and double are type names). The use of Stash is still the same.

All the data members are exactly the same as before, but now the functions are inside the
body of the struct. In addition, notice that the first argument from the C version of the library
has been removed. In C++, instead of forcing you to pass the address of the structure as the
first argument to all the functions that operate on that structure, the compiler secretly does this
for you. Now the only arguments for the functions are concerned with what the function does,
not the mechanism of the function’s operation.

Chapter 1: Data Abstraction 164

It’s important to realize that the function code is effectively the same as it was with the C
library. The number of arguments are the same (even though you don’t see the structure
address being passed in, it’s still there); and there’s only one function body for each function.
That is, just because you say

Stash A, B, C;

doesn’t mean you get a different add() function for each variable.

So the code that’s generated is almost the same as you would have written for the C library.
Interestingly enough, this includes the «name mangling» you probably would have done to
produce Stash_initialize(), Stash_cleanup(), and so on. When the function name is inside
the struct, the compiler effectively does the same thing. Therefore, initialize() inside the
structure Stash will not collide with initialize() inside any other structure. Most of the time
you don’t have to worry about the function name mangling — you use the unmangled name.
But sometimes you do need to be able to specify that this initialize() belongs to the struct
Stash, and not to any other struct. In particular, when you’re defining the function you need
to fully specify which one it is. To accomplish this full specification, C++ has a new operator,
:: the scope resolution operator (named so because names can now be in different scopes: at
global scope, or within the scope of a struct). For example, if you want to specify
initialize(), which belongs to Stash, you say Stash::initialize(int Size, int Quantity);. You
can see how the scope resolution operator is used in the function definitions for the C++
version of Stash:

//: C04:Libcpp.cpp {O}
// C library converted to C++
// Declare structure and functions:
#include <cstdlib> // Dynamic memory
#include <cstring> // memcpy()
#include <cstdio>
#include "../require.h" // Error testing code
#include "Libcpp.h"
using namespace std;

void Stash::initialize(int Size) {
 size = Size;
 quantity = 0;
 storage = 0;
 next = 0;
}

void Stash::cleanup() {
 if(storage) {
 puts("freeing storage");
 free(storage);
 }

Chapter 1: Data Abstraction 165

}

int Stash::add(void* element) {
 if(next >= quantity) // Enough space left?
 inflate(100);
 // Copy element into storage,
 // starting at next empty space:
 memcpy(&(storage[next * size]),
 element, size);
 next++;
 return(next - 1); // Index number
}

void* Stash::fetch(int index) {
 if(index >= next || index < 0)
 return 0; // Not out of bounds?
 // Produce pointer to desired element:
 return &(storage[index * size]);
}

int Stash::count() {
 return next; // Number of elements in Stash
}

void Stash::inflate(int increase) {
 void* v =
 realloc(storage, (quantity+increase)*size);
 require(v != 0); // Was it successful?
 storage = (unsigned char*)v;
 quantity += increase;
} ///:~

There are several other things that are different about this file. First, the declarations in the
header files are required by the compiler. In C++ you cannot call a function without declaring
it first. The compiler will issue an error message otherwise. This is an important way to
ensure that function calls are consistent between the point where they are called and the point
where they are defined. By forcing you to declare the function before you call it, the C++
compiler virtually ensures you will perform this declaration by including the header file. If
you also include the same header file in the place where the functions are defined, then the
compiler checks to make sure the declaration in the header and the definition match up. This
means that the header file becomes a validated repository for function declarations and
ensures that functions are used consistently throughout all translation units in the project.

Chapter 1: Data Abstraction 166

Of course, global functions can still be declared by hand every place where they are defined
and used. (This is so tedious that it becomes very unlikely.) However, structures must always
be declared before they are defined or used, and the most convenient place to put a structure
definition is in a header file, except for those you intentionally hide in a file).

You can see that all the member functions are virtually the same, except for the scope
resolution and the fact that the first argument from the C version of the library is no longer
explicit. It’s still there, of course, because the function has to be able to work on a particular
struct variable. But notice that inside the member function the member selection is also gone!
Thus, instead of saying S–>size = Size; you say size = Size; and eliminate the tedious S–>,
which didn’t really add anything to the meaning of what you were doing anyway. Of course,
the C++ compiler must still be doing this for you. Indeed, it is taking the «secret» first
argument and applying the member selector whenever you refer to one of the data members of
a class. This means that whenever you are inside the member function of another class, you
can refer to any member (including another member function) by simply giving its name. The
compiler will search through the local structure’s names before looking for a global version of
that name. You’ll find that this feature means that not only is your code easier to write, it’s a
lot easier to read.

But what if, for some reason, you want to be able to get your hands on the address of the
structure? In the C version of the library it was easy because each function’s first argument
was a stash* called S. In C++, things are even more consistent. There’s a special keyword,
called this, which produces the address of the struct. It’s the equivalent of S in the C version
of the library. So we can revert to the C style of things by saying

this->size = Size;

The code generated by the compiler is exactly the same. Usually, you don’t use this very
often, but when you need it, it’s there.

There’s one last change in the definitions. In inflate() in the C library, you could assign a
void* to any other pointer like this:

S->storage = v;

and there was no complaint from the compiler. But in C++, this statement is not allowed.
Why? Because in C, you can assign a void* (which is what malloc(), calloc(), and realloc()
return) to any other pointer without a cast. C is not so particular about type information, so it
allows this kind of thing. Not so with C++. Type is critical in C++, and the compiler stamps
its foot when there are any violations of type information. This has always been important, but
it is especially important in C++ because you have member functions in structs. If you could
pass pointers to structs around with impunity in C++, then you could end up calling a
member function for a struct that doesn’t even logically exist for that struct! A real recipe for
disaster. Therefore, while C++ allows the assignment of any type of pointer to a void* (this
was the original intent of void*, which is required to be large enough to hold a pointer to any
type), it will not allow you to assign a void pointer to any other type of pointer. A cast is
always required, to tell the reader and the compiler that you know the type that it is going to.
Thus you will see the return values of calloc() and realloc() are explicitly cast to (unsigned
char*).

Chapter 1: Data Abstraction 167

This brings up an interesting issue. One of the important goals for C++ is to compile as much
existing C code as possible to allow for an easy transition to the new language. Notice in the
above example how Standard C library functions are used. In addition, all C operators and
expressions are available in C++. However, this doesn’t mean any code that C allows will
automatically be allowed in C++. There are a number of things the C compiler lets you get
away with that are dangerous and error-prone. (We’ll look at them as the book progresses.)
The C++ compiler generates warnings and errors for these situations. This is often much more
of an advantage than a hindrance. In fact, there are many situations where you are trying to
run down an error in C and just can’t find it, but as soon as you recompile the program in
C++, the compiler points out the problem! In C, you’ll often find that you can get the program
to compile, but then you have to get it to work. In C++, often when the program compiles
correctly, it works, too! This is because the language is a lot stricter about type.

You can see a number of new things in the way the C++ version of Stash is used, in the
following test program:

//: C04:Libtest.cpp
//{L} Libcpp
// Test of C++ library
#include <cstdio>
#include "../require.h"
#include "Libcpp.h"
using namespace std;
#define BUFSIZE 80

int main() {
 Stash intStash, stringStash;
 int i;
 FILE* file;
 char buf[BUFSIZE];
 char* cp;
 //
 intStash.initialize(sizeof(int));
 for(i = 0; i < 100; i++)
 intStash.add(&i);
 // Holds 80-character strings:
 stringStash.initialize(sizeof(char)*BUFSIZE);
 file = fopen("Libtest.cpp", "r");
 require(file != 0);
 while(fgets(buf, BUFSIZE, file))
 stringStash.add(buf);
 fclose(file);

 for(i = 0; i < intStash.count(); i++)
 printf("intStash.fetch(%d) = %d\n", i,

Chapter 1: Data Abstraction 168

 (int)intStash.fetch(i));

 i = 0;
 while(
 (cp = (char*)stringStash.fetch(i++))!=0)
 printf("stringStash.fetch(%d) = %s",
 i - 1, cp);
 putchar('\n');
 intStash.cleanup();
 stringStash.cleanup();
} ///:~

The code is quite similar, but when a member function is called, the call occurs using the
member selection operator ‘.’ preceded by the name of the variable. This is a convenient
syntax because it mimics the selection of a data member of the structure. The difference is
that this is a function member, so it has an argument list.

Of course, the call that the compiler actually generates looks much more like the original C
library function. Thus, considering name mangling and the passing of this, the C++ function
call intStash.initialize(sizeof(int), 100) becomes something like Stash_initialize(&intStash,
sizeof(int), 100). If you ever wonder what’s going on underneath the covers, remember that
the original C++ compiler cfront from AT&T produced C code as its output, which was then
compiled by the underlying C compiler. This approach meant that cfront could be quickly
ported to any machine that had a C compiler, and it helped to rapidly disseminate C++
compiler technology.

You’ll also notice an additional cast in

while(cp = (char*)stringStash.fetch(i++))

This is due again to the stricter type checking in C++.

What's an object?
Now that you’ve seen an initial example, it’s time to step back and take a look at some
terminology. The act of bringing functions inside structures is the root of the changes in C++,
and it introduces a new way of thinking about structures as concepts. In C, a structure is an
agglomeration of data, a way to package data so you can treat it in a clump. But it’s hard to
think about it as anything but a programming convenience. The functions that operate on
those structures are elsewhere. However, with functions in the package, the structure becomes
a new creature, capable of describing both characteristics (like a C struct could) and
behaviors. The concept of an object, a free-standing, bounded entity that can remember and
act, suggests itself.

The terms «object» and «object-oriented programming» (OOP) are not new. The first OOP
language was Simula-67, created in Scandinavia in 1967 to aid in solving modeling problems.

Chapter 1: Data Abstraction 169

These problems always seemed to involve a bunch of identical entities (like people, bacteria,
and cars) running around interacting with each other. Simula allowed you to create a general
description for an entity that described its characteristics and behaviors and then make a
whole bunch of them. In Simula, the «general description» is called a class (a term you’ll see
in a later chapter), and the mass-produced item that you stamp out from a class is called an
object. In C++, an object is just a variable, and the purest definition is «a region of storage.»
It’s a place where you can store data, and it’s implied that there are also operations that can be
performed on this data.

Unfortunately there’s not complete consistency across languages when it comes to these
terms, although they are fairly well-accepted. You will also sometimes encounter
disagreement about what an object-oriented language is, although that seems to be fairly well
sorted out by now. There are languages that are object-based, which means they have objects
like the C++ structures-with-functions that you’ve seen so far. This, however, is only part of
the picture when it comes to an object-oriented language, and languages that stop at
packaging functions inside data structures are object-based, not object-oriented.

Abstract data typing
The ability to package data with functions allows you to create a new data type. This is often
called encapsulation28. An existing data type, like a float, has several pieces of data packaged
together: an exponent, a mantissa, and a sign bit. You can tell it to do things: add to another
float or to an int, and so on. It has characteristics and behavior.

The Stash is also a new data type. You can add() and fetch() and inflate(). You create one
by saying Stash S, as you create a float by saying float f. A Stash also has characteristics and
behavior. Even though it acts like a real, built-in data type, we refer to it as an abstract data
type, perhaps because it allows us to abstract a concept from the problem space into the
solution space. In addition, the C++ compiler treats it like a new data type, and if you say a
function expects a Stash, the compiler makes sure you pass a Stash to that function. The
same level of type checking happens with abstract data types (sometimes called user-defined
types) as with built-in types.

You can immediately see a difference, however, in the way you perform operations on
objects. You say object.member_function(arglist). This is «calling a member function for
an object.» But in object-oriented parlance, this is also referred to as «sending a message to an
object.» So for a Stash S, the statement S.add(&i) «sends a message to S» saying «add() this
to yourself.» In fact, object-oriented programming can be summed up in a single sentence as
«sending messages to objects.» Really, that’s all you do — create a bunch of objects and send

28 You should be aware that this term seems to be the subject of ongoing debate. Some people
use it as defined here; others use it to describe implementation hiding, discussed in Chapter 2.

Chapter 1: Data Abstraction 170

messages to them. The trick, of course, is figuring out what your objects and messages are,
but once you accomplish that the implementation in C++ is surprisingly straightforward.

Object details
At this point you’re probably wondering the same thing that most C programmers do because
C is a language that is very low-level and efficiency-oriented. A question that comes up a lot
in seminars is «How big is an object, and what does it look like?» The answer is «Pretty much
the same as you expect from a C struct.» In fact, a C struct.(with no C++ adornments) will
usually look exactly the same in the code that the C and C++ compilers produce, which is
reassuring to those C programmers who depend on the details of size and layout in their code,
and for some reason directly access structure bytes instead of using identifiers, although
depending on a particular size and layout of a structure is a nonportable activity.

The size of a struct is the combined size of all its members. Sometimes when a struct is laid
out by the compiler, extra bytes are added to make the boundaries come out neatly — this
may increase execution efficiency. In Chapters 13 and 15, you’ll see how in some cases
«secret» pointers are added to the structure, but you don’t need to worry about that right now.

You can determine the size of a struct using the sizeof operator. Here’s a small example:

//: C04:Sizeof.cpp
// Sizes of structs
#include <cstdio>
#include "Lib.h"
#include "Libcpp.h"
using namespace std;

struct A {
 int I[100];
};

struct B {
 void f();
};

void B::f() {}

int main() {
 printf("sizeof struct A = %d bytes\n",
 sizeof(A));
 printf("sizeof struct B = %d bytes\n",
 sizeof(B));
 printf("sizeof stash in C = %d bytes\n",

Chapter 1: Data Abstraction 171

 sizeof(stash));
 printf("sizeof Stash in C++ = %d bytes\n",
 sizeof(Stash));
} ///:~

The first print statement produces 200 because each int occupies two bytes. struct B is
something of an anomaly because it is a struct with no data members. In C, this is illegal, but
in C++ we need the option of creating a struct whose sole task is to scope function names, so
it is allowed. Still, the result produced by the second printf() statement is a somewhat
surprising nonzero value. In early versions of the language, the size was zero, but an awkward
situation arises when you create such objects: They have the same address as the object
created directly after them, and so are not distinct. Thus, structures with no data members will
always have some minimum nonzero size.

The last two sizeof statements show you that the size of the structure in C++ is the same as
the size of the equivalent version in C. C++ endeavors not to add any overhead.

Header file etiquette
When I first learned to program in C, the header file was a mystery to me. Many C books
don’t seem to emphasize it, and the compiler didn’t enforce function declarations, so it
seemed optional most of the time, except when structures were declared. In C++ the use of
header files becomes crystal clear. They are practically mandatory for easy program
development, and you put very specific information in them: declarations. The header file
tells the compiler what is available in your library. Because you can use the library without
the source code for the CPP file (you only need the object file or library file), the header file is
where the interface specification is stored.

The header is a contract between you and the user of your library. It says, «Here’s what my
library does.» It doesn’t say how because that’s stored in the CPP file, and you won’t
necessarily deliver the sources for «how» to the user.

The contract describes your data structures, and states the arguments and return values for the
function calls. The user needs all this information to develop the application and the compiler
needs it to generate proper code.

The compiler enforces the contract by requiring you to declare all structures and functions
before they are used and, in the case of member functions, before they are defined. Thus,
you’re forced to put the declarations in the header and to include the header in the file where
the member functions are defined and the file(s) where they are used. Because a single header
file describing your library is included throughout the system, the compiler can ensure
consistency and prevent errors.

There are certain issues that you must be aware of in order to organize your code properly and
write effective header files. The first issue concerns what you can put into header files. The
basic rule is «only declarations,» that is, only information to the compiler but nothing that

Chapter 1: Data Abstraction 172

allocates storage by generating code or creating variables. This is because the header file will
probably be included in several translation units in a project, and if storage is allocated in
more than one place, the linker will come up with a multiple definition error.

This rule isn’t completely hard and fast. If you define a piece of data that is «file static» (has
visibility only within a file) inside a header file, there will be multiple instances of that data
across the project, but the linker won’t have a collision. Basically, you don’t want to do
anything in the header file that will cause an ambiguity at link time.

The second critical issue concerning header files is redeclaration. Both C and C++ allow you
to redeclare a function, as long as the two declarations match, but neither will allow the
redeclaration of a structure. In C++ this rule is especially important because if the compiler
allowed you to redeclare a structure and the two declarations differed, which one would it
use?

The problem of redeclaration comes up quite a bit in C++ because each data type (structure
with functions) generally has its own header file, and you have to include one header in
another if you want to create another data type that uses the first one. In the whole project, it’s
very likely that you’ll include several files that include the same header file. During a single
compilation, the compiler can see the same header file several times. Unless you do
something about it, the compiler will see the redeclaration of your structure.

The typical preventive measure is to «insulate» the header file by using the preprocessor. If
you have a header file named FOO.H, it’s common to do your own «name mangling» to
produce a preprocessor name that is used to prevent multiple inclusion of the header file. The
inside of FOO.H might look like this:

#ifndef FOO_H_
#define FOO_H_
// Rest of header here...
#endif // FOO_H_

Notice a leading underscore was not used because Standard C reserves identifiers with leading
underscores.

Using headers in projects
When building a project in C++, you’ll usually create it by bringing together a lot of different
types (data structures with associated functions). You’ll usually put the declaration for each
type or group of associated types in a separate header file, then define the functions for that
type in a translation unit. When you use that type, you must include the header file to perform
the declarations properly.

Sometimes that pattern will be followed in this book, but more often the examples will be
very small, so everything — the structure declarations, function definitions, and the main()
function — may appear in a single file. However, keep in mind that you’ll want to use
separate files and header files in practice.

Chapter 1: Data Abstraction 173

Nested structures
The convenience of taking data and function names out of the global name space extends to
structures. You can nest a structure within another structure, and therefore keep associated
elements together. The declaration syntax is what you would expect, as you can see in the
following structure, which implements a push-down stack as a very simple linked list so it
«never» runs out of memory:

//: C04:Nested.h
// Nested struct in linked list
#ifndef NESTED_H_
#define NESTED_H_

struct Stack {
 struct link {
 void* data;
 link* next;
 void initialize(void* Data, link* Next);
 } * head;
 void initialize();
 void push(void* Data);
 void* peek();
 void* pop();
 void cleanup();
};
#endif // NESTED_H_ ///:~

The nested struct is called link, and it contains a pointer to the next link in the list and a
pointer to the data stored in the link. If the next pointer is zero, it means you’re at the end of
the list.

Notice that the head pointer is defined right after the declaration for struct link, instead of a
separate definition link* head. This is a syntax that came from C, but it emphasizes the
importance of the semicolon after the structure declaration — the semicolon indicates the end
of the list of definitions of that structure type. (Usually the list is empty.)

The nested structure has its own initialize() function, like all the structures presented so far,
to ensure proper initialization. Stack has both an initialize() and cleanup() function, as well
as push(), which takes a pointer to the data you wish to store (assumed to have been allocated
on the heap), and pop(), which returns the data pointer from the top of the Stack and
removes the top element. (Notice that you are responsible for destroying the destination of the
data pointer.) The peek() function also returns the data pointer from the top element, but it
leaves the top element on the Stack.

Chapter 1: Data Abstraction 174

cleanup goes through the Stack and removes each element and frees the data pointer (so it
must be on the heap).

Here are the definitions for the member functions:

//: C04:Nested.cpp {O}
// Linked list with nesting
#include <cstdlib>
#include "../require.h"
#include "Nested.h"
using namespace std;

void Stack::link::initialize(
 void* Data, link* Next) {
 data = Data;
 next = Next;
}

void Stack::initialize() { head = 0; }

void Stack::push(void* Data) {
 link* newlink = (link*)malloc(sizeof(link));
 require(newlink != 0);
 newlink->initialize(Data, head);
 head = newlink;
}

void* Stack::peek() { return head->data; }

void* Stack::pop() {
 if(head == 0) return 0;
 void* result = head->data;
 link* oldHead = head;
 head = head->next;
 free(oldHead);
 return result;
}

void Stack::cleanup() {
 link* cursor = head;
 while(head) {
 cursor = cursor->next;
 free(head->data); // Assumes a malloc!
 free(head);

Chapter 1: Data Abstraction 175

 head = cursor;
 }
} ///:~

The first definition is particularly interesting because it shows you how to define a member of
a nested structure. You simply use the scope resolution operator a second time, to specify the
name of the enclosing struct. The Stack::link::initialize() function takes the arguments and
assigns them to its members. Although you can certainly do these things by hand quite easily,
you’ll see a different form of this function in the future, so it will make much more sense.

The Stack::initialize() function sets head to zero, so the object knows it has an empty list.

Stack::push() takes the argument, a pointer to the piece of data you want to keep track of
using the Stack, and pushes it on the Stack. First, it uses malloc() to allocate storage for the
link it will insert at the top. Then it calls the initialize() function to assign the appropriate
values to the members of the link. Notice that the next pointer is assigned to the current head;
then head is assigned to the new link pointer. This effectively pushes the link in at the top of
the list.

Stack::pop() stores the data pointer at the current top of the Stack; then it moves the head
pointer down and deletes the old top of the Stack. Stack::cleanup() creates a cursor to move
through the Stack and free() both the data in each link and the link itself.

Here’s an example to test the Stack:

//: C04:NestTest.cpp
//{L} Nested
//{T} NestTest.cpp
// Test of nested linked list
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "../require.h"
#include "Nested.h"
using namespace std;

int main(int argc, char* argv[]) {
 Stack textlines;
 FILE* file;
 char* s;
 #define BUFSIZE 100
 char buf[BUFSIZE];
 requireArgs(argc, 2); // File name is argument
 textlines.initialize();
 file = fopen(argv[1], "r");
 require(file != 0);
 // Read file and store lines in the Stack:

Chapter 1: Data Abstraction 176

 while(fgets(buf, BUFSIZE, file)) {
 char* string =(char*)malloc(strlen(buf)+1);
 require(string != 0);
 strcpy(string, buf);
 textlines.push(string);
 }
 // Pop the lines from the Stack and print them:
 while((s = (char*)textlines.pop()) != 0) {
 printf("%s", s); free(s); }
 textlines.cleanup();
} ///:~

This is very similar to the earlier example, but it pushes the lines on the Stack and then pops
them off, which results in the file being printed out in reverse order. In addition, the file name
is taken from the command line.

Global scope resolution
The scope resolution operator gets you out of situations where the name the compiler chooses
by default (the «nearest» name) isn’t what you want. For example, suppose you have a
structure with a local identifier A, and you want to select a global identifier A inside a
member function. The compiler would default to choosing the local one, so you must tell it to
do otherwise. When you want to specify a global name using scope resolution, you use the
operator with nothing in front of it. Here’s an example that shows global scope resolution for
both a variable and a function:

//: C04:Scoperes.cpp {O}
// Global scope resolution
int A;
void f() {}

struct S {
 int A;
 void f();
};

void S::f() {
 ::f(); // Would be recursive otherwise!
 ::A++; // Select the global A
 A--; // The A at struct scope
}
///:~

Without scope resolution in S::f(), the compiler would default to selecting the member
versions of f() and A.

Chapter 1: Data Abstraction 177

Summary
In this chapter, you’ve learned the fundamental «twist» of C++: that you can place functions
inside of structures. This new type of structure is called an abstract data type, and variables
you create using this structure are called objects, or instances, of that type. Calling a member
function for an object is called sending a message to that object. The primary action in object-
oriented programming is sending messages to objects.

Although packaging data and functions together is a significant benefit for code organization
and makes library use easier because it prevents name clashes by hiding the names, there’s a
lot more you can do to make programming safer in C++. In the next chapter, you’ll learn how
to protect some members of a struct so that only you can manipulate them. This establishes a
clear boundary between what the user of the structure can change and what only the
programmer may change.

Exercises
 4. Create a struct declaration with a single member function; then create a

definition for that member function. Create an object of your new data type,
and call the member function.

 5. Write and compile a piece of code that performs data member selection and
a function call using the this keyword (which refers to the address of the
current object).

 6. Show an example of a structure declared within another structure (a nested
structure). Also show how members of that structure are defined.

 7. How big is a structure? Write a piece of code that prints the size of various
structures. Create structures that have data members only and ones that have
data members and function members. Then create a structure that has no
members at all. Print out the sizes of all these. Explain the reason for the
result of the structure with no data members at all.

 8. C++ automatically creates the equivalent of a typedef for enumerations and
unions as well as structs, as you’ve seen in this chapter. Write a small
program that demonstrates this.

179

5: Hiding the
implementation

A typical C library contains a struct and some associated
functions to act on that struct. So far, you've seen how C++
takes functions that are conceptually associated and makes
them literally associated, by

putting the function declarations inside the scope of the struct, changing the way functions
are called for the struct, eliminating the passing of the structure address as the first argument,
and adding a new type name to the program (so you don’t have to create a typedef for the
struct tag).

These are all convenient — they help you organize your code and make it easier to write and
read. However, there are other important issues when making libraries easier in C++,
especially the issues of safety and control. This chapter looks at the subject of boundaries in
structures.

Setting limits
In any relationship it’s important to have boundaries that are respected by all parties involved.
When you create a library, you establish a relationship with the user (also called the client
programmer) of that library, who is another programmer, but one putting together an
application or using your library to build a bigger library.

In a C struct, as with most things in C, there are no rules. Users can do anything they want
with that struct, and there’s no way to force any particular behaviors. For example, even
though you saw in the last chapter the importance of the functions named initialize() and
cleanup(), the user could choose whether to call those functions or not. (We’ll look at a
better approach in the next chapter.) And even though you would really prefer that the user
not directly manipulate some of the members of your struct, in C there’s no way to prevent it.
Everything’s naked to the world.

There are two reasons for controlling access to members. The first is to keep users’ hands off
tools they shouldn’t touch, tools that are necessary for the internal machinations of the data

Chapter 2: Hiding the Implementation
180

type, but not part of the interface that users need to solve their particular problems. This is
actually a service to users because they can easily see what’s important to them and what they
can ignore.

The second reason for access control is to allow the library designer to change the internal
workings of the structure without worrying about how it will affect the client programmer. In
the Stack example in the last chapter, you might want to allocate the storage in big chunks,
for speed, rather than calling malloc() each time an element is added. If the interface and
implementation are clearly separated and protected, you can accomplish this and require only
a relink by the user.

C++ access control
C++ introduces three new keywords to set the boundaries in a structure: public, private, and
protected. Their use and meaning are remarkably straightforward. These access specifiers are
used only in a structure declaration, and they change the boundary for all the declarations that
follow them. Whenever you use an access specifier, it must be followed by a colon.

public means all member declarations that follow are available to everyone. public members
are like struct members. For example, the following struct declarations are identical:

//: C05:Public.cpp {O}
// Public is just like C struct

struct A {
 int i;
 char j;
 float f;
 void foo();
};

void A::foo() {}

struct B {
public:
 int i;
 char j;
 float f;
 void foo();
};

void B::foo() {} ///:~

Chapter 2: Hiding the Implementation
181

The private keyword, on the other hand, means no one can access that member except you,
the creator of the type, inside function members of that type. private is a brick wall between
you and the user; if someone tries to access a private member, they’ll get a compile-time
error. In struct B in the above example, you may want to make portions of the representation
(that is, the data members) hidden, accessible only to you:

//: C05:Private.cpp
// Setting the boundary

struct B {
private:
 char j;
 float f;
public:
 int i;
 void foo();
};

void B::foo() {
 i = 0;
 j = '0';
 f = 0.0;
};

int main() {
 B b;
 b.i = 1; // OK, public
//! b.j = '1'; // Illegal, private
//! b.f = 1.0; // Illegal, private
} ///:~

Although foo() can access any member of B, an ordinary global function like main() cannot.
Of course, neither can member functions of other structures. Only the functions that are
clearly stated in the structure declaration (the «contract») can have access to private
members.

There is no required order for access specifiers, and they may appear more than once. They
affect all the members declared after them and before the next access specifier.

protected
The last access specifier is protected. protected acts just like private, with one exception
that we can’t really talk about right now: Inherited structures have access to protected
members, but not private members. But inheritance won’t be introduced until Chapter 12, so

Chapter 2: Hiding the Implementation
182

this doesn’t have any meaning to you. For the current purposes, consider protected to be just
like private; it will be clarified when inheritance is introduced.

Friends
What if you want to explicitly grant access to a function that isn’t a member of the current
structure? This is accomplished by declaring that function a friend inside the structure
declaration. It’s important that the friend declaration occurs inside the structure declaration
because you (and the compiler) must be able to read the structure declaration and see every
rule about the size and behavior of that data type. And a very important rule in any
relationship is «who can access my private implementation?»

The class controls which code has access to its members. There’s no magic way to «break in»;
you can’t declare a new class and say «hi, I’m a friend of Bob!» and expect to see the private
and protected members of Bob.

You can declare a global function as a friend, and you can also declare a member function of
another structure, or even an entire structure, as a friend. Here’s an example :

//: C05:Friend.cpp
// Friend allows special access

struct X; // Declaration (incomplete type spec)

struct Y {
 void f(X*);
};

struct X { // Definition
private:
 int i;
public:
 void initialize();
 friend void g(X*, int); // Global friend
 friend void Y::f(X*); // Struct member friend
 friend struct Z; // Entire struct is a friend
 friend void h();
};

void X::initialize() { i = 0; }

void g(X* x, int i) { x->i = i; }

void Y::f(X* x) { x->i = 47; }

Chapter 2: Hiding the Implementation
183

struct Z {
private:
 int j;
public:
 void initialize();
 void g(X* x);
};

void Z::initialize() { j = 99; }

void Z::g(X* x) { x->i += j; }

void h() {
 X x;
 x.i = 100; // Direct data manipulation
}

int main() {
 X x;
 Z z;
 z.g(&x);
} ///:~

struct Y has a member function f() that will modify an object of type X. This is a bit of a
conundrum because the C++ compiler requires you to declare everything before you can refer
to it, so struct Y must be declared before its member Y::f(X*) can be declared as a friend in
struct X. But for Y::f(X*) to be declared, struct X must be declared first!

Here’s the solution. Notice that Y::f(X*) takes the address of an X object. This is critical
because the compiler always knows how to pass an address, which is of a fixed size regardless
of the object being passed, even if it doesn’t have full information about the size of the type.
If you try to pass the whole object, however, the compiler must see the entire structure
definition of X, to know the size and how to pass it, before it allows you to declare a function
such as Y::g(X).

By passing the address of an X, the compiler allows you to make an incomplete type
specification of X prior to declaring Y::f(X*). This is accomplished in the declaration struct
X;. This simply tells the compiler there’s a struct by that name, so if it is referred to, it’s OK,
as long as you don’t require any more knowledge than the name.

Now, in struct X, the function Y::f(X*) can be declared as a friend with no problem. If you
tried to declare it before the compiler had seen the full specification for Y, it would have
given you an error. This is a safety feature to ensure consistency and eliminate bugs.

Chapter 2: Hiding the Implementation
184

Notice the two other friend functions. The first declares an ordinary global function g() as a
friend. But g() has not been previously declared at the global scope! It turns out that friend
can be used this way to simultaneously declare the function and give it friend status. This
extends to entire structures: friend struct Z is an incomplete type specification for Z, and it
gives the entire structure friend status.

Nested friends
Making a structure nested doesn’t automatically give it access to private members. To
accomplish this you must follow a particular form: first define the nested structure, then
declare it as a friend using full scoping. The structure definition must be separate from the
friend declaration, otherwise it would be seen by the compiler as a nonmember. Here’s an
example:

//: C05:Nestfrnd.cpp
// Nested friends
#include <cstdio>
#include <cstring> // memset()
using namespace std;
#define SZ 20

struct holder {
private:
 int a[SZ];
public:
 void initialize();
 struct pointer {
 private:
 holder* h;
 int* p;
 public:
 void initialize(holder* H);
 // Move around in the array:
 void next();
 void previous();
 void top();
 void end();
 // Access values:
 int read();
 void set(int i);
 };
 friend holder::pointer;
};

Chapter 2: Hiding the Implementation
185

void holder::initialize() {
 memset(a, 0, SZ * sizeof(int));
}

void holder::pointer::initialize(holder* H) {
 h = H;
 p = h->a;
}

void holder::pointer::next() {
 if(p < &(h->a[SZ - 1])) p++;
}

void holder::pointer::previous() {
 if(p > &(h->a[0])) p--;
}

void holder::pointer::top() {
 p = &(h->a[0]);
}

void holder::pointer::end() {
 p = &(h->a[SZ - 1]);
}

int holder::pointer::read() {
 return *p;
}

void holder::pointer::set(int i) {
 *p = i;
}

int main() {
 holder h;
 holder::pointer hp, hp2;
 int i;

 h.initialize();
 hp.initialize(&h);
 hp2.initialize(&h);
 for(i = 0; i < SZ; i++) {
 hp.set(i);

Chapter 2: Hiding the Implementation
186

 hp.next();
 }
 hp.top();
 hp2.end();
 for(i = 0; i < SZ; i++) {
 printf("hp = %d, hp2 = %d\n",
 hp.read(), hp2.read());
 hp.next();
 hp2.previous();
 }
} ///:~

The struct holder contains an array of ints and the pointer allows you to access them.
Because pointer is strongly associated with holder, it’s sensible to make it a member of that
class. Once pointer is defined, it is granted access to the private members of holder by
saying:

friend holder::pointer;

Notice that the struct keyword is not necessary because the compiler already knows what
pointer is.

Because pointer is a separate class from holder, you can make more than one of them in
main() and use them to select different parts of the array. Because pointer is a class instead
of a raw C pointer, you can guarantee that it will always safely point inside the holder.

Is it pure?
The class definition gives you an audit trail, so you can see from looking at the class which
functions have permission to modify the private parts of the class. If a function is a friend, it
means that it isn’t a member, but you want to give permission to modify private data anyway,
and it must be listed in the class definition so all can see that it’s one of the privileged
functions.

C++ is a hybrid object-oriented language, not a pure one, and friend was added to get around
practical problems that crop up. It’s fine to point out that this makes the language less «pure,»
because C++ is designed to be pragmatic, not to aspire to an abstract ideal.

Object layout
Chapter 1 stated that a struct written for a C compiler and later compiled with C++ would be
unchanged. This referred primarily to the object layout of the struct, that is, where the storage
for the individual variables is positioned in the memory allocated for the object. If the C++
compiler changed the layout of C structs, then any C code you wrote that inadvisably took
advantage of knowledge of the positions of variables in the struct would break.

Chapter 2: Hiding the Implementation
187

When you start using access specifiers, however, you’ve moved completely into the C++
realm, and things change a bit. Within a particular «access block» (a group of declarations
delimited by access specifiers), the variables are guaranteed to be laid out contiguously, as in
C. However, the access blocks themselves may not appear in the object in the order that you
declare them. Although the compiler will usually lay the blocks out exactly as you see them,
there is no rule about it, because a particular machine architecture and/or operating
environment may have explicit support for private and protected that might require those
blocks to be placed in special memory locations. The language specification doesn’t want to
restrict this kind of advantage.

Access specifiers are part of the structure and don’t affect the objects created from the
structure. All of the access specification information disappears before the program is run;
generally this happens during compilation. In a running program, objects become «regions of
storage» and nothing more. Thus, if you really want to you can break all the rules and access
memory directly, as you can in C. C++ is not designed to prevent you from doing unwise
things. It just provides you with a much easier, highly desirable alternative.

In general, it’s not a good idea to depend on anything that’s implementation-specific when
you’re writing a program. When you must, those specifics should be encapsulated inside a
structure, so any porting changes are focused in one place.

The class
Access control is often referred to as implementation hiding. Including functions within
structures (encapsulation) produces a data type with characteristics and behaviors, but access
control puts boundaries within that data type, for two important reasons. The first is to
establish what users can and can’t use. You can build your internal mechanisms into the
structure without worrying that users will think it’s part of the interface they should be using.

This feeds directly into the second reason, which is to separate the interface from the
implementation. If the structure is used in a set of programs, but users can’t do anything but
send messages to the public interface, then you can change anything that’s private without
requiring modifications to their code.

Encapsulation and implementation hiding together invent something more than a C struct.
We’re now in the world of object-oriented programming, where a structure is describing a
class of objects, as you would describe a class of fishes or a class of birds: Any object
belonging to this class will share these characteristics and behaviors. That’s what the structure
declaration has become, a description of the way all objects of this type will look and act.

In the original OOP language, Simula-67, the keyword class was used to describe a new data
type. This apparently inspired Stroustrup to choose the same keyword for C++, to emphasize
that this was the focal point of the whole language, the creation of new data types that are
more than C structs with functions. This certainly seems like adequate justification for a new
keyword.

Chapter 2: Hiding the Implementation
188

However, the use of class in C++ comes close to being an unnecessary keyword. It’s identical
to the struct keyword in absolutely every way except one: class defaults to private, whereas
struct defaults to public. Here are two structures that produce the same result:

//: C05:Class.cpp {O}
// Similarity of struct and class

struct A {
private:
 int i, j, k;
public:
 int f();
 void g();
};

int A::f() { return i + j + k; }

void A::g() { i = j = k = 0; }

// Identical results are produced with:

class B {
 int i, j, k;
public:
 int f();
 void g();
};

int B::f() { return i + j + k; }

void B::g() { i = j = k = 0; }
///:~

The class is the fundamental OOP concept in C++. It is one of the keywords that will not be
set in bold in this book — it becomes annoying with a word repeated as often as «class.» The
shift to classes is so important that I suspect Stroustrup’s preference would have been to throw
struct out altogether, but the need for backwards compatibility of course wouldn’t allow it.

Many people prefer a style of creating classes that is more struct-like than class-like, because
you override the «default-to-private» behavior of the class by starting out with public
elements:

class X {
public:
 void interface_function();

Chapter 2: Hiding the Implementation
189

private:
 void private_function();
 int internal_representation;
};

The logic behind this is that it makes more sense for the reader to see the members they are
concerned with first, then they can ignore anything that says private. Indeed, the only reasons
all the other members must be declared in the class at all are so the compiler knows how big
the objects are and can allocate them properly, and so it can guarantee consistency.

The examples in this book, however, will put the private members first, like this:

class X {
 void private_function();
 int internal_representation;
public:
 void interface_function();
};

Some people even go to the trouble of mangling their own private names:

class Y {
public:
 void f();
private:
 int mX; // "Self-mangled" name
};

Because mX is already hidden in the scope of Y, the m is unnecessary. However, in projects
with many global variables (something you should strive to avoid, but is sometimes inevitable
in existing projects) it is helpful to be able to distinguish, inside a member function definition,
which data is global and which is a member.

Modifying Stash to use access control
It makes sense to take the examples from Chapter 1 and modify them to use classes and
access control. Notice how the user portion of the interface is now clearly distinguished, so
there’s no possibility of users accidentally manipulating a part of the class that they shouldn’t.

//: C05:Stash.h
// Converted to use access control
#ifndef STASH_H_
#define STASH_H_

class Stash {

Chapter 2: Hiding the Implementation
190

 int size; // Size of each space
 int quantity; // Number of storage spaces
 int next; // Next empty space
 // Dynamically allocated array of bytes:
 unsigned char* storage;
 void inflate(int increase);
public:
 void initialize(int Size);
 void cleanup();
 int add(void* element);
 void* fetch(int index);
 int count();
};
#endif // STASH_H_ ///:~

The inflate() function has been made private because it is used only by the add() function
and is thus part of the underlying implementation, not the interface. This means that,
sometime later, you can change the underlying implementation to use a different system for
memory management.

Other than the name of the include file, the above header is the only thing that’s been changed
for this example. The implementation file and test file are the same.

Modifying stack to use
access control

As a second example, here’s the Stack turned into a class. Now the nested data structure is
private, which is nice because it ensures that the user will neither have to look at it nor be
able to depend on the internal representation of the Stack:

//: C05:Stack.h
// Nested structs via linked list
#ifndef STACK_H_
#define STACK_H_

class Stack {
 struct link {
 void* data;
 link* next;
 void initialize(void* Data, link* Next);
 } * head;
public:
 void initialize();
 void push(void* Data);

Chapter 2: Hiding the Implementation
191

 void* peek();
 void* pop();
 void cleanup();
};
#endif // STACK_H_ ///:~

As before, the implementation doesn’t change and so is not repeated here. The test, too, is
identical. The only thing that’s been changed is the robustness of the class interface. The real
value of access control is during development, to prevent you from crossing boundaries. In
fact, the compiler is the only one that knows about the protection level of class members.
There is no information mangled into the member name that carries through to the linker. All
the protection checking is done by the compiler; it’s vanished by run-time.

Notice that the interface presented to the user is now truly that of a push-down stack. It
happens to be implemented as a linked list, but you can change that without affecting what the
user interacts with, or (more importantly) a single line of client code.

Handle classes
Access control in C++ allows you to separate interface from implementation, but the
implementation hiding is only partial. The compiler must still see the declarations for all parts
of an object in order to create and manipulate it properly. You could imagine a programming
language that requires only the public interface of an object and allows the private
implementation to be hidden, but C++ performs type checking statically (at compile time) as
much as possible. This means that you’ll learn as early as possible if there’s an error. It also
means your program is more efficient. However, including the private implementation has
two effects: The implementation is visible even if you can’t easily access it, and it can cause
needless recompilation.

Visible implementation
Some projects cannot afford to have their implementation visible to the end user. It may show
strategic information in a library header file that the company doesn’t want available to
competitors. You may be working on a system where security is an issue — an encryption
algorithm, for example — and you don’t want to expose any clues in a header file that might
enable people to crack the code. Or you may be putting your library in a «hostile»
environment, where the programmers will directly access the private components anyway,
using pointers and casting. In all these situations, it’s valuable to have the actual structure
compiled inside an implementation file rather than exposed in a header file.

Chapter 2: Hiding the Implementation
192

Reducing recompilation
The project manager in your programming environment will cause a recompilation of a file if
that file is touched or if another file it’s dependent upon — that is, an included header file —
is touched. This means that any time you make a change to a class, whether it’s to the public
interface or the private implementation, you’ll force a recompilation of anything that includes
that header file. For a large project in its early stages this can be very unwieldy because the
underlying implementation may change often; if the project is very big, the time for compiles
can prohibit rapid turnaround.

The technique to solve this is sometimes called handle classes or the «Cheshire Cat»29 —
everything about the implementation disappears except for a single pointer, the «smile.» The
pointer refers to a structure whose definition is in the implementation file along with all the
member function definitions. Thus, as long as the interface is unchanged, the header file is
untouched. The implementation can change at will, and only the implementation file needs to
be recompiled and relinked with the project.

Here’s a simple example demonstrating the technique. The header file contains only the
public interface and a single pointer of an incompletely specified class:

//: C05:Handle.h
// Handle classes
#ifndef HANDLE_H_
#define HANDLE_H_

class Handle {
 struct cheshire; // Class declaration only
 cheshire* smile;
public:
 void initialize();
 void cleanup();
 int read();
 void change(int);
};
#endif // HANDLE_H_ ///:~

This is all the client programmer is able to see. The line

struct cheshire;

is an incomplete type specification or a class declaration (A class definition includes the body
of the class.) It tells the compiler that cheshire is a structure name, but nothing about the

29 This name is attributed to John Carolan, one of the early pioneers in C++, and of course,
Lewis Carroll.

Chapter 2: Hiding the Implementation
193

struct. This is only enough information to create a pointer to the struct; you can’t create an
object until the structure body has been provided. In this technique, that body contains the
underlying implementation and is hidden away in the implementation file:

//: C05:Handle.cpp {O}
// Handle implementation
#include <cstdlib>
#include "../require.h"
#include "Handle.h"
using namespace std;

// Define Handle's implementation:
struct Handle::cheshire {
 int i;
};

void Handle::initialize() {
 smile = (cheshire*)malloc(sizeof(cheshire));
 require(smile != 0);
 smile->i = 0;
}

void Handle::cleanup() {
 free(smile);
}

int Handle::read() {
 return smile->i;
}

void Handle::change(int x) {
 smile->i = x;
} ///:~

cheshire is a nested structure, so it must be defined with scope resolution:

struct Handle::cheshire {

In the Handle::initialize(), storage is allocated for a cheshire structure,30 and in
Handle::cleanup() this storage is released. This storage is used in lieu of all the data
elements you’d normally put into the private section of the class. When you compile
HANDLE.CPP, this structure definition is hidden away in the object file where no one can see

30 Chapter 11 demonstrates a much better way to create an object on the heap with new.

Chapter 2: Hiding the Implementation
194

it. If you change the elements of cheshire, the only file that must be recompiled is
HANDLE.CPP because the header file is untouched.

The use of Handle is like the use of any class: Include the header, create objects, and send
messages.

//: C05:Usehandl.cpp
//{L} Handle
// Use the Handle class
#include "Handle.h"

int main() {
 Handle u;
 u.initialize();
 u.read();
 u.change(1);
 u.cleanup();
} ///:~

The only thing the client programmer can access is the public interface, so as long as the
implementation is the only thing that changes, this file never needs recompilation. Thus,
although this isn’t perfect implementation hiding, it’s a big improvement.

Summary
Access control in C++ is not an object-oriented feature, but it gives valuable control to the
creator of a class. The users of the class can clearly see exactly what they can use and what to
ignore. More important, though, is the ability to ensure that no user becomes dependent on
any part of the underlying implementation of a class. If you know this as the creator of the
class, you can change the underlying implementation with the knowledge that no client
programmer will be affected by the changes because they can’t access that part of the class.

When you have the ability to change the underlying implementation, you can not only
improve your design at some later time, but you also have the freedom to make mistakes. No
matter how carefully you plan and design, you’ll make mistakes. Knowing that it’s relatively
safe to make these mistakes means you’ll be more experimental, you’ll learn faster, and you’ll
finish your project sooner.

The public interface to a class is what the user does see, so that is the most important part of
the class to get «right» during analysis and design. But even that allows you some leeway for
change. If you don’t get the interface right the first time, you can add more functions, as long
as you don’t remove any that client programmers have already used in their code.

Chapter 2: Hiding the Implementation
195

Exercises
 1. Create a class with public, private, and protected data members and

function members. Create an object of this class and see what kind of
compiler messages you get when you try to access all the class members.

 2. Create a class and a global friend function that manipulates the private
data in the class.

 3. Modify cheshire in HANDLE.CPP, and verify that your project manager
recompiles and relinks only this file, but doesn’t recompile
USEHANDL.CPP.

197

6: Initialization
& cleanup

Chapter 1 made a significant improvement in library use by
taking all the scattered components of a typical C library and
encapsulating them into a structure (an abstract data type,
called a class from now on).

This not only provides a single unified point of entry into a library component, but it also
hides the names of the functions within the class name. In Chapter 2, access control
(implementation hiding) was introduced. This gives the class designer a way to establish clear
boundaries for determining what the user is allowed to manipulate and what is off limits. It
means the internal mechanisms of a data type’s operation are under the control and discretion
of the class designer, and it’s clear to users what members they can and should pay attention
to.

Together, encapsulation and implementation hiding make a significant step in improving the
ease of library use. The concept of «new data type» they provide is better in some ways than
the existing built-in data types inherited from C. The C++ compiler can now provide type-
checking guarantees for that data type and thus ensure a level of safety when that data type is
being used.

When it comes to safety, however, there’s a lot more the compiler can do for us than C
provides. In this and future chapters, you’ll see additional features engineered into C++ that
make the bugs in your program almost leap out and grab you, sometimes before you even
compile the program, but usually in the form of compiler warnings and errors. For this reason,
you will soon get used to the unlikely sounding scenario that a C++ program that compiles
usually runs right the first time.

Two of these safety issues are initialization and cleanup. A large segment of C bugs occur
when the programmer forgets to initialize or clean up a variable. This is especially true with
libraries, when users don’t know how to initialize a struct, or even that they must. (Libraries
often do not include an initialization function, so the user is forced to initialize the struct by
hand.) Cleanup is a special problem because C programmers are used to forgetting about
variables once they are finished, so any cleaning up that may be necessary for a library’s
struct is often missed.

Chapter 3: Initialization & Cleanup
198

In C++ the concept of initialization and cleanup is essential to making library use easy and to
eliminating the many subtle bugs that occur when the user forgets to perform these activities.
This chapter examines the features in C++ that help guarantee proper initialization and
cleanup.

Guaranteed initialization with
the constructor

Both the Stash and Stack classes have had functions called initialize(), which hint that it
should be called before using the object in any other way. Unfortunately, this means the user
must ensure proper initialization. Users are prone to miss details like initialization in their
headlong rush to make your amazing library solve their problem. In C++ initialization is too
important to leave to the user. The class designer can guarantee initialization of every object
by providing a special function called the constructor. If a class has a constructor, the
compiler automatically calls that constructor at the point an object is created, before users can
even get their hands on the object. The constructor call isn’t even an option for the user; it is
performed by the compiler at the point the object is defined.

The next challenge is what to name this function. There are two issues. The first is that any
name you use is something that can potentially clash with a name you might like to use as a
member in the class. The second is that because the compiler is responsible for calling the
constructor, it must always know which function to call. The solution Stroustrup chose seems
the easiest and most logical: The name of the constructor is the same as the name of the class.
It makes sense that such a function will be called automatically on initialization.

Here’s a simple class with a constructor:

class X {
 int i;
public:
 X(); // Constructor
};

Now, when an object is defined,

void f() {
 X a;
 // ...
}

the same thing happens as if a were an int: Storage is allocated for the object. But when the
program reaches the sequence point (point of execution) where a is defined, the constructor is
called automatically. That is, the compiler quietly inserts the call to X::X() for the object a at

Chapter 3: Initialization & Cleanup
199

its point of definition. Like any member function, the first (secret) argument to the constructor
is the address of the object for which it is being called.

Like any function, the constructor can have arguments to allow you to specify how an object
is created, give it initialization values, and so on. Constructor arguments provide you with a
way to guarantee that all parts of your object are initialized to appropriate values. For
example, if the class Tree has a constructor that takes a single integer argument denoting the
height of the tree, you must then create a tree object like this:

Tree t(12); // 12-foot tree

If tree(int) is your only constructor, then the compiler won’t let you create an object any other
way. (We’ll look at multiple constructors and different ways to call constructors in the next
chapter.)

That’s really all there is to a constructor: It’s a specially named function that is called
automatically by the compiler for every object. However, it eliminates a large class of
problems and makes the code easier to read. In the preceding code fragment, for example, you
don’t see an explicit function call to some initialize() function that is conceptually separate
from definition. In C++, definition and initialization are unified concepts — you can’t have
one without the other.

Both the constructor and destructor are very unusual types of functions: They have no return
value. This is distinctly different from a void return value, where the function returns nothing
but you still have the option to make it something else. Constructors and destructors return
nothing and you don’t have an option. The acts of bringing an object into and out of the
program are special, like birth and death, and the compiler always makes the function calls
itself, to make sure they happen. If there were a return value, and if you could select your
own, the compiler would somehow have to know what to do with the return value, or the user
would have to explicitly call constructors and destructors, which would eliminate their safety.

Guaranteed cleanup with the
destructor

As a C programmer, you often think about the importance of initialization, but it’s rarer to
think about cleanup. After all, what do you need to do to clean up an int? Just forget about it.
However, with libraries, just «letting go» of an object once you’re done with it is not so safe.
What if it modifies some piece of hardware, or puts something on the screen, or allocates
storage on the heap? If you just forget about it, your object never achieves closure upon its
exit from this world. In C++, cleanup is as important as initialization and is therefore
guaranteed with the destructor.

The syntax for the destructor is similar to that for the constructor: The class name is used for
the name of the function. However, the destructor is distinguished from the constructor by a

Chapter 3: Initialization & Cleanup
200

leading tilde (~). In addition, the destructor never has any arguments because destruction
never needs any options. Here’s the declaration for a destructor:

class Y {
public:
 ~Y();
};

The destructor is called automatically by the compiler when the object goes out of scope. You
can see where the constructor gets called by the point of definition of the object, but the only
evidence for a destructor call is the closing brace of the scope that surrounds the object. Yet
the destructor is called, even when you use goto to jump out of a scope. (goto still exists in
C++, for backward compatibility with C and for the times when it comes in handy.) You
should note that a nonlocal goto, implemented by the Standard C library functions setjmp()
and longjmp(), doesn’t cause destructors to be called. (This is the specification, even if your
compiler doesn’t implement it that way. Relying on a feature that isn’t in the specification
means your code is nonportable.)

Here’s an example demonstrating the features of constructors and destructors you’ve seen so
far:

//: C06:Constr1.cpp
// Constructors & destructors
#include <cstdio>
using namespace std;

class Tree {
 int height;
public:
 Tree(int initialHeight); // Constructor
 ~Tree(); // Destructor
 void grow(int years);
 void printsize();
};

Tree::Tree(int initialHeight) {
 height = initialHeight;
}

Tree::~Tree() {
 puts("inside Tree destructor");
 printsize();
}

void Tree::grow(int years) {

Chapter 3: Initialization & Cleanup
201

 height += years;
}

void Tree::printsize() {
 printf("Tree height is %d\n", height);
}

int main() {
 puts("before opening brace");
 {
 Tree t(12);
 puts("after Tree creation");
 t.printsize();
 t.grow(4);
 puts("before closing brace");
 }
 puts("after closing brace");
} ///:~

Here’s the output of the above program:

before opening brace
after Tree creation
Tree height is 12
before closing brace
inside Tree destructor
Tree height is 16
after closing brace

You can see that the destructor is automatically called at the closing brace of the scope that
encloses it.

Elimination of the definition
block

In C, you must always define all the variables at the beginning of a block, after the opening
brace. This is not an uncommon requirement in programming languages (Pascal is another
example), and the reason given has always been that it’s «good programming style.» On this
point, I have my suspicions. It has always seemed inconvenient to me, as a programmer, to
pop back to the beginning of a block every time I need a new variable. I also find code more
readable when the variable definition is close to its point of use.

Chapter 3: Initialization & Cleanup
202

Perhaps these arguments are stylistic. In C++, however, there’s a significant problem in being
forced to define all objects at the beginning of a scope. If a constructor exists, it must be
called when the object is created. However, if the constructor takes one or more initialization
arguments, how do you know you will have that initialization information at the beginning of
a scope? In the general programming situation, you won’t. Because C has no concept of
private, this separation of definition and initialization is no problem. However, C++
guarantees that when an object is created, it is simultaneously initialized. This ensures you
will have no uninitialized objects running around in your system. C doesn’t care; in fact, C
encourages this practice by requiring you to define variables at the beginning of a block
before you necessarily have the initialization information.

Generally C++ will not allow you to create an object before you have the initialization
information for the constructor, so you don’t have to define variables at the beginning of a
scope. In fact, the style of the language would seem to encourage the definition of an object as
close to its point of use as possible. In C++, any rule that applies to an «object» automatically
refers to an object of a built-in type, as well. This means that any class object or variable of a
built-in type can also be defined at any point in a scope. It also means that you can wait until
you have the information for a variable before defining it, so you can always define and
initialize at the same time:

//: C06:Definit.cpp
// Defining variables anywhere
#include <cstdio>
#include <cstdlib>
#include "../require.h"
using namespace std;

class G {
 int i;
public:
 G(int I);
};

G::G(int I) { i = I; }

int main() {
 #define SZ 100
 char buf[SZ];
 printf("initialization value? ");
 int retval = (int)gets(buf);
 require(retval != 0);
 int x = atoi(buf);
 int y = x + 3;
 G g(y);
} ///:~

Chapter 3: Initialization & Cleanup
203

You can see that buf is defined, then some code is executed, then x is defined and initialized
using a function call, then y and g are defined. C, of course, would never allow a variable to
be defined anywhere except at the beginning of the scope.

Generally, you should define variables as close to their point of use as possible, and always
initialize them when they are defined. (This is a stylistic suggestion for built-in types, where
initialization is optional.) This is a safety issue. By reducing the duration of the variable’s
availability within the scope, you are reducing the chance it will be misused in some other
part of the scope. In addition, readability is improved because the reader doesn’t have to jump
back and forth to the beginning of the scope to know the type of a variable.

for loops
In C++, you will often see a for loop counter defined right inside the for expression:

for(int j = 0; j < 100; j++) {
 printf("j = %d\n", j);
}
for(int i = 0; i < 100; i++)
 printf("i = %d\n", i);

The above statements are important special cases, which cause confusion to new C++
programmers.

The variables i and j are defined directly inside the for expression (which you cannot do in
C). They are then available for use in the for loop. It’s a very convenient syntax because the
context removes all question about the purpose of i and j, so you don’t need to use such
ungainly names as i_loop_counter for clarity.

The problem is the lifetime of the variables, which was formerly determined by the enclosing
scope. This is a situation where a design decision was made from a compiler-writer’s view of
what is logical because as a programmer you obviously intend i to be used only inside the
statement(s) of the for loop. Unfortunately, however, if you previously took this approach and
said

for(int i = 0; i < 100; i++)
 printf("i = %d\n", i);
//
for(int i = 0; i < 100; i++){
 printf("i = %d\n", i);
}

(with or without curly braces) within the same scope, compilers written for the old
specification gave you a multiple-definition error for i. The new Standard C++ specification
says that the lifetime of a loop counter defined within the control expression of a for loop
lasts until the end of the controlled expression, so the above statements will work. (However,

Chapter 3: Initialization & Cleanup
204

not all compilers may support this yet, and you may encounter code based on the old style.) If
the transition causes errors, the compiler will point them out to you; the solution requires only
a small edit. Watch out, though, for local variables that hide variables in the enclosing scope.

I find small scopes an indicator of good design. If you have several pages for a single
function, perhaps you’re trying to do too much with that function. More granular functions are
not only more useful, but it’s also easier to find bugs.

Storage allocation
A variable can now be defined at any point in a scope, so it might seem initially that the
storage for a variable may not be defined until its point of definition. It’s more likely that the
compiler will follow the practice in C of allocating all the storage for a block at the opening
brace of that block. It doesn’t matter because, as a programmer, you can’t get the storage
(a.k.a. the object) until it has been defined. Although the storage is allocated at the beginning
of the block, the constructor call doesn’t happen until the sequence point where the object is
defined because the identifier isn’t available until then. The compiler even checks to make
sure you don’t put the object definition (and thus the constructor call) where the sequence
point only conditionally passes through it, such as in a switch statement or somewhere a goto
can jump past it. Uncommenting the statements in the following code will generate a warning
or an error:

//: C06:Nojump.cpp {O}
// Can't jump past constructors

class X {
public:
 X() {}
};

void f(int i) {
 if(i < 10) {
 //! goto jump1; // Error: goto bypasses init
 }
 X x1; // Constructor called here
 jump1:
 switch(i) {
 case 1 :
 X x2; // Constructor called here
 break;
 //! case 2 : // Error: case bypasses init
 X x3; // Constructor called here
 break;
 }

Chapter 3: Initialization & Cleanup
205

} ///:~

In the above code, both the goto and the switch can potentially jump past the sequence point
where a constructor is called. That object will then be in scope even if the constructor hasn’t
been called, so the compiler gives an error message. This once again guarantees that an object
cannot be created unless it is also initialized.

All the storage allocation discussed here happens, of course, on the stack. The storage is
allocated by the compiler by moving the stack pointer «down» (a relative term, which may
indicate an increase or decrease of the actual stack pointer value, depending on your
machine). Objects can also be allocated on the heap, but that’s the subject of Chapter 11.

Stash with constructors and
destructors

The examples from previous chapters have obvious functions that map to constructors and
destructors: initialize() and cleanup(). Here’s the Stash header using constructors and
destructors:

//: C06:Stash3.h
// With constructors & destructors
#ifndef STASH3_H_
#define STASH3_H_

class Stash {
 int size; // Size of each space
 int quantity; // Number of storage spaces
 int next; // Next empty space
 // Dynamically allocated array of bytes:
 unsigned char* storage;
 void inflate(int increase);
public:
 Stash(int Size);
 ~Stash();
 int add(void* element);
 void* fetch(int index);
 int count();
};
#endif // STASH3_H_ ///:~

The only member function definitions that are changed are initialize() and cleanup(), which
have been replaced with a constructor and destructor:

Chapter 3: Initialization & Cleanup
206

//: C06:Stash3.cpp {O}
// Constructors & destructors
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include "../require.h"
#include "Stash3.h"
using namespace std;

Stash::Stash(int Size) {
 size = Size;
 quantity = 0;
 storage = 0;
 next = 0;
}

Stash::~Stash() {
 if(storage) {
 puts("freeing storage");
 free(storage);
 }
}

int Stash::add(void* element) {
 if(next >= quantity) // Enough space left?
 inflate(100);
 // Copy element into storage,
 // starting at next empty space:
 memcpy(&(storage[next * size]),
 element, size);
 next++;
 return(next - 1); // Index number
}

void* Stash::fetch(int index) {
 if(index >= next || index < 0)
 return 0; // Not out of bounds?
 // Produce pointer to desired element:
 return &(storage[index * size]);
}

int Stash::count() {
 return next; // Number of elements in Stash

Chapter 3: Initialization & Cleanup
207

}

void Stash::inflate(int increase) {
 void* v =
 realloc(storage, (quantity+increase)*size);
 require(v); // Was it successful?
 storage = (unsigned char*)v;
 quantity += increase;
} ///:~

Notice, in the following test program, how the definitions for Stash objects appear right
before they are needed, and how the initialization appears as part of the definition, in the
constructor argument list:

//: C06:Stshtst3.cpp
//{L} Stash3
// Constructors & destructors
#include <cstdio>
#include "../require.h"
#include "Stash3.h"
using namespace std;
#define BUFSIZE 80

int main() {
 Stash intStash(sizeof(int));
 for(int j = 0; j < 100; j++)
 intStash.add(&j);

 FILE* file = fopen("Stshtst3.cpp", "r");
 require(file);
 // Holds 80-character strings:
 Stash stringStash(sizeof(char) * BUFSIZE);
 char buf[BUFSIZE];
 while(fgets(buf, BUFSIZE, file))
 stringStash.add(buf);
 fclose(file);

 for(int k = 0; k < intStash.count(); k++)
 printf("intStash.fetch(%d) = %d\n", k,
 (int)intStash.fetch(k));

 for(int i = 0; i < stringStash.count(); i++)
 printf("stringStash.fetch(%d) = %s",
 i, (char*)stringStash.fetch(i++));

Chapter 3: Initialization & Cleanup
208

 putchar('\n');
} ///:~

Also notice how the cleanup() calls have been eliminated, but the destructors are still
automatically called when intStash and stringStash go out of scope.

stack with constructors &
destructors

Reimplementing the linked list (inside Stack) with constructors and destructors shows up a
significant problem. Here’s the modified header file:

//: C06:Stack3.h
// With constructors/destructors
#ifndef STACK3_H_
#define STACK3_H_

class Stack {
 struct link {
 void* data;
 link* next;
 void initialize(void* Data, link* Next);
 } * head;
public:
 Stack();
 ~Stack();
 void push(void* Data);
 void* peek();
 void* pop();
};
#endif // STACK3_H_ ///:~

Notice that although Stack has a constructor and destructor, the nested class link does not.
This has nothing to do with the fact that it’s nested. The problem arises when it is used:

//: C06:Stack3.cpp {O}
// Constructors/destructors
#include <cstdlib>
#include "../require.h"
#include "Stack3.h"
using namespace std;

Chapter 3: Initialization & Cleanup
209

void Stack::link::initialize(
 void* Data, link* Next) {
 data = Data;
 next = Next;
}

Stack::Stack() { head = 0; }

void Stack::push(void* Data) {
 // Can't use a constructor with malloc!
 link* newlink = (link*)malloc(sizeof(link));
 require(newlink);
 newlink->initialize(Data, head);
 head = newlink;
}

void* Stack::peek() { return head->data; }

void* Stack::pop() {
 if(head == 0) return 0;
 void* result = head->data;
 link* oldHead = head;
 head = head->next;
 free(oldHead);
 return result;
}

Stack::~Stack() {
 link* cursor = head;
 while(head) {
 cursor = cursor->next;
 free(head->data); // Assumes malloc!
 free(head);
 head = cursor;
 }
} ///:~

link is created inside Stack::push, but it’s created on the heap and there’s the rub. How do
you create an object on the heap if it has a constructor? So far we’ve been saying, «OK, here’s
a piece of memory on the heap and I want you to pretend that it’s actually a real object.» But
the constructor doesn’t allow us to hand it a memory address upon which it will build an

Chapter 3: Initialization & Cleanup
210

object.31 The creation of an object is critical, and the C++ constructor wants to be in control
of the whole process to keep things safe. There is an easy solution to this problem, the
operator new, that we’ll look at in Chapter 11, but for now the C approach to dynamic
allocation will have to suffice. Because the allocation and cleanup are hidden within Stack —
it’s part of the underlying implementation — you don’t see the effect in the test program:

//: C06:Stktst3.cpp
//{L} Stack3
// Constructors/destructors
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "../require.h"
#include "Stack3.h"
using namespace std;

int main(int argc, char* argv[]) {
 requireArgs(argc, 2); // File name is argument
 FILE* file = fopen(argv[1], "r");
 require(file);
 #define BUFSIZE 100
 char buf[BUFSIZE];
 Stack textlines; // Constructor called here
 // Read file and store lines in the Stack:
 while(fgets(buf, BUFSIZE, file)) {
 char* string =
 (char*)malloc(strlen(buf) + 1);
 require(string);
 strcpy(string, buf);
 textlines.push(string);
 }
 // Pop lines from the Stack and print them:
 char* s;
 while((s = (char*)textlines.pop()) != 0) {
 printf("%s", s); free(s);
 }
} // Destructor called here ///:~

31Actually, there's a syntax that does allow you to do this. But it's for special cases and doesn't
solve the general problem described here.

Chapter 3: Initialization & Cleanup
211

The constructor and destructor for textlines are called automatically, so the user of the class
can focus on what to do with the object and not worry about whether or not it will be properly
initialized and cleaned up.

Aggregate initialization
An aggregate is just what it sounds like: a bunch of things clumped together. This definition
includes aggregates of mixed types, like structs and classes. An array is an aggregate of a
single type.

Initializing aggregates can be error-prone and tedious. C++ aggregate initialization makes it
much safer. When you create an object that’s an aggregate, all you must do is make an
assignment, and the initialization will be taken care of by the compiler. This assignment
comes in several flavors, depending on the type of aggregate you’re dealing with, but in all
cases the elements in the assignment must be surrounded by curly braces. For an array of
built-in types this is quite simple:

int a[5] = { 1, 2, 3, 4, 5 };

If you try to give more initializers than there are array elements, the compiler gives an error
message. But what happens if you give fewer initializers, such as

int b[6] = {0};

Here, the compiler will use the first initializer for the first array element, and then use zero for
all the elements without initializers. Notice this initialization behavior doesn’t occur if you
define an array without a list of initializers. So the above expression is a very succinct way to
initialize an array to zero, without using a for loop, and without any possibility of an off-by-
one error (Depending on the compiler, it may also be more efficient than the for loop.)

A second shorthand for arrays is automatic counting, where you let the compiler determine
the size of the array based on the number of initializers:

int c[] = { 1, 2, 3, 4 };

Now if you decide to add another element to the array, you simply add another initializer. If
you can set your code up so it needs to be changed in only one spot, you reduce the chance of
errors during modification. But how do you determine the size of the array? The expression
sizeof c / sizeof *c (size of the entire array divided by the size of the first element) does the
trick in a way that doesn’t need to be changed if the array size changes:

for(int i = 0; i < sizeof c / sizeof *c; i++)
 c[i]++;

Because structures are also aggregates, they can be initialized in a similar fashion. Because a
C-style struct has all its members public, they can be assigned directly:

struct X {

Chapter 3: Initialization & Cleanup
212

 int i;
 float f;
 char c;
};

X x1 = { 1, 2.2, 'c' };

If you have an array of such objects, you can initialize them by using a nested set of curly
braces for each object:

X x2[3] = { {1, 1.1, 'a'}, {2, 2.2, 'b'} };

Here, the third object is initialized to zero.

If any of the data members are private, or even if everything’s public but there’s a
constructor, things are different. In the above examples, the initializers are assigned directly to
the elements of the aggregate, but constructors are a way of forcing initialization to occur
through a formal interface. Here, the constructors must be called to perform the initialization.
So if you have a struct that looks like this,

struct Y {
 float f;
 int i;
 Y(int A); // Presumably assigned to i
};

You must indicate constructor calls. The best approach is the explicit one as follows:

Y y2[] = { Y(1), Y(2), Y(3) };

You get three objects and three constructor calls. Any time you have a constructor, whether
it’s a struct with all members public or a class with private data members, all the
initialization must go through the constructor, even if you’re using aggregate initialization.

Here’s a second example showing multiple constructor arguments:

//: C06:Multiarg.cpp
// Multiple constructor arguments
// with aggregate initialization

class X {
 int i, j;
public:
 X(int I, int J) {
 i = I;
 j = J;
 }
};

Chapter 3: Initialization & Cleanup
213

int main() {
 X xx[] = { X(1,2), X(3,4), X(5,6), X(7,8) };
} ///:~

Notice that it looks like an explicit but unnamed constructor is called for each object in the
array.

Default constructors
A default constructor is one that can be called with no arguments. A default constructor is
used to create a «vanilla object,» but it’s also very important when the compiler is told to
create an object but isn’t given any details. For example, if you take Y and use it in a
definition like this,

Y y4[2] = { Y(1) };

the compiler will complain that it cannot find a default constructor. The second object in the
array wants to be created with no arguments, and that’s where the compiler looks for a default
constructor. In fact, if you simply define an array of Y objects,

Y y5[7];

or an individual object,

Y y;

the compiler will complain because it must have a default constructor to initialize every object
in the array. (Remember, if you have a constructor the compiler ensures it is always called,
regardless of the situation.)

The default constructor is so important that if (and only if) there are no constructors for a
structure (struct or class), the compiler will automatically create one for you. So this works:

class Z {
 int i; // private
}; // No constructor

Z z, z2[10];

If any constructors are defined, however, and there’s no default constructor, the above object
definitions will generate compile-time errors.

You might think that the default constructor should do some intelligent initialization, like
setting all the memory for the object to zero. But it doesn’t — that would add extra overhead
but be out of the programmer’s control. This would mean, for example, that if you compiled C
code under C++, the effect would be different. If you want the memory to be initialized to
zero, you must do it yourself.

Chapter 3: Initialization & Cleanup
214

The automatic creation of default constructors was not simply a feature to make life easier for
new C++ programmers. It’s virtually required to aid backward compatibility with existing C
code, which is a critical issue in C++. In C, it’s not uncommon to create an array of structs.
Without the default constructor, this would cause a compile-time error in C++.

If you had to modify your C code to recompile it under C++ just because of stylistic issues,
you might not bother. When you move C code to C++, you will almost always have new
compile-time error messages, but those errors are because of genuine bad C code that the C++
compiler can detect because of its stronger rules. In fact, a good way to find obscure errors in
a C program is to run it through a C++ compiler.

Summary
The seemingly elaborate mechanisms provided by C++ should give you a strong hint about
the critical importance placed on initialization and cleanup in the language. As Stroustrup was
designing C++, one of the first observations he made about productivity in C was that a very
significant portion of programming problems are caused by improper initialization of
variables. These kinds of bugs are very hard to find, and similar issues apply to improper
cleanup. Because constructors and destructors allow you to guarantee proper initialization
and cleanup (the compiler will not allow an object to be created and destroyed without the
proper constructor and destructor calls), you get complete control and safety.

Aggregate initialization is included in a similar vein — it prevents you from making typical
initialization mistakes with aggregates of built-in types and makes your code more succinct.

Safety during coding is a big issue in C++. Initialization and cleanup are an important part of
this, but you’ll also see other safety issues as the book progresses.

Exercises
 1. Modify the HANDLE.H, HANDLE.CPP, and USEHANDL.CPP files at the

end of Chapter 2 to use constructors and destructors.
 2. Create a class with a destructor and nondefault constructor, each of which

print something to announce their presence. Write code that demonstrates
when the constructor and destructor are called.

 3. Demonstrate automatic counting and aggregate initialization with an array
of objects of the class you created in Exercise 2. Add a member function to
that class that prints a message. Calculate the size of the array and move
through it, calling your new member function.

 4. Create a class without any constructors, and show you can create objects
with the default constructor. Now create a nondefault constructor (one with
an argument) for the class, and try compiling again. Explain what happened.

215

7: Function
overloading &
default
arguments

One of the important features in any programming language
is the convenient use of names.

When you create an object (a variable), you give a name to a region of storage. A function is a
name for an action. By using names that you make up to describe the system at hand, you
create a program that is easier for people to understand and change. It’s a lot like writing
prose — the goal is to communicate with your readers.

A problem arises when mapping the concept of nuance in human language onto a
programming language. Often, the same word expresses a number of different meanings,
depending on context. That is, a single word has multiple meanings — it’s overloaded. This is
very useful, especially when it comes to trivial differences. You say «wash the shirt, wash the
car.» It would be silly to be forced to say, «shirt_wash the shirt, car_wash the car» just so the
hearer doesn’t have to make any distinction about the action performed. Most human
languages are redundant, so even if you miss a few words, you can still determine the
meaning. We don’t need unique identifiers — we can deduce meaning from context.

Most programming languages, however, require that you have a unique identifier for each
function. If you have three different types of data you want to print, int, char, and float, you
generally have to create three different function names, for example, print_int(),
print_char(), and print_float(). This loads extra work on you as you write the program, and
on readers as they try to understand it.

In C++, another factor forces the overloading of function names: the constructor. Because the
constructor’s name is predetermined by the name of the class, there can be only one

Chapter 5: Introduction to Iostreams
216

constructor name. But what if you want to create an object in more than one way? For
example, suppose you build a class that can initialize itself in a standard way and also by
reading information from a file. You need two constructors, one that takes no arguments (the
default constructor) and one that takes a character string as an argument, which is the name of
the file to initialize the object. Both are constructors, so they must have the same name — the
name of the class. Thus function overloading is essential to allow the same function name, the
constructor in this case, to be used with different argument types.

Although function overloading is a must for constructors, it’s a general convenience and can
be used with any function, not just class member functions. In addition, function overloading
means that if you have two libraries that contain functions of the same name, the chances are
they won’t conflict as long as the argument lists are different. We’ll look at all these factors in
detail throughout this chapter.

The theme of this chapter is convenient use of function names. Function overloading allows
you to use the same name for different functions, but there’s a second way to make calling a
function more convenient. What if you’d like to call the same function in different ways?
When functions have long argument lists, it can become tedious to write and confusing to
read the function calls when most of the arguments are the same for all the calls. A very
commonly used feature in C++ is called default arguments. A default argument is one the
compiler inserts if the person calling a function doesn’t specify it. Thus the calls f(«hello»),
f(«hi», 1) and f(«howdy», 2, ‘c’) can all be calls to the same function. They could also be
calls to three overloaded functions, but when the argument lists are this similar, you’ll usually
want similar behavior that calls for a single function.

Function overloading and default arguments really aren’t very complicated. By the time you
reach the end of this chapter, you’ll understand when to use them and the underlying
mechanisms used during compiling and linking to implement them.

More mangling
In Chapter 1 the concept of name mangling was introduced. (Sometimes the more gentle term
decoration is used.) In the code

void f();
class X { void f(); };

the function f() inside the scope of class X does not clash with the global version of f(). The
compiler performs this scoping by manufacturing different internal names for the global
version of f() and X::f(). In Chapter 1 it was suggested that the names are simply the class
name «mangled» together with the function name, so the internal names the compiler uses
might be _f and _X_f. It turns out that function name mangling involves more than the class
name.

Here’s why. Suppose you want to overload two function names

void print(char);

Chapter 5: Introduction to Iostreams
217

void print(float);

It doesn’t matter whether they are both inside a class or at the global scope. The compiler
can’t generate unique internal identifiers if it uses only the scope of the function names.
You’d end up with _print in both cases. The idea of an overloaded function is that you use
the same function name, but different argument lists. Thus, for overloading to work the
compiler must mangle the names of the argument types with the function name. The above
functions, defined at global scope, produce internal names that might look something like
_print_char and _print_float. It’s worth noting there is no standard for the way names must
be mangled by the compiler, so you will see very different results from one compiler to
another. (You can see what it looks like by telling the compiler to generate assembly-language
output.) This, of course, causes problems if you want to buy compiled libraries for a particular
compiler and linker, but those problems can also exist because of the way different compilers
generate code.

That’s really all there is to function overloading: You can use the same function name for
different functions, as long as the argument lists are different. The compiler mangles the
name, the scope, and the argument lists to produce internal names for it and the linker to use.

Overloading on return values
It’s common to wonder «why just scopes and argument lists? Why not return values?» It
seems at first that it would make sense to also mangle the return value with the internal
function name. Then you could overload on return values, as well:

void f();
int f();

This works fine when the compiler can unequivocally determine the meaning from the
context, as in int x = f();. However, in C you’ve always been able to call a function and
ignore the return value. How can the compiler distinguish which call is meant in this case?
Possibly worse is the difficulty the reader has in knowing which function call is meant.
Overloading solely on return value is a bit too subtle, and thus isn’t allowed in C++.

Type-safe linkage
There is an added benefit to all this name mangling. A particularly sticky problem in C occurs
when the user misdeclares a function, or, worse, a function is called without declaring it first,
and the compiler infers the function declaration from the way it is called. Sometimes this
function declaration is correct, but when it isn’t, it can be a very difficult bug to find.

Because all functions must be declared before they are used in C++, the opportunity for this
problem to pop up is greatly diminished. The compiler refuses to declare a function
automatically for you, so it’s likely you will include the appropriate header file. However, if
for some reason you still manage to misdeclare a function, either by declaring it yourself by

Chapter 5: Introduction to Iostreams
218

hand or by including the wrong header file (perhaps one that is out of date), the name-
mangling provides a safety net that is often referred to as type-safe linkage.

Consider the following scenario. In one file is the definition for a function:

//: C07:Def.cpp {O}
// Function definition
void f(int) {}
///:~

In the second file, the function is misdeclared and then called:

//: C07:Use.cpp
//{L} Def
// Function misdeclaration
void f(char);

int main() {
//! f(1); // Causes a linker error
} ///:~

Even though you can see that the function is actually f(int), the compiler doesn’t know this
because it was told — through an explicit declaration — that the function is f(char). Thus, the
compilation is successful. In C, the linker would also be successful, but not in C++. Because
the compiler mangles the names, the definition becomes something like f_int, whereas the use
of the function is f_char. When the linker tries to resolve the reference to f_char, it can find
only f_int, and it gives you an error message. This is type-safe linkage. Although the problem
doesn’t occur all that often, when it does it can be incredibly difficult to find, especially in a
large project. This is one of the cases where you can find a difficult error in a C program
simply by running it through the C++ compiler.

Overloading example
Consider the examples we’ve been looking at so far in this series, modified to use function
overloading. As stated earlier, an immediately useful place for overloading is in constructors.
You can see this in the following version of the Stash class:

//: C07:Stash4.h
// Function overloading
#ifndef STASH4_H_
#define STASH4_H_

class Stash {
 int size; // Size of each space
 int quantity; // Number of storage spaces

Chapter 5: Introduction to Iostreams
219

 int next; // Next empty space
 // Dynamically allocated array of bytes:
 unsigned char* storage;
 void inflate(int increase);
public:
 Stash(int Size); // Zero quantity
 Stash(int Size, int InitQuant);
 ~Stash();
 int add(void* element);
 void* fetch(int index);
 int count();
};
#endif // STASH4_H_ ///:~

The first Stash() constructor is the same as before, but the second one has a Quantity
argument to indicate the initial quantity of storage places to be allocated. In the definition, you
can see that the internal value of quantity is set to zero, along with the storage pointer:

//: C07:Stash4.cpp {O}
// Function overloading
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include "../require.h"
#include "Stash4.h"
using namespace std;

Stash::Stash(int Size) {
 size = Size;
 quantity = 0;
 next = 0;
 storage = 0;
}

Stash::Stash(int Size, int InitQuant) {
 size = Size;
 quantity = 0;
 next = 0;
 storage = 0;
 inflate(InitQuant);
}

Stash::~Stash() {
 if(storage) {

Chapter 5: Introduction to Iostreams
220

 puts("freeing storage");
 free(storage);
 }
}

int Stash::add(void* element) {
 if(next >= quantity) // Enough space left?
 inflate(100); // Add space for 100 elements
 // Copy element into storage,
 // starting at next empty space:
 memcpy(&(storage[next * size]),
 element, size);
 next++;
 return(next - 1); // Index number
}

void* Stash::fetch(int index) {
 if(index >= next || index < 0)
 return 0; // Not out of bounds?
 // Produce pointer to desired element:
 return &(storage[index * size]);
}

int Stash::count() {
 return next; // Number of elements in Stash
}

void Stash::inflate(int increase) {
 void* v =
 realloc(storage, (quantity+increase)*size);
 require(v); // Was it successful?
 storage = (unsigned char*)v;
 quantity += increase;
} ///:~

When you use the first constructor no memory is allocated for storage. The allocation
happens the first time you try to add() an object and any time the current block of memory is
exceeded inside add().

This is demonstrated in the test program, which exercises the first constructor:

//: C07:Stshtst4.cpp
//{L} Stash4
// Function overloading
#include <cstdio>

Chapter 5: Introduction to Iostreams
221

#include "../require.h"
#include "Stash4.h"
using namespace std;
#define BUFSIZE 80

int main() {
 int i;
 FILE* file;
 char buf[BUFSIZE];
 char* cp;
 //
 Stash intStash(sizeof(int));
 for(i = 0; i < 100; i++)
 intStash.add(&i);
 file = fopen("STSHTST4.CPP", "r");
 require(file);
 // Holds 80-character strings:
 Stash stringStash(sizeof(char) * BUFSIZE);
 while(fgets(buf, BUFSIZE, file))
 stringStash.add(buf);
 fclose(file);

 for(i = 0; i < intStash.count(); i++)
 printf("intStash.fetch(%d) = %d\n", i,
 (int)intStash.fetch(i));

 i = 0;
 while(
 (cp = (char*)stringStash.fetch(i++)) != 0)
 printf("stringStash.fetch(%d) = %s",
 i - 1, cp);
 putchar('\n');
} ///:~

You can modify this code to use the second constructor just by adding another argument;
presumably you’d know something about the problem that allows you to choose an initial size
for the Stash.

Default arguments
Examine the two constructors for Stash(). They don’t seem all that different, do they? In fact,
the first constructor seems to be the special case of the second one with the initial size set to

Chapter 5: Introduction to Iostreams
222

zero. In this situation it seems a bit of a waste of effort to create and maintain two different
versions of a similar function.

C++ provides a remedy with default arguments. A default argument is a value given in the
declaration that the compiler automatically inserts if you don’t provide a value in the function
call. In the Stash example, we can replace the two functions:

 Stash(int Size); // Zero quantity
 Stash(int Size, int Quantity);

with the single declaration

 Stash(int Size, int Quantity = 0);

The Stash(int) definition is simply removed — all that is necessary is the single Stash(int,
int) definition.

Now, the two object definitions

 Stash A(100), B(100, 0);

will produce exactly the same results. The identical constructor is called in both cases, but for
A, the second argument is automatically substituted by the compiler when it sees the first
argument is an int and there is no second argument. The compiler has seen the default
argument, so it knows it can still make the function call if it substitutes this second argument,
which is what you’ve told it to do by making it a default.

Default arguments are a convenience, as function overloading is a convenience. Both features
allow you to use a single name in different situations. The difference is that the compiler is
substituting arguments when you don’t want to put them in yourself. The preceding example
is a good place to use default arguments instead of function overloading; otherwise you end
up with two or more functions that have similar signatures and similar behaviors. Obviously,
if the functions have very different behaviors, it usually doesn’t make sense to use default
arguments.

There are two rules you must be aware of when using default arguments. First, only trailing
arguments may be defaulted. That is, you can’t have a default argument followed by a
nondefault argument. Second, once you start using default arguments, all the remaining
arguments must be defaulted. (This follows from the first rule.)

Default arguments are only placed in the declaration of a function, which is placed in a header
file. The compiler must see the default value before it can use it. Sometimes people will place
the commented values of the default arguments in the function definition, for documentation
purposes

void fn(int x /* = 0 */) { // ...

Default arguments can make arguments declared without identifiers look a bit funny. You can
end up with

void f(int x, int = 0, float = 1.1);

Chapter 5: Introduction to Iostreams
223

In C++ you don’t need identifiers in the function definition, either:

void f(int x, int, float f) { /* ... */ }

In the function body, x and f can be referenced, but not the middle argument, because it has
no name. The calls must still use a placeholder, though: f(1) or f(1,2,3.0). This syntax allows
you to put the argument in as a placeholder without using it. The idea is that you might want
to change the function definition to use it later, without changing all the function calls. Of
course, you can accomplish the same thing by using a named argument, but if you define the
argument for the function body without using it, most compilers will give you a warning
message, assuming you’ve made a logical error. By intentionally leaving the argument name
out, you suppress this warning.

More important, if you start out using a function argument and later decide that you don’t
need it, you can effectively remove it without generating warnings, and yet not disturb any
client code that was calling the previous version of the function.

A bit vector class
As a further example of function overloading and default arguments, consider the problem of
efficiently storing a set of true-false flags. If you have a number of pieces of data that can be
expressed as «on» or «off,» it may be convenient to store them in an object called a bit vector.
Sometimes a bit vector is not a tool to be used by the application developer, but a part of other
classes.

Of course, the easiest way to code a group of flags is with a byte of data for each flag, as
shown in this example:

//: C07:Flags.cpp
// List of true/false flags
#include <cstdio>
#include <cstring>
#include "../require.h"
using namespace std;

#define FSIZE 100
#define TRUE 1
#define FALSE 0

class Flags {
 unsigned char f[FSIZE];
public:
 Flags();
 void set(int i);
 void clear(int i);
 int read(int i);

Chapter 5: Introduction to Iostreams
224

 int size();
};

Flags::Flags() {
 memset(f, FALSE, FSIZE);
}

void Flags::set(int i) {
 require(i >= 0 && i < FSIZE);
 f[i] = TRUE;
}

void Flags::clear(int i) {
 require(i >= 0 && i < FSIZE);
 f[i] = FALSE;
}

int Flags::read(int i) {
 require(i >= 0 && i < FSIZE);
 return f[i];
}

int Flags::size() { return FSIZE; }

int main() {
 Flags fl;
 for(int i = 0; i < fl.size(); i++)
 if(i % 3 == 0) fl.set(i);
 for(int j = 0; j < fl.size(); j++)
 printf("fl.read(%d)= %d\n", j, fl.read(j));
} ///:~

However, this is wasteful, because you’re using eight bits for a flag that could be expressed as
a single bit. Sometimes this storage is important, especially if you want to build other classes
using this class. So consider instead the following BitVector, which uses a bit for each flag.
The function overloading occurs in the constructor and the bits() function:

//: C07:Bitvect.h
// Bit Vector
#ifndef BITVECT_H_
#define BITVECT_H_

class BitVector {
 unsigned char* bytes;

Chapter 5: Introduction to Iostreams
225

 int Bits, numBytes;
public:
 BitVector(); // Default: 0 size
 // init points to an array of bytes
 // size is measured in bytes
 BitVector(unsigned char* init,
 int size = 8);
 // binary is a string of 1s and 0s
 BitVector(char* binary);
 ~BitVector();
 void set(int bit);
 void clear(int bit);
 int read(int bit);
 int bits(); // Number of bits in the vector
 void bits(int sz); // Set number of bits
 void print(const char* msg = "");
};
#endif // BITVECT_H_ ///:~

The first (default) constructor creates a BitVector of size zero. You can’t set any bits in this
vector because there are none. First you have to increase the size of the vector with the
overloaded bits() function. The version with no arguments returns the current size of the
vector in bits, and bits(int) changes the size to what is specified in the argument. Thus you
both set and read the size using the same function name. Note that there’s no restriction on the
new size — you can make it smaller as well as larger.

The second constructor takes a pointer to an array of unsigned chars, that is, an array of raw
bytes. The second argument tells the constructor how many bytes are in the array. If the first
argument is zero rather than a valid pointer, the array is initialized to zero. If you don’t give a
second argument, the default size is eight bytes.

You might think you can create a BitVector of size eight bytes and set it to zero by saying
BitVector b(0);. This would work if not for the third constructor, which takes a char* as its
only argument. The argument 0 could be used in either the second constructor (with the
second argument defaulted) or the third constructor. The compiler has no way of knowing
which one it should choose, so you’ll get an ambiguity error. To successfully create a
BitVector this way, you must cast zero to a pointer of the proper type: BitVector
b((unsigned char*)0). This is awkward, so you may instead want to create an empty vector
with BitVector b and then expand it to the desired size with b.bits(64) to allocate eight bytes.

It’s important that the compiler distinguish char* and unsigned char* as two distinct data
types. If it did not (a problem in the past) then BitVector(unsigned char*, int) (with the
second argument defaulted) and BitVector(char*) would look the same when the compiler
tried to match the function call.

Chapter 5: Introduction to Iostreams
226

Note that the print() function has a default argument for its char* argument. This may look a
bit puzzling if you know how the compiler handles string constants. Does the compiler create
a new default character string every time you call the function? The answer is no; it creates a
single string in a special area reserved for static and global data, and passes the address of that
string every time it needs to use it as a default.

A string of bits
The third constructor for the BitVector takes a pointer to a character string that represents a
string of bits. This is a convenient syntax for the user because it allows the vector
initialization values to be expressed in the natural form 0110010. The object is created to
match the length of the string, and each bit is set or cleared according to the string.

The other functions are the all-important set(), clear(), and read(), each of which takes the
bit number of interest as an argument. The print() function prints a message, which has a
default argument of an empty string, and then the bit pattern of the BitVector, again using
ones and zeros.

Two issues are immediately apparent when implementing the BitVector class. One is that if
the number of bits you need doesn’t fall on an 8-bit boundary (or whatever word size your
machine uses), you must round up to the nearest boundary. The second is the care necessary
in selecting the bits of interest. For example, when creating a BitVector using an array of
bytes, each byte in the array must be read in from left to right so it will appear the way you
expect it in the print() function.

Here are the member function definitions:

//: C07:Bitvect.cpp {O}
// BitVector Implementation
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <climits> // CHAR_BIT = # bits in char
#include "../require.h"
#include "Bitvect.h"
using namespace std;
// A byte with the high bit set:
const unsigned char highbit =
 1 << (CHAR_BIT - 1);

BitVector::BitVector() {
 numBytes = 0;
 Bits = 0;
 bytes = 0;
}
// Notice default args are not duplicated:

Chapter 5: Introduction to Iostreams
227

BitVector::BitVector(unsigned char* init,
 int size) {
 numBytes = size;
 Bits = numBytes * CHAR_BIT;
 bytes = (unsigned char*)calloc(numBytes, 1);
 require(bytes);
 if(init == 0) return; // Default to all 0
 // Translate from bytes into bit sequence:
 for(int index = 0; index<numBytes; index++)
 for(int offset = 0;
 offset < CHAR_BIT; offset++)
 if(init[index] & (highbit >> offset))
 set(index * CHAR_BIT + offset);
}

BitVector::BitVector(char* binary) {
 Bits = strlen(binary);
 numBytes = Bits / CHAR_BIT;
 // If there's a remainder, add 1 byte:
 if(Bits % CHAR_BIT) numBytes++;
 bytes = (unsigned char*)calloc(numBytes, 1);
 require(bytes);
 for(int i = 0; i < Bits; i++)
 if(binary[i] == '1') set(i);
}

BitVector::~BitVector() {
 free(bytes);
}

void BitVector::set(int bit) {
 require(bit >= 0 && bit < Bits);
 int index = bit / CHAR_BIT;
 int offset = bit % CHAR_BIT;
 unsigned char mask = (1 << offset);
 bytes[index] |= mask;
}

int BitVector::read(int bit) {
 require(bit >= 0 && bit < Bits);
 int index = bit / CHAR_BIT;
 int offset = bit % CHAR_BIT;
 return (bytes[index] >> offset) & 1;

Chapter 5: Introduction to Iostreams
228

}

void BitVector::clear(int bit) {
 require(bit >= 0 && bit < Bits);
 int index = bit / CHAR_BIT;
 int offset = bit % CHAR_BIT;
 unsigned char mask = ~(1 << offset);
 bytes[index] &= mask;
}

int BitVector::bits() { return Bits; }

void BitVector::bits(int size) {
 int oldsize = Bits;
 Bits = size;
 numBytes = Bits / CHAR_BIT;
 // If there's a remainder, add 1 byte:
 if(Bits % CHAR_BIT) numBytes++;
 void* v = realloc(bytes, numBytes);
 require(v);
 bytes = (unsigned char*)v;
 for(int i = oldsize; i < Bits; i++)
 clear(i); // Erase additional bits
}

void BitVector::print(const char* msg) {
 puts(msg);
 for(int i = 0; i < Bits; i++){
 if(read(i)) putchar('1');
 else putchar('0');
 // Format into byte blocks:
 if((i + 1) % CHAR_BIT == 0) putchar(' ');
 }
 putchar('\n');
} ///:~

The first constructor is trivial because it just sets everything to zero. The second constructor
allocates storage and initializes the number of bits, and then it gets a little tricky. The outer
for loop indexes through the array of bytes, and the inner for loop indexes through each byte
a bit at a time. However, the bit is selected from the byte from left to right using the
expression init[index] & (0x80 >> offset). Notice this is a bitwise AND, and the hex 0x80 (a
1-bit in the highest location) is shifted to the right by offset to create a mask. If the result is
nonzero, there is a one in that particular bit position, and the set() function is used to set the

Chapter 5: Introduction to Iostreams
229

bit inside the BitVector. It was important to scan the source bytes from left to right so the
print() function makes sense to the viewer.

The third constructor converts from a character string representing a binary sequence of ones
and zeroes into a BitVector. The number of bits is taken at face value — the length of the
character string. But because the character string may produce a number of bits that isn’t a
multiple of eight, the number of bytes numBytes is calculated by first doing an integer
division and then checking to see if there’s a remainder by using the modulus operator. In this
case, unlike the second constructor, the bits are scanned in from left to right from the source
string.

The set(), clear(), and read() functions follow a nearly identical format. The first three lines
are identical in each case: assert() that the argument is in range, and create an index into the
array of bytes and an offset into the selected byte. Both set() and read() create their mask
the same way: by shifting a bit left into the desired position. But set() forces the bit in the
array to be set by ORing the appropriate byte with the mask, and read() checks the value by
ANDing the mask with the byte and seeing if the result is nonzero. clear() creates its mask
by shifting the one into the desired position, then flipping all the bits with the binary NOT
operator (the tilde: ~), then ANDing the mask onto the byte so only the desired bit is forced to
zero.

Note that set(), read(), and clear() could be written much more succinctly. For example,
clear() could be reduced to

bytes[bit/CHAR_BIT] &= ~(1 << (bit % CHAR_BIT));

While this is more efficient, it certainly isn’t as readable.

The two overloaded bits() functions are quite different in their behavior. The first is simply
an access function (a function that produces a value based on private data without allowing
access to that data) that tells how many bits are in the array. The second uses its argument to
calculate the new number of bytes required, realloc()s the memory (which allocates fresh
memory if bytes is zero) and zeroes the additional bits. Note that if you ask for the same
number of bits you’ve already got, this may actually reallocate the memory (depending on the
implementation of realloc()) but it won’t hurt anything.

The print() function puts out the msg string. The Standard C library function puts() always
adds a new line, so this will result in a new line for the default argument. Then it uses read()
on each successive bit to print the appropriate character. For easier visual scanning, after each
eight bits it prints out a space. Because of the way the second BitVector constructor reads in
its array of bytes, the print() function will produce results in a familiar form.

The following program tests the BitVector class by exercising all the functions:

//: C07:Bvtest.cpp
//{L} Bitvect
// Testing the BitVector class
#include "Bitvect.h"

Chapter 5: Introduction to Iostreams
230

int main() {
 unsigned char b[] = {
 0x0f, 0xff, 0xf0,
 0xAA, 0x78, 0x11
 };
 BitVector bv1(b, sizeof b / sizeof *b),
 bv2("10010100111100101010001010010010101");
 bv1.print("bv1 before modification");
 for(int i = 36; i < bv1.bits(); i++)
 bv1.clear(i);
 bv1.print("bv1 after modification");
 bv2.print("bv2 before modification");
 for(int j=bv2.bits()-10; j<bv2.bits(); j++)
 bv2.clear(j);
 bv2.set(30);
 bv2.print("bv2 after modification");
 bv2.bits(bv2.bits() / 2);
 bv2.print("bv2 cut in half");
 bv2.bits(bv2.bits() + 10);
 bv2.print("bv2 grown by 10");
 BitVector bv3((unsigned char*)0);
} ///:~

The objects bv1, bv2, and bv3 show three different types of BitVectors and their
constructors. The set() and clear() functions are demonstrated. (read() is exercised inside
print().) Toward the end of this example, bv2 is cut in half and then grown to demonstrate a
way to zero the end of the BitVector.

You should be aware that the Standard C++ library contains bits and bitstring classes which
are much more complete (and standard) implementations of bit vectors.

Summary
Both function overloading and default arguments provide a convenience for calling function
names. It can seem confusing at times to know which technique to use. For example, in the
BitVector class it seems like the two bits() functions could be combined into a single
version:

int bits(int sz = -1);

If you called it without an argument, the function would check for the -1 default and interpret
that as meaning that you wanted it to tell you the current number of bits. The use appears to
be the same as the previous scheme. However, there are a number of significant differences
that jump out, or at least should make you feel uncomfortable.

Chapter 5: Introduction to Iostreams
231

Inside bits() you’ll have to do a conditional based on the value of the argument. If you have
to look for the default rather than treating it as an ordinary value, that should be a clue that
you will end up with two different functions inside one: one version for the normal case, and
one for the default. You might as well split it up into two distinct function bodies and let the
compiler do the selection. This results in a slight increase in efficiency, because the extra
argument isn’t passed and the extra code for the conditional isn’t executed. The slight
efficiency increase for two functions could make a difference if you call the function many
times.

You do lose something when you use a default argument in this case. First, the default has to
be something you wouldn’t ordinarily use, -1 in this case. Now you can’t tell if a negative
number is an accident or a default substitution. Second, there’s only one return value with a
single function, so the compiler loses the information that was available for the overloaded
functions. Now, if you say

int i = bv1.set(10);

the compiler will accept it and no longer sees something that you, as the class designer, might
want, to be an error.

And consider the plight of the user, always. Which design will make more sense to users of
your class as they peruse the header file? What does a default argument of -1 suggest? Not
much. The two separate functions are much clearer because one takes a value and doesn’t
return anything and the other doesn’t take a value but returns something. Even without
documentation, it’s far easier to guess what the two different functions do.

As a guideline, you shouldn’t use a default argument as a flag upon which to conditionally
execute code. You should instead break the function into two or more overloaded functions if
you can. A default argument should be a value you would ordinarily put in that position. It’s a
value that is more likely to occur than all the rest, so users can generally ignore it or use it
only if they want to change it from the default value.

The default argument is included to make function calls easier, especially when those
functions have many arguments with typical values. Not only is it much easier to write the
calls, it’s easier to read them, especially if the class creator can order the arguments so the
least-modified defaults appear latest in the list.

An especially important use of default arguments is when you start out with a function with a
set of arguments, and after it’s been used for a while you discover you need to add arguments.
By defaulting all the new arguments, you ensure that all client code using the previous
interface is not disturbed.

Exercises
 1. Create a message class with a constructor that takes a single char* with a

default value. Create a private member char*, and assume the constructor
will be passed a static quoted string; simply assign the argument pointer to

Chapter 5: Introduction to Iostreams
232

your internal pointer. Create two overloaded member functions called
print(): one that takes no arguments and simply prints the message stored
in the object, and one that takes a char* argument, which it prints in
addition to the internal message. Does it make sense to use this approach
rather than the one used for the constructor?

 2. Determine how to generate assembly output with your compiler, and run
experiments to deduce the name-mangling scheme.

 3. Modify STASH4.H and STASH4.CPP to use default arguments in the
constructor. Test the constructor by making two different versions of a
Stash object.

 4. Compare the execution speed of the Flags class versus the BitVector class.
To ensure there's no confusion about efficiency, first remove the index,
offset, and mask clarification definitions in set(), clear() and read() by
combining them into a single statement that performs the appropriate action.
(Test the new code to make sure you haven't broken anything.)

 5. Change FLAGS.CPP so it dynamically allocates the storage for the flags.
Give the constructor an argument that is the size of the storage, and put a
default of 100 on that argument. Make sure you properly clean up the
storage in the destructor.

233

8: Constants
The concept of constant (expressed by the const keyword)
was created to allow the programmer to draw a line between
what changes and what doesn’t.

This provides safety and control in a C++ programming project. Since its origin, it has taken
on a number of different purposes. In the meantime it trickled back into the C language where
its meaning was changed. All this can seem a bit confusing at first, and in this chapter you’ll
learn when, why, and how to use the const keyword. At the end there’s a discussion of
volatile, which is a near cousin to const (because they both concern change) and has identical
syntax.

The first motivation for const seems to have been to eliminate the use of preprocessor
#defines for value substitution. It has since been put to use for pointers, function arguments,
and return types, and class objects and member functions. All of these have slightly different
but conceptually compatible meanings and will be looked at in separate sections.

Value substitution
When programming in C, the preprocessor is liberally used to create macros and to substitute
values. Because the preprocessor simply does text replacement and has no concept nor
facility for type checking, preprocessor value substitution introduces subtle problems that can
be avoided in C++ by using const values.

The typical use of the preprocessor to substitute values for names in C looks like this:

#define BUFSIZE 100

BUFSIZE is a name that doesn’t occupy storage and can be placed in a header file to provide
a single value for all translation units that use it. It’s very important to use value substitution
instead of so-called «magic numbers» to support code maintenance. If you use magic numbers
in your code, not only does the reader have no idea where the numbers come from or what
they represent, but if you decide to change a value, you must perform hand editing, and you
have no trail to follow to ensure you don’t miss one.

Most of the time, BUFSIZE will behave like an ordinary variable, but not all the time. In
addition, there’s no type information. This can hide bugs that are very difficult to find. C++
uses const to eliminate these problems by bringing value substitution into the domain of the
compiler. Now you can say

Chapter 6: Constants 234

const int bufsize = 100;

You can use bufsize anyplace where the compiler must know the value at compile time so it
can perform constant folding, which means the compiler will reduce a complex constant
expression to a simple one by performing the necessary calculations at compile time. This is
especially important in array definitions:

char buf[bufsize];

You can use const for all the built-in types (char, int, float, and double) and their variants (as
well as class objects, as you’ll see later in this chapter). You should always use const instead
of #define value substitution.

const in header files
To use const instead of #define, you must be able to place const definitions inside header
files as you can with #define. This way, you can place the definition for a const in a single
place and distribute it to a translation unit by including the header file. A const in C++
defaults to internal linkage; that is, it is visible only within the file where it is defined and
cannot be seen at link time by other translation units. You must always assign a value to a
const when you define it, except when you make an explicit declaration using extern:

extern const bufsize;

The C++ compiler avoids creating storage for a const, but instead holds the definition in its
symbol table, although the above extern forces storage to be allocated, as do certain other
cases, such as taking the address of a const. When the const is used, it is folded in at compile
time.

Of course, this goal of never allocating storage for a const cannot always be achieved,
especially with complicated structures. In these cases, the compiler creates storage, which
prevents constant folding. This is why const must default to internal linkage, that is, linkage
only within that particular translation unit; otherwise, linker errors would occur with
complicated consts because they allocate storage in multiple CPP files. The linker sees the
same definition in multiple object files, and complains. However, a const defaults to internal
linkage, so the linker doesn’t try to link those definitions across translation units, and there are
no collisions. With built-in types, which are used in the majority of cases involving constant
expressions, the compiler can always perform constant folding.

Safety consts
The use of const is not limited to replacing #defines in constant expressions. If you initialize
a variable with a value that is produced at run-time and you know it will not change for the
lifetime of that variable, it is good programming practice to make it a const so the compiler
will give you an error message if you accidentally try to change it. Here’s an example:

//: C08:Safecons.cpp

Chapter 6: Constants 235

// Using const for safety
#include <iostream>
using namespace std;

const int i = 100; // Typical constant
const int j = i + 10; // Value from const expr
long address = (long)&j; // Forces storage
char buf[j + 10]; // Still a const expression

int main() {
 cout << "type a character & CR:";
 const char c = cin.get(); // Can't change
 const char c2 = c + 'a';
 cout << c2;
 // ...
} ///:~

You can see that i is a compile-time const, but j is calculated from i. However, because i is a
const, the calculated value for j still comes from a constant expression and is itself a compile-
time constant. The very next line requires the address of j and therefore forces the compiler to
allocate storage for j. Yet this doesn’t prevent the use of j in the determination of the size of
buf because the compiler knows j is const and that the value is valid even if storage was
allocated to hold that value at some point in the program.

In main(), you see a different kind of const in the identifier c because the value cannot be
known at compile time. This means storage is required, and the compiler doesn’t attempt to
keep anything in its symbol table (the same behavior as in C). The initialization must still
happen at the point of definition, and once the initialization occurs, the value cannot be
changed. You can see that c2 is calculated from c and also that scoping works for consts as it
does for any other type — yet another improvement over the use of #define.

As a matter of practice, if you think a value shouldn’t change, you should make it a const.
This not only provides insurance against inadvertent changes, it also allows the compiler to
generate more efficient code by eliminating storage and memory reads.

Aggregates
It’s possible to use const for aggregates, but you’re virtually assured that the compiler will not
be sophisticated enough to keep an aggregate in its symbol table, so storage will be allocated.
In these situations, const means «a piece of storage that cannot be changed.» However, the
value cannot be used at compile time because the compiler is not required to know the
contents of storage at compile time. Thus, you cannot say

//: C08:Constag.cpp {O}
// Constants and aggregates

Chapter 6: Constants 236

const int i[] = { 1, 2, 3, 4 };

//! float f[i[3]]; // Illegal

struct s { int i, j; };

const s S[] = { { 1, 2 }, { 3, 4 } };

//! double d[S[1].j]; // Illegal
///:~

In an array definition, the compiler must be able to generate code that moves the stack pointer
to accommodate the array. In both of the illegal definitions, the compiler complains because it
cannot find a constant expression in the array definition.

Differences with C
Constants were introduced in early versions of C++ while the Standard C specification was
still being finished. It was then seen as a good idea and included in C. But somehow, const in
C came to mean «an ordinary variable that cannot be changed.» In C, it always occupies
storage and its name is global. The C compiler cannot treat a const as a compile-time
constant. In C, if you say

const bufsize = 100;
char buf[bufsize];

you will get an error, even though it seems like a rational thing to do. Because bufsize
occupies storage somewhere, the C compiler cannot know the value at compile time. You can
optionally say

const bufsize;

in C, but not in C++, and the C compiler accepts it as a declaration indicating there is storage
allocated elsewhere. Because C defaults to external linkage for consts, this makes sense. C++
defaults to internal linkage for consts so if you want to accomplish the same thing in C++,
you must explicitly change the linkage to external using extern:

extern const bufsize; // Declaration only

This line also works in C.

The C approach to const is not very useful, and if you want to use a named value inside a
constant expression (one that must be evaluated at compile time), C almost forces you to use
#define in the preprocessor.

Chapter 6: Constants 237

Pointers
Pointers can be made const. The compiler will still endeavor to prevent storage allocation and
do constant folding when dealing with const pointers, but these features seem less useful in
this case. More importantly, the compiler will tell you if you attempt changes using such a
pointer later in your code, which adds a great deal of safety.

When using const with pointers, you have two options: const can be applied to what the
pointer is pointing to, or the const can be applied to the address stored in the pointer itself.
The syntax for these is a little confusing at first but becomes comfortable with practice.

Pointer to const
The trick with a pointer definition, as with any complicated definition, is to read it starting at
the identifier and working your way out. The const specifier binds to the thing it is «closest
to.» So if you want to prevent any changes to the element you are pointing to, you write a
definition like this:

const int* x;

Starting from the identifier, we read «x is a pointer, which points to a const int.» Here, no
initialization is required because you’re saying that x can point to anything (that is, it is not
const), but the thing it points to cannot be changed.

Here’s the mildly confusing part. You might think that to make the pointer itself
unchangeable, that is, to prevent any change to the address contained inside x, you would
simply move the const to the other side of the int like this:

int const* x;

It’s not all that crazy to think that this should read «x is a const pointer to an int.» However,
the way it actually reads is «x is an ordinary pointer to an int that happens to be const.» That
is, the const has bound itself to the int again, and the effect is the same as the previous
definition. The fact that these two definitions are the same is the confusing point; to prevent
this confusion on the part of your reader, you should probably stick to the first form.

const pointer
To make the pointer itself a const, you must place the const specifier to the right of the *, like
this:

int d = 1;
int* const x = &d;

Chapter 6: Constants 238

Now it reads: «x is a pointer, which is const that points to an int.» Because the pointer itself is
now the const, the compiler requires that it be given an initial value that will be unchanged
for the life of that pointer. It’s OK, however, to change what that value points to by saying

*x = 2;

You can also make a const pointer to a const object using either of two legal forms:

int d = 1;
const int* const x = &d; // (1)
int const* const x2 = &d; // (2)

Now neither the pointer nor the object can be changed.

Some people argue that the second form is more consistent because the const is always placed
to the right of what it modifies. You’ll have to decide which is clearer for your particular
coding style.

Formatting
This book makes a point of only putting one pointer definition on a line, and initializing each
pointer at the point of definition whenever possible. Because of this, the formatting style of
«attaching» the ‘*’ to the data type is possible:

int* u = &w;

as if int* were a discrete type unto itself. This makes the code easier to understand, but
unfortunately that’s not actually the way things work. The ‘*’ in fact binds to the identifier,
not the type. It can be placed anywhere between the type name and the identifier. So you can
do this:

int* u = &w, v = 0;

which creates an int* u, as before, and a nonpointer int v. Because readers often find this
confusing, it is best to follow the form shown in this book.

Assignment and type checking
C++ is very particular about type checking, and this extends to pointer assignments. You can
assign the address of a non-const object to a const pointer because you’re simply promising
not to change something that is OK to change. However, you can’t assign the address of a
const object to a non-const pointer because then you’re saying you might change the object
via the pointer. Of course, you can always use a cast to force such an assignment, but this is
bad programming practice because you are then breaking the constness of the object, along
with any safety promised by the const. For example:

int d = 1;
const int e = 2;
int* u = &d; // OK -- d not const
int* v = &e; // Illegal -- e const

Chapter 6: Constants 239

int* w = (int*)&e; // Legal but bad practice

Although C++ helps prevent errors it, does not protect you from yourself if you want to break
the safety mechanisms.

String literals
The place where strict constness is not enforced is with string literals. You can say

char* cp = "howdy";

and the compiler will accept it without complaint. This is technically an error because a string
literal («howdy» in this case) is created by the compiler as a constant string, and the result of
the quoted string is its starting address in memory.

So string literals are actually constant strings. Of course, the compiler lets you get away with
treating them as non-const because there’s so much existing C code that relies on this.
However, if you try to change the values in a string literal, the behavior is undefined, although
it will probably work on many machines.

Function arguments
& return values

The use of const to specify function arguments and return values is another place where the
concept of constants can be confusing. If you are passing objects by value, specifying const
has no meaning to the client (it means that the passed argument cannot be modified inside the
function). If you are returning an object of a user-defined type by value as a const, it means
the returned value cannot be modified. If you are passing and returning addresses, const is a
promise that the destination of the address will not be changed.

Passing by const value
You can specify that function arguments are const when passing them by value, such as

void f1(const int i) {
 i++; // Illegal -- compile-time error
}

but what does this mean? You’re making a promise that the original value of the variable will
not be changed by the function x(). However, because the argument is passed by value, you
immediately make a copy of the original variable, so the promise to the client is implicitly
kept.

Inside the function, the const takes on meaning: the argument cannot be changed. So it’s
really a tool for the creator of the function, and not the caller.

Chapter 6: Constants 240

To avoid confusion to the caller, you can make the argument a const inside the function,
rather than in the argument list. You could do this with a pointer, but a nicer syntax is
achieved with the reference, a subject that will be fully developed in Chapter 9. Briefly, a
reference is like a constant pointer that is automatically dereferenced, so it has the effect of
being an alias to an object. To create a reference, you use the & in the definition. So the
nonconfusing function definition looks like this:

void f2(int ic) {
 const int& i = ic;
 i++; // Illegal -- compile-time error
}

Again, you’ll get an error message, but this time the constness of the local object is not part of
the function signature; it only has meaning to the implementation of the function so it’s
hidden from the client.

Returning by const value
A similar truth holds for the return value. If you return by value from a function, as a const

const int g();

you are promising that the original variable (inside the function frame) will not be modified.
And again, because you’re returning it by value, it’s copied so the original value is
automatically not modified.

At first, this can make the specification of const seem meaningless. You can see the apparent
lack of effect of returning consts by value in this example:

//: C08:Constval.cpp
// Returning consts by value
// has no meaning for built-in types

int f3() { return 1; }
const int f4() { return 1; }

int main() {
 const int j = f3(); // Works fine
 int k = f4(); // But this works fine too!
} ///:~

For built-in types, it doesn’t matter whether you return by value as a const, so you should
avoid confusing the client programmer by leaving off the const when returning a built-in type
by value.

Returning by value as a const becomes important when you’re dealing with user-defined
types. If a function returns a class object by value as a const, the return value of that function
cannot be an lvalue (that is, it cannot be assigned to or otherwise modified). For example:

Chapter 6: Constants 241

//: C08:Constret.cpp
// Constant return by value
// Result cannot be used as an lvalue

class X {
 int i;
public:
 X(int I = 0) { i = I; }
 void modify() { i++; }
};

X f5() {
 return X();
}

const X f6() {
 return X();
}

void f7(X& x) { // Pass by non-const reference
 x.modify();
}

int main() {
 f5() = X(1); // OK -- non-const return value
 f5().modify(); // OK
 f7(f5()); // OK
 // Causes compile-time errors:
//! f6() = X(1);
//! f6().modify();
//! f7(f6());
} ///:~

f5() returns a non-const X object, while f6() returns a const X object. Only the non-const
return value can be used as an lvalue. Thus, it’s important to use const when returning an
object by value if you want to prevent its use as an lvalue.

The reason const has no meaning when you’re returning a built-in type by value is that the
compiler already prevents it from being an lvalue (because it’s always a value, and not a
variable). Only when you’re returning objects of user-defined types by value does it become
an issue.

The function f7() takes its argument as a non-const reference (an additional way of handling
addresses in C++ which is the subject of Chapter 9). This is effectively the same as taking a
non-const pointer; it’s just that the syntax is different.

Chapter 6: Constants 242

Temporaries
Sometimes, during the evaluation of an expression, the compiler must create temporary
objects. These are objects like any other: they require storage and they must be constructed
and destroyed. The difference is that you never see them — the compiler is responsible for
deciding that they’re needed and the details of their existence. But there is one thing about
temporaries: they’re automatically const. Because you usually won’t be able to get your
hands on a temporary object, telling it to do something that will change that temporary is
almost certainly a mistake because you won’t be able to use that information. By making all
temporaries automatically const, the compiler informs you when you make that mistake.

The way the constness of class objects is preserved is shown later in the chapter.

Passing and returning addresses
If you pass or return a pointer (or a reference), it’s possible for the user to take the pointer and
modify the original value. If you make the pointer a const, you prevent this from happening,
which may be an important factor. In fact, whenever you’re passing an address into a
function, you should make it a const if at all possible. If you don’t, you’re excluding the
possibility of using that function with a pointer to a const.

The choice of whether to return a pointer to a const depends on what you want to allow your
user to do with it. Here’s an example that demonstrates the use of const pointers as function
arguments and return values:

//: C08:Constp.cpp
// Constant pointer arg/return

void t(int*) {}

void u(const int* cip) {
//! *cip = 2; // Illegal -- modifies value
 int i = *cip; // OK -- copies value
//! int* ip2 = cip; // Illegal: non-const
}

const char* v() {
 // Returns address of static string:
 return "result of function v()";
}

const int* const w() {
 static int i;
 return &i;
}

Chapter 6: Constants 243

int main() {
 int x = 0;
 int* ip = &x;
 const int* cip = &x;
 t(ip); // OK
//! t(cip); // Not OK
 u(ip); // OK
 u(cip); // Also OK
//! char* cp = v(); // Not OK
 const char* ccp = v(); // OK
//! int* ip2 = w(); // Not OK
 const int* const ccip = w(); // OK
 const int* cip2 = w(); // OK
//! *w() = 1; // Not OK
} ///:~

The function t() takes an ordinary non-const pointer as an argument, and u() takes a const
pointer. Inside u() you can see that attempting to modify the destination of the const pointer
is illegal, but you can of course copy the information out into a non-const variable. The
compiler also prevents you from creating a non-const pointer using the address stored inside a
const pointer.

The functions v() and w() test return value semantics. v() returns a const char* that is
created from a string literal. This statement actually produces the address of the string literal,
after the compiler creates it and stores it in the static storage area. As mentioned earlier, this
string is technically a constant, which is properly expressed by the return value of v().

The return value of w() requires that both the pointer and what it points to be a const. As with
v(), the value returned by w() is valid after the function returns only because it is static. You
never want to return pointers to local stack variables because they will be invalid after the
function returns and the stack is cleaned up. (Another common pointer you might return is the
address of storage allocated on the heap, which is still valid after the function returns.

In main(), the functions are tested with various arguments. You can see that t() will accept a
non-const pointer argument, but if you try to pass it a pointer to a const, there’s no promise
that t() will leave the pointer’s destination alone, so the compiler gives you an error message.
u() takes a const pointer, so it will accept both types of arguments. Thus, a function that takes
a const pointer is more general than one that does not.

As expected, the return value of v() can be assigned only to a const pointer. You would also
expect that the compiler refuses to assign the return value of w() to a non-const pointer, and
accepts a const int* const, but it might be a bit surprising to see that it also accepts a const
int*, which is not an exact match to the return type. Once again, because the value (which is
the address contained in the pointer) is being copied, the promise that the original variable is

Chapter 6: Constants 244

untouched is automatically kept. Thus, the second const in const int* const is only
meaningful when you try to use it as an lvalue, in which case the compiler prevents you.

Standard argument passing
In C it’s very common to pass by value, and when you want to pass an address your only
choice is to use a pointer. However, neither of these approaches is preferred in C++. Instead,
your first choice when passing an argument is to pass by reference, and by const reference at
that. To the client programmer, the syntax is identical to that of passing by value, so there’s
no confusion about pointers — they don’t even have to think about the problem. For the
creator of the class, passing an address is virtually always more efficient than passing an
entire class object, and if you pass by const reference it means your function will not change
the destination of that address, so the effect from the client programmer’s point of view is
exactly the same as pass-by-value.

Because of the syntax of references (it looks like pass-by-value) it’s possible to pass a
temporary object to a function that takes a reference, whereas you can never pass a temporary
object to a function that takes a pointer — the address must be explicitly taken. So passing by
reference produces a new situation that never occurs in C: a temporary, which is always
const, can have its address passed to a function. This is why, to allow temporaries to be
passed to functions by reference the argument must be a const reference. The following
example demonstrates this:

//: C08:Consttmp.cpp
// Temporaries are const

class X {};

X f() { return X(); } // Return by value

void g1(X&) {} // Pass by non-const reference
void g2(const X&) {} // Pass by const reference

int main() {
 // Error: const temporary created by f():
//! g1(f());
 // OK: g2 takes a const reference:
 g2(f());
} ///:~

f() returns an object of class X by value. That means when you immediately take the return
value of f() and pass it to another function as in the calls to g1() and g2(), a temporary is
created and that temporary is const. Thus, the call in g1() is an error because g1() doesn’t
take a const reference, but the call to g2() is OK.

Chapter 6: Constants 245

Classes
This section shows the two ways to use const with classes. You may want to create a local
const in a class to use inside constant expressions that will be evaluated at compile time.
However, the meaning of const is different inside classes, so you must use an alternate
technique with enumerations to achieve the same effect.

You can also make a class object const (and as you’ve just seen, the compiler always makes
temporary class objects const). But preserving the constness of a class object is more
complex. The compiler can ensure the constness of a built-in type but it cannot monitor the
intricacies of a class. To guarantee the constness of a class object, the const member function
is introduced: Only a const member function may be called for a const object.

const and enum in classes
One of the places you’d like to use a const for constant expressions is inside classes. The
typical example is when you’re creating an array inside a class and you want to use a const
instead of a #define to establish the array size and to use in calculations involving the array.
The array size is something you’d like to keep hidden inside the class, so if you used a name
like size, for example, you could use that name in another class without a clash. The
preprocessor treats all #defines as global from the point they are defined, so this will not
achieve the desired effect.

Initially, you probably assume that the logical choice is to place a const inside the class. This
doesn’t produce the desired result. Inside a class, const partially reverts to its meaning in C. It
allocates storage within each class object and represents a value that is initialized once and
then cannot change. The use of const inside a class means «This is constant for the lifetime of
the object.» However, each different object may contain a different value for that constant.

Thus, when you create a const inside a class, you cannot give it an initial value. This
initialization must occur in the constructor, of course, but in a special place in the constructor.
Because a const must be initialized at the point it is created, inside the main body of the
constructor the const must already be initialized. Otherwise you’re left with the choice of
waiting until some point later in the constructor body, which means the const would be un-
initialized for a while. Also, there’s nothing to keep you from changing the value of the const
at various places in the constructor body.

The constructor initializer list
The special initialization point is called the constructor initializer list, and it was originally
developed for use in inheritance (an object-oriented subject of a later chapter). The
constructor initializer list — which, as the name implies, occurs only in the definition of the
constructor — is a list of «constructor calls» that occur after the function argument list and a
colon, but before the opening brace of the constructor body. This is to remind you that the

Chapter 6: Constants 246

initialization in the list occurs before any of the main constructor code is executed. This is the
place to put all const initializations, so the proper form for const inside a class is

class fred {
 const size;
public:
 fred();
};
fred::fred() : size(100) {}

The form of the constructor initializer list shown above is at first confusing because you’re
not used to seeing a built-in type treated as if it has a constructor.

«Constructors» for built-in types
As the language developed and more effort was put into making user-defined types look like
built-in types, it became apparent that there were times when it was helpful to make built-in
types look like user-defined types. In the constructor initializer list, you can treat a built-in
type as if it has a constructor, like this:

class B {
 int i;
public:
 B(int I);
};
B::B(int I) : i(I) {}

This is especially critical when initializing const data members because they must be
initialized before the function body is entered.

It made sense to extend this «constructor» for built-in types (which simply means assignment)
to the general case. Now you can say

float pi(3.14159);

It’s often useful to encapsulate a built-in type inside a class to guarantee initialization with the
constructor. For example, here’s an integer class:

class integer {
 int i;
public:
 integer(int I = 0);
};
integer::integer(int I) : i(I) {}

Now if you make an array of integers, they are all automatically initialized to zero:

integer I[100];

Chapter 6: Constants 247

This initialization isn’t necessarily more costly than a for loop or memset(). Many compilers
easily optimize this to a very fast process.

Compile-time constants in classes
Because storage is allocated in the class object, the compiler cannot know what the contents
of the const are, so it cannot be used as a compile-time constant. This means that, for constant
expressions inside classes, const becomes as useless as it is in C. You cannot say

class bob {
 const size = 100; // Illegal
 int array[size]; // Illegal
//...

The meaning of const inside a class is «This value is const for the lifetime of this particular
object, not for the class as a whole.» How then do you create a class constant that can be used
in constant expressions? A common solution is to use an untagged enum with no instances.
An enumeration must have all its values established at compile time, it’s local to the class,
and its values are available for constant expressions. Thus, you will commonly see

class Bunch {
 enum { size = 1000 };
 int i[size];

};

The use of enum here is guaranteed to occupy no storage in the object, and the enumerators
are all evaluated at compile time. You can also explicitly establish the values of the
enumerators:

enum { one = 1, two = 2, three };

With integral enum types, the compiler will continue counting from the last value, so the
enumerator three will get the value 3.

Here’s an example that shows the use of enum inside a container that represents a Stack of
string pointers:

//: C08:SStack.cpp
// enum inside classes
#include <cstring>
#include <iostream>
using namespace std;

class StringStack {
 enum { size = 100 };
 const char* Stack[size];
 int index;

Chapter 6: Constants 248

public:
 StringStack();
 void push(const char* s);
 const char* pop();
};

StringStack::StringStack() : index(0) {
 memset(Stack, 0, size * sizeof(char*));
}

void StringStack::push(const char* s) {
 if(index < size)
 Stack[index++] = s;
}

const char* StringStack::pop() {
 if(index > 0) {
 const char* rv = Stack[--index];
 Stack[index] = 0;
 return rv;
 }
}

const char* iceCream[] = {
 "pralines & cream",
 "fudge ripple",
 "jamocha almond fudge",
 "wild mountain blackberry",
 "raspberry sorbet",
 "lemon swirl",
 "rocky road",
 "deep chocolate fudge"
};

const ICsz = sizeof iceCream/sizeof *iceCream;

int main() {
 StringStack SS;
 for(int i = 0; i < ICsz; i++)
 SS.push(iceCream[i]);
 const char* cp;
 while((cp = SS.pop()) != 0)
 cout << cp << endl;

Chapter 6: Constants 249

} ///:~

Notice that push() takes a const char* as an argument, pop() returns a const char*, and
Stack holds const char*. If this were not true, you couldn’t use a StringStack to hold the
pointers in iceCream. However, it also prevents you from doing anything that will change the
objects contained by StringStack. Of course, not all containers are designed with this
restriction.

Although you’ll often see the enum technique in legacy code, C++ also has the static const
which produces a more flexible compile-time constant inside a class. This is described in
Chapter 8.

Type checking for enumerations
C’s enumerations are fairly primitive, simply associating integral values with names, but
providing no type checking. In C++, as you may have come to expect by now, the concept of
type is fundamental, and this is true with enumerations. When you create a named
enumeration, you effectively create a new type just as you do with a class: The name of your
enumeration becomes a reserved word for the duration of that translation unit.

In addition, there’s stricter type checking for enumerations in C++ than in C. You’ll notice
this in particular if you have an instance of an enumeration color called a. In C you can say
a++ but in C++ you can’t. This is because incrementing an enumeration is performing two
type conversions, one of them legal in C++ and one of them illegal. First, the value of the
enumeration is implicitly cast from a color to an int, then the value is incremented, then the
int is cast back into a color. In C++ this isn’t allowed, because color is a distinct type and not
equivalent to an int. This makes sense because how do you know the increment of blue will
even be in the list of colors? If you want to increment a color, then it should be a class (with
an increment operation) and not an enum. Any time you write code that assumes an implicit
conversion to an enum type, the compiler will flag this inherently dangerous activity.

Unions have similar additional type checking.

const objects & member functions
Class member functions can be made const. What does this mean? To understand, you must
first grasp the concept of const objects.

A const object is defined the same for a user-defined type as a built-in type. For example:

const int i = 1;
const blob B(2);

Here, B is a const object of type blob. Its constructor is called with an argument of two. For
the compiler to enforce constness, it must ensure that no data members of the object are
changed during the object’s lifetime. It can easily ensure that no public data is modified, but
how is it to know which member functions will change the data and which ones are «safe» for
a const object?

Chapter 6: Constants 250

If you declare a member function const, you tell the compiler the function can be called for a
const object. A member function that is not specifically declared const is treated as one that
will modify data members in an object, and the compiler will not allow you to call it for a
const object.

It doesn’t stop there, however. Just claiming a function is const inside a class definition
doesn’t guarantee the member function definition will act that way, so the compiler forces you
to reiterate the const specification when defining the function. (The const becomes part of the
function signature, so both the compiler and linker check for constness.) Then it enforces
constness during the function definition by issuing an error message if you try to change any
members of the object or call a non-const member function. Thus, any member function you
declare const is guaranteed to behave that way in the definition.

Preceding the function declaration with const means the return value is const, so that isn’t the
proper syntax. You must place the const specifier after the argument list. For example,

class X {
 int i;
public:
 int f() const;
};

The const keyword must be repeated in the definition using the same form, or the compiler
sees it as a different function:

int X::f() const { return i; }

If f()attempts to change i in any way or to call another member function that is not const, the
compiler flags it as an error.

Any function that doesn’t modify member data should be declared as const, so it can be used
with const objects.

Here’s an example that contrasts a const and non-const member function:

//: C08:Quoter.cpp
// Random quote selection
#include <iostream>
#include <cstdlib> // Random number generator
#include <ctime> // To seed random generator
using namespace std;

class Quoter {
 int lastquote;
public:
 Quoter();
 int Lastquote() const;
 const char* quote();

Chapter 6: Constants 251

};

Quoter::Quoter(){
 lastquote = -1;
 srand(time(0)); // Seed random number generator
}

int Quoter::Lastquote() const {
 return lastquote;
}

const char* Quoter::quote() {
 static const char* quotes[] = {
 "Are we having fun yet?",
 "Doctors always know best",
 "Is it ... Atomic?",
 "Fear is obscene",
 "There is no scientific evidence "
 "to support the idea "
 "that life is serious",
 };
 const qsize = sizeof quotes/sizeof *quotes;
 int qnum = rand() % qsize;
 while(lastquote >= 0 && qnum == lastquote)
 qnum = rand() % qsize;
 return quotes[lastquote = qnum];
}

int main() {
 Quoter q;
 const Quoter cq;
 cq.Lastquote(); // OK
//! cq.quote(); // Not OK; non const function
 for(int i = 0; i < 20; i++)
 cout << q.quote() << endl;
} ///:~

Neither constructors nor destructors can be const member functions because they virtually
always perform some modification on the object during initialization and cleanup. The
quote() member function also cannot be const because it modifies the data member
lastquote in the return statement. However, Lastquote() makes no modifications, and so it
can be const and can be safely called for the const object cq.

Chapter 6: Constants 252

mutable: bitwise vs. memberwise const
What if you want to create a const member function, but you’d still like to change some of the
data in the object? This is sometimes referred to as the difference between bitwise const and
memberwise const. Bitwise const means that every bit in the object is permanent, so a bit
image of the object will never change. Memberwise const means that, although the entire
object is conceptually constant, there may be changes on a member-by-member basis.
However, if the compiler is told that an object is const, it will jealously guard that object.
There are two ways to change a data member inside a const member function.

The first approach is the historical one and is called casting away constness. It is performed in
a rather odd fashion. You take this (the keyword that produces the address of the current
object) and you cast it to a pointer to an object of the current type. It would seem that this is
already such a pointer, but it’s a const pointer, so by casting it to an ordinary pointer, you
remove the constness for that operation. Here’s an example:

//: C08:Castaway.cpp
// "Casting away" constness

class Y {
 int i, j;
public:
 Y() { i = j = 0; }
 void f() const;
};

void Y::f() const {
//! i++; // Error -- const member function
 ((Y*)this)->j++; // OK: cast away const-ness
}

int main() {
 const Y yy;
 yy.f(); // Actually changes it!
} ///:~

This approach works and you’ll see it used in legacy code, but it is not the preferred
technique. The problem is that this lack of constness is hidden away in a member function of
an object, so the user has no clue that it’s happening unless she has access to the source code
(and actually goes looking for it). To put everything out in the open, you should use the
mutable keyword in the class declaration to specify that a particular data member may be
changed inside a const object:

//: C08:Mutable.cpp
// The "mutable" keyword

Chapter 6: Constants 253

class Y {
 int i;
 mutable int j;
public:
 Y() { i = j = 0; }
 void f() const;
};

void Y::f() const {
//! i++; // Error -- const member function
 j++; // OK: mutable
}

int main() {
 const Y yy;
 yy.f(); // Actually changes it!
} ///:~

Now the user of the class can see from the declaration which members are likely to be
modified in a const member function.

ROMability
If an object is defined as const, it is a candidate to be placed in read-only memory (ROM),
which is often an important consideration in embedded systems programming. Simply making
an object const, however, is not enough — the requirements for ROMability are much more
strict. Of course, the object must be bitwise-const, rather than memberwise-const. This is
easy to see if memberwise constness is implemented only through the mutable keyword, but
probably not detectable by the compiler if constness is cast away inside a const member
function. In addition,

 6. The class or struct must have no user-defined constructors or destructor.

 7. There can be no base classes (covered in the future chapter on inheritance)
or member objects with user-defined constructors or destructors.

The effect of a write operation on any part of a const object of a ROMable type is undefined.
Although a suitably formed object may be placed in ROM, no objects are ever required to be
placed in ROM.

Chapter 6: Constants 254

volatile
The syntax of volatile is identical to that for const, but volatile means «This data may change
outside the knowledge of the compiler.» Somehow, the environment is changing the data
(possibly through multitasking), and volatile tells the compiler not to make any assumptions
about the data — this is particularly important during optimization. If the compiler says, «I
read the data into a register earlier, and I haven’t touched that register,» normally it wouldn’t
need to read the data again. But if the data is volatile, the compiler cannot make such an
assumption because the data may have been changed by another process, and it must reread
the data rather than optimizing the code.

You can create volatile objects just as you create const objects. You can also create const
volatile objects, which can’t be changed by the programmer but instead change through some
outside agency. Here is an example that might represent a class to associate with some piece
of communication hardware:

//: C08:Volatile.cpp
// The volatile keyword

class Comm {
 const volatile unsigned char byte;
 volatile unsigned char flag;
 enum { bufsize = 100 };
 unsigned char buf[bufsize];
 int index;
public:
 Comm();
 void isr() volatile;
 char read(int Index) const;
};

Comm::Comm() : index(0), byte(0), flag(0) {}

// Only a demo; won't actually work
// as an interrupt service routine:
void Comm::isr() volatile {
 if(flag) flag = 0;
 buf[index++] = byte;
 // Wrap to beginning of buffer:
 if(index >= bufsize) index = 0;
}

char Comm::read(int Index) const {

Chapter 6: Constants 255

 if(Index < 0 || Index >= bufsize)
 return 0;
 return buf[Index];
}

int main() {
 volatile Comm Port;
 Port.isr(); // OK
//! Port.read(0); // Not OK;
 // read() not volatile
} ///:~

As with const, you can use volatile for data members, member functions, and objects
themselves. You can call only volatile member functions for volatile objects.

The reason that isr() can’t actually be used as an interrupt service routine is that in a member
function, the address of the current object (this) must be secretly passed, and an ISR generally
wants no arguments at all. To solve this problem, you can make isr() a static member
function, a subject covered in a future chapter.

The syntax of volatile is identical to const, so discussions of the two are often treated
together. To indicate the choice of either one, the two are referred to in combination as the c-v
qualifier.

Summary
The const keyword gives you the ability to define objects, function arguments and return
values, and member functions as constants, and to eliminate the preprocessor for value
substitution without losing any preprocessor benefits. All this provides a significant additional
form of type checking and safety in your programming. The use of so-called const correctness
(the use of const anywhere you possibly can) has been a lifesaver for projects.

Although you can ignore const and continue to use old C coding practices, it’s there to help
you. Chapters 9 & 10 begin using references heavily, and there you’ll see even more about
how critical it is to use const with function arguments.

Exercises
 1. Create a class called bird that can fly() and a class rock that can’t. Create a

rock object, take its address, and assign that to a void*. Now take the
void*, assign it to a bird*, and call fly() through that pointer. Is it clear
why C’s permission to openly assign via a void* is a «hole» in the
language?

Chapter 6: Constants 256

 2. Create a class containing a const member that you initialize in the
constructor initializer list and an untagged enumeration that you use to
determine an array size.

 3. Create a class with both const and non-const member functions. Create
const and non-const objects of this class, and try calling the different types
of member functions for the different types of objects.

 4. Create a function that takes an argument by value as a const; then try to
change that argument in the function body.

 5. Prove to yourself that the C and C++ compilers really do treat constants
differently. Create a global const and use it in a constant expression; then
compile it under both C and C++.

257

9: Inline functions
One of the important features C++ inherits from C is
efficiency. If the efficiency of C++ were dramatically less
than C, there would be a significant contingent of
programmers who couldn’t justify its use.

In C, one of the ways to preserve efficiency is through the use of macros, which allow you to
make what looks like a function call without the normal overhead of the function call. The
macro is implemented with the preprocessor rather than the compiler proper, and the
preprocessor replaces all macro calls directly with the macro code, so there’s no cost involved
from pushing arguments, making an assembly-language CALL, returning arguments, and
performing an assembly-language RETURN. All the work is performed by the preprocessor,
so you have the convenience and readability of a function call but it doesn’t cost you
anything.

There are two problems with the use of preprocessor macros in C++. The first is also true with
C: A macro looks like a function call, but doesn’t always act like one. This can bury difficult-
to-find bugs. The second problem is specific to C++: The preprocessor has no permission to
access private data. This means preprocessor macros are virtually useless as class member
functions.

To retain the efficiency of the preprocessor macro, but to add the safety and class scoping of
true functions, C++ has the inline function. In this chapter, we’ll look at the problems of
preprocessor macros in C++, how these problems are solved with inline functions, and
guidelines and insights on the way inlines work.

Preprocessor pitfalls
The key to the problems of preprocessor macros is that you can be fooled into thinking that
the behavior of the preprocessor is the same as the behavior of the compiler. Of course, it was
intended that a macro look and act like a function call, so it’s quite easy to fall into this
fiction. The difficulties begin when the subtle differences appear.

As a simple example, consider the following:

#define f (x) (x + 1)

Now, if a call is made to f like this

f(1)

Chapter 7: Inline Functions 258

the preprocessor expands it, somewhat unexpectedly, to the following:

(x) (x + 1)(1)

The problem occurs because of the gap between f and its opening parenthesis in the macro
definition. When this gap is removed, you can actually call the macro with the gap

f (1)

and it will still expand properly, to

(1 + 1)

The above example is fairly trivial and the problem will make itself evident right away. The
real difficulties occur when using expressions as arguments in macro calls.

There are two problems. The first is that expressions may expand inside the macro so that
their evaluation precedence is different from what you expect. For example,

#define floor(x,b) x>=b?0:1

Now, if expressions are used for the arguments

if(floor(a&0x0f,0x07)) // ...

the macro will expand to

if(a&0x0f>=0x07?0:1)

The precedence of & is lower than that of >=, so the macro evaluation will surprise you. Once
you discover the problem (and as a general practice when creating preprocessor macros) you
can solve it by putting parentheses around everything in the macro definition. Thus,

#define floor(x,b) ((x)>=(b)?0:1)

Discovering the problem may be difficult, however, and you may not find it until after you’ve
taken the proper macro behavior for granted. In the unparenthesized version of the preceding
example, most expressions will work correctly, because the precedence of >= is lower than
most of the operators like +, /, – –, and even the bitwise shift operators. So you can easily
begin to think that it works with all expressions, including those using bitwise logical
operators.

The preceding problem can be solved with careful programming practice: Parenthesize
everything in a macro. The second difficulty is more subtle. Unlike a normal function, every
time you use an argument in a macro, that argument is evaluated. As long as the macro is
called only with ordinary variables, this evaluation is benign, but if the evaluation of an
argument has side effects, then the results can be surprising and will definitely not mimic
function behavior.

For example, this macro determines whether its argument falls within a certain range:

#define band(x) (((x)>5 && (x)<10) ? (x) : 0)

As long as you use an «ordinary» argument, the macro works very much like a real function.
But as soon as you relax and start believing it is a real function, the problems start. Thus,

Chapter 7: Inline Functions 259

//: C09:Macro.cpp
// Side effects with macros
#include <fstream>
#include "../require.h"
using namespace std;

#define band(x) (((x)>5 && (x)<10) ? (x) : 0)

int main() {
 ofstream out("macro.out");
 assure(out, "macro.out");
 for(int i = 4; i < 11; i++) {
 int a = i;
 out << "a = " << a << endl << '\t';
 out << "band(++a)=" << band(++a) << endl;
 out << "\t a = " << a << endl;
 }
} ///:~

Here’s the output produced by the program, which is not at all what you would have expected
from a true function:

a = 4
 band(++a)=0
 a = 5
a = 5
 band(++a)=8
 a = 8
a = 6
 band(++a)=9
 a = 9
a = 7
 band(++a)=10
 a = 10
a = 8
 band(++a)=0
 a = 10
a = 9
 band(++a)=0
 a = 11
a = 10
 band(++a)=0

 a = 12

Chapter 7: Inline Functions 260

When a is four, only the first part of the conditional occurs, so the expression is evaluated
only once, and the side effect of the macro call is that a becomes five, which is what you
would expect from a normal function call in the same situation. However, when the number is
within the band, both conditionals are tested, which results in two increments. The result is
produced by evaluating the argument again, which results in a third increment. Once the
number gets out of the band, both conditionals are still tested so you get two increments. The
side effects are different, depending on the argument.

This is clearly not the kind of behavior you want from a macro that looks like a function call.
In this case, the obvious solution is to make it a true function, which of course adds the extra
overhead and may reduce efficiency if you call that function a lot. Unfortunately, the problem
may not always be so obvious, and you can unknowingly get a library that contains functions
and macros mixed together, so a problem like this can hide some very difficult-to-find bugs.
For example, the putc() macro in STDIO.H may evaluate its second argument twice. This is
specified in Standard C. Also, careless implementations of toupper() as a macro may
evaluate the argument more than once, which will give you unexpected results with
toupper(*p++).32

Macros and access
Of course, careful coding and use of preprocessor macros are required with C, and we could
certainly get away with the same thing in C++ if it weren’t for one problem: A macro has no
concept of the scoping required with member functions. The preprocessor simply performs
text substitution, so you cannot say something like

class X {
 int i;
public:
#define val (X::i) // Error

or anything even close. In addition, there would be no indication of which object you were
referring to. There is simply no way to express class scope in a macro. Without some
alternative to preprocessor macros, programmers will be tempted to make some data members
public for the sake of efficiency, thus exposing the underlying implementation and preventing
changes in that implementation.

Inline functions
In solving the C++ problem of a macro with access to private class members, all the problems
associated with preprocessor macros were eliminated. This was done by bringing macros

32Andrew Koenig goes into more detail in his book C Traps & Pitfalls (Addison-Wesley,
1989).

Chapter 7: Inline Functions 261

under the control of the compiler, where they belong. In C++, the concept of a macro is
implemented as an inline function, which is a true function in every sense. Any behavior you
expect from an ordinary function, you get from an inline function. The only difference is that
an inline function is expanded in place, like a preprocessor macro, so the overhead of the
function call is eliminated. Thus, you should (almost) never use macros, only inline functions.

Any function defined within a class body is automatically inline, but you can also make a
nonclass function inline by preceding it with the inline keyword. However, for it to have any
effect, you must include the function body with the declaration; otherwise the compiler will
treat it as an ordinary function declaration. Thus,

inline int PlusOne(int x);

has no effect at all other than declaring the function (which may or may not get an inline
definition sometime later). The successful approach is

inline int PlusOne(int x) { return ++x; }

Notice that the compiler will check (as it always does) for the proper use of the function
argument list and return value (performing any necessary conversions), something the
preprocessor is incapable of. Also, if you try to write the above as a preprocessor macro, you
get an unwanted side effect.

You’ll almost always want to put inline definitions in a header file. When the compiler sees
such a definition, it puts the function type (signature + return value) and the function body in
its symbol table. When you use the function, the compiler checks to ensure the call is correct
and the return value is being used correctly, and then substitutes the function body for the
function call, thus eliminating the overhead. The inline code does occupy space, but if the
function is small, this can actually take less space than the code generated to do an ordinary
function call (pushing arguments on the stack and doing the CALL).

An inline function in a header file defaults to internal linkage — that is, it is static and can
only be seen in translation units where it is included. Thus, as long as they aren’t declared in
the same translation unit, there will be no clash at link time between an inline function and a
global function with the same signature. (Remember the return value is not included in the
resolution of function overloading.

Inlines inside classes
To define an inline function, you must ordinarily precede the function definition with the
inline keyword. However, this is not necessary inside a class definition. Any function you
define inside a class definition is automatically an inline. Thus,

//: C09:Inline.cpp
// Inlines inside classes
#include <iostream>
using namespace std;

Chapter 7: Inline Functions 262

class Point {
 int i, j, k;
public:
 Point() { i = j = k = 0; }
 Point(int I, int J, int K) {
 i = I;
 j = J;
 k = K;
 }
 void print(const char* msg = "") const {
 if(*msg) cout << msg << endl;
 cout << "i = " << i << ", "
 << "j = " << j << ", "
 << "k = " << k << endl;
 }
};

int main() {
 Point p, q(1,2,3);
 p.print("value of p");
 q.print("value of q");
} ///:~

Of course, the temptation is to use inlines everywhere inside class declarations because they
save you the extra step of making the external member function definition. Keep in mind,
however, that the idea of an inline is to reduce the overhead of a function call. If the function
body is large, chances are you’ll spend a much larger percentage of your time inside the body
versus going in and out of the function, so the gains will be small. But inlining a big function
will cause that code to be duplicated everywhere the function is called, producing code bloat
with little or no speed benefit.

Access functions
One of the most important uses of inlines inside classes is the access function. This is a small
function that allows you to read or change part of the state of an object — that is, an internal
variable or variables. The reason inlines are so important with access functions can be seen in
the following example:

//: C09:Access.cpp
// Inline access functions

class Access {
 int i;
public:

Chapter 7: Inline Functions 263

 int read() const { return i; }
 void set(int I) { i = I; }
};

int main() {
 Access A;
 A.set(100);
 int x = A.read();
} ///:~

Here, the class user never has direct contact with the state variables inside the class, and they
can be kept private, under the control of the class designer. All the access to the private data
members can be controlled through the member function interface. In addition, access is
remarkably efficient. Consider the read(), for example. Without inlines, the code generated
for the call to read() would include pushing this on the stack and making an assembly
language CALL. With most machines, the size of this code would be larger than the code
created by the inline, and the execution time would certainly be longer.

Without inline functions, an efficiency-conscious class designer will be tempted to simply
make i a public member, eliminating the overhead by allowing the user to directly access i.
From a design standpoint, this is disastrous because i then becomes part of the public
interface, which means the class designer can never change it. You’re stuck with an int called
i. This is a problem because you may learn sometime later that it would be much more useful
to represent the state information as a float rather than an int, but because int i is part of the
public interface, you can’t change it. If, on the other hand, you’ve always used member
functions to read and change the state information of an object, you can modify the
underlying representation of the object to your heart’s content (and permanently remove from
your mind the idea that you are going to perfect your design before you code it and try it out).

Accessors and mutators
Some people further divide the concept of access functions into accessors (to read state
information from an object) and mutators (to change the state of an object). In addition,
function overloading may be used to provide the same function name for both the accessor
and mutator; how you call the function determines whether you’re reading or modifying state
information. Thus,

//: C09:Rectangl.cpp
// Accessors & mutators

class Rectangle {
 int Width, Height;
public:
 Rectangle(int W = 0, int H = 0)
 : Width(W), Height(H) {}
 int width() const { return Width; } // Read

Chapter 7: Inline Functions 264

 void width(int W) { Width = W; } // Set
 int height() const { return Height; } // Read
 void height(int H) { Height = H; } // Set
};

int main() {
 Rectangle R(19, 47);
 // Change width & height:
 R.height(2 * R.width());
 R.width(2 * R.height());
} ///:~

The constructor uses the constructor initializer list (briefly introduced in Chapter 6 and
covered fully in Chapter 12) to initialize the values of Width and Height (using the
pseudoconstructor-call form for built-in types).

Of course, accessors and mutators don’t have to be simple pipelines to an internal variable.
Sometimes they can perform some sort of calculation. The following example uses the
Standard C library time functions to produce a simple Time class:

//: C09:Cpptime.h
// A simple time class
#ifndef CPPTIME_H_
#define CPPTIME_H_
#include <ctime>
#include <cstring>

class Time {
 time_t t;
 tm local;
 char Ascii[26];
 unsigned char lflag, aflag;
 void updateLocal() {
 if(!lflag) {
 local = *localtime(&t);
 lflag++;
 }
 }
 void updateAscii() {
 if(!aflag) {
 updateLocal();
 strcpy(Ascii, asctime(&local));
 aflag++;
 }
 }

Chapter 7: Inline Functions 265

public:
 Time() { mark(); }
 void mark() {
 lflag = aflag = 0;
 time(&t);
 }
 const char* ascii() {
 updateAscii();
 return Ascii;
 }
 // Difference in seconds:
 int delta(Time* dt) const {
 return difftime(t, dt->t);
 }
 int DaylightSavings() {
 updateLocal();
 return local.tm_isdst;
 }
 int DayOfYear() { // Since January 1
 updateLocal();
 return local.tm_yday;
 }
 int DayOfWeek() { // Since Sunday
 updateLocal();
 return local.tm_wday;
 }
 int Since1900() { // Years since 1900
 updateLocal();
 return local.tm_year;
 }
 int Month() { // Since January
 updateLocal();
 return local.tm_mon;
 }
 int DayOfMonth() {
 updateLocal();
 return local.tm_mday;
 }
 int Hour() { // Since midight, 24-hour clock
 updateLocal();
 return local.tm_hour;
 }
 int Minute() {

Chapter 7: Inline Functions 266

 updateLocal();
 return local.tm_min;
 }
 int Second() {
 updateLocal();
 return local.tm_sec;
 }
};
#endif // CPPTIME_H_ ///:~

The Standard C library functions have multiple representations for time, and these are all part
of the Time class. However, it isn’t necessary to update all of them all the time, so instead the
time_t T is used as the base representation, and the tm local and ASCII character
representation Ascii each have flags to indicate if they’ve been updated to the current time_t.
The two private functions updateLocal() and updateAscii() check the flags and
conditionally perform the update.

The constructor calls the mark() function (which the user can also call to force the object to
represent the current time), and this clears the two flags to indicate that the local time and
ASCII representation are now invalid. The ascii() function calls updateAscii(), which copies
the result of the Standard C library function asctime() into a local buffer because asctime()
uses a static data area that is overwritten if the function is called elsewhere. The return value
is the address of this local buffer.

In the functions starting with DaylightSavings(), all use the updateLocal() function, which
causes the composite inline to be fairly large. This doesn’t seem worthwhile, especially
considering you probably won’t call the functions very much. However, this doesn’t mean all
the functions should be made out of line. If you leave updateLocal() as an inline, its code
will be duplicated in all the out-of-line functions, eliminating the extra overhead.

Here’s a small test program:

//: C09:Cpptime.cpp
// Testing a simple time class
#include <iostream>
#include "Cpptime.h"
using namespace std;

int main() {
 Time start;
 for(int i = 1; i < 1000; i++) {
 cout << i << ' ';
 if(i%10 == 0) cout << endl;
 }
 Time end;
 cout << endl;

Chapter 7: Inline Functions 267

 cout << "start = " << start.ascii();
 cout << "end = " << end.ascii();
 cout << "delta = " << end.delta(&start);
} ///:~

A Time object is created, then some time-consuming activity is performed, then a second
Time object is created to mark the ending time. These are used to show starting, ending, and
elapsed times.

Inlines & the compiler
To understand when inlining is effective, it’s helpful to understand what the compiler does
when it encounters an inline. As with any function, the compiler holds the function type (that
is, the function prototype including the name and argument types, in combination with the
function return value) in its symbol table. In addition, when the compiler sees the inline
function body and the function body parses without error, the code for the function body is
also brought into the symbol table. Whether the code is stored in source form or as compiled
assembly instructions is up to the compiler.

When you make a call to an inline function, the compiler first ensures that the call can be
correctly made; that is, all the argument types must be the proper types, or the compiler must
be able to make a type conversion to the proper types, and the return value must be the correct
type (or convertible to the correct type) in the destination expression. This, of course, is
exactly what the compiler does for any function and is markedly different from what the
preprocessor does because the preprocessor cannot check types or make conversions.

If all the function type information fits the context of the call, then the inline code is
substituted directly for the function call, eliminating the call overhead. Also, if the inline is a
member function, the address of the object (this) is put in the appropriate place(s), which of
course is another thing the preprocessor is unable to perform.

Limitations
There are two situations when the compiler cannot perform inlining. In these cases, it simply
reverts to the ordinary form of a function by taking the inline definition and creating storage
for the function just as it does for a non-inline. If it must do this in multiple translation units
(which would normally cause a multiple definition error), the linker is told to ignore the
multiple definitions.

The compiler cannot perform inlining if the function is too complicated. This depends upon
the particular compiler, but at the point most compilers give up, the inline probably wouldn’t
gain you any efficiency. Generally, any sort of looping is considered too complicated to
expand as an inline, and if you think about it, looping probably entails much more time inside
the function than embodied in the calling overhead. If the function is just a collection of
simple statements, the compiler probably won’t have any trouble inlining it, but if there are a

Chapter 7: Inline Functions 268

lot of statements, the overhead of the function call will be much less than the cost of
executing the body. And remember, every time you call a big inline function, the entire
function body is inserted in place of each call, so you can easily get code bloat without any
noticeable performance improvement. Some of the examples in this book may exceed
reasonable inline sizes in favor of conserving screen real estate.

The compiler also cannot perform inlining if the address of the function is taken, implicitly or
explicitly. If the compiler must produce an address, then it will allocate storage for the
function code and use the resulting address. However, where an address is not required, the
compiler will probably still inline the code.

It is important to understand that an inline is just a suggestion to the compiler; the compiler is
not forced to inline anything at all. A good compiler will inline small, simple functions while
intelligently ignoring inlines that are too complicated. This will give you the results you want
— the true semantics of a function call with the efficiency of a macro.

Order of evaluation
If you’re imagining what the compiler is doing to implement inlines, you can confuse yourself
into thinking there are more limitations than actually exist. In particular, if an inline makes a
forward reference to a function that hasn’t yet been declared in the class, it can seem like the
compiler won’t be able to handle it:

//: C09:Evorder.cpp
// Inline evaluation order

class Forward {
 int i;
public:
 Forward() : i(0) {}
 // Call to undeclared function:
 int f() const { return g() + 1; }
 int g() const { return i; }
};

int main() {
 Forward F;
 F.f();
} ///:~

In f(), a call is made to g(), although g() has not yet been declared. This works because the
language definition states that no inline functions in a class shall be evaluated until the closing
brace of the class declaration.

Chapter 7: Inline Functions 269

Of course, if g() in turn called f(), you’d end up with a set of recursive calls, which are too
complicated for the compiler to inline. (Also, you’d have to perform some test in f() or g() to
force one of them to «bottom out,» or the recursion would be infinite.)

Hidden activities in constructors &
destructors

Constructors and destructors are two places where you can be fooled into thinking that an
inline is more efficient than it actually is. Both constructors and destructors may have hidden
activities, because the class can contain subobjects whose constructors and destructors must
be called. These sub-objects may be member objects, or they may exist because of inheritance
(which hasn’t been introduced yet). As an example of a class with member objects

//: C09:Hidden.cpp
// Hidden activites in inlines
#include <iostream>
using namespace std;

class Member {
 int i, j, k;
public:
 Member(int x = 0) { i = j = k = x; }
 ~Member() { cout << "~Member" << endl; }
};

class WithMembers {
 Member Q, R, S; // Have constructors
 int i;
public:
 WithMembers(int I) : i(I) {} // Trivial?
 ~WithMembers() {
 cout << "~WithMembers" << endl;
 }
};

int main() {
 WithMembers WM(1);
} ///:~

In class WithMembers, the inline constructor and destructor look straightforward and simple
enough, but there’s more going on than meets the eye. The constructors and destructors for
the member objects Q, R, and S are being called automatically, and those constructors and
destructors are also inline, so the difference is significant from normal member functions.

Chapter 7: Inline Functions 270

This doesn’t necessarily mean that you should always make constructor and destructor
definitions out-of-line. When you’re making an initial «sketch» of a program by quickly
writing code, it’s often more convenient to use inlines. However, if you’re concerned about
efficiency, it’s a place to look.

Reducing clutter
In a book like this, the simplicity and terseness of putting inline definitions inside classes is
very useful because more fits on a page or screen (in a seminar). However, Dan Saks33 has
pointed out that in a real project this has the effect of needlessly cluttering the class interface
and thereby making the class harder to use. He refers to member functions defined within
classes using the Latin in situ (in place) and maintains that all definitions should be placed
outside the class to keep the interface clean. Optimization, he argues, is a separate issue. If
you want to optimize, use the inline keyword. Using this approach, the earlier
RECTANGL.CPP example (page Erreur! Signet non défini.) becomes

//: C09:Noinsitu.cpp
// Removing in situ functions

class Rectangle {
 int Width, Height;
public:
 Rectangle(int W = 0, int H = 0);
 int width() const; // Read
 void width(int W); // Set
 int height() const; // Read
 void height(int H); // Set
};

inline Rectangle::Rectangle(int W, int H)
 : Width(W), Height(H) {
}

inline int Rectangle::width() const {
 return Width;
}

inline void Rectangle::width(int W) {
 Width = W;

33 Co-author with Tom Plum of C++ Programming Guidelines, Plum Hall, 1991.

Chapter 7: Inline Functions 271

}

inline int Rectangle::height() const {
 return Height;
}

inline void Rectangle::height(int H) {
 Height = H;
}

int main() {
 Rectangle R(19, 47);
 // Transpose width & height:
 R.height(R.width());
 R.width(R.height());
} ///:~

Now if you want to compare the effect of inlining with out-of-line functions, you can simply
remove the inline keyword. (Inline functions should normally be put in header files, however,
while non-inline functions must reside in their own translation unit.) If you want to put the
functions into documentation, it’s a simple cut-and-paste operation. In situ functions require
more work and have greater potential for errors. Another argument for this approach is that
you can always produce a consistent formatting style for function definitions, something that
doesn’t always occur with in situ functions.

Preprocessor features
Earlier, I said you almost always want to use inline functions instead of preprocessor macros.
The exceptions are when you need to use three special features in the Standard C preprocessor
(which is, by inheritance, the C++ preprocessor): stringizing, string concatenation, and token
pasting. Stringizing, performed with the # directive, allows you to take an identifier and turn it
into a string, whereas string concatenation takes place when two adjacent strings have no
intervening punctuation, in which case the strings are combined. These two features are
exceptionally useful when writing debug code. Thus,

#define DEBUG(X) cout << #X " = " << X << endl

This prints the value of any variable. You can also get a trace that prints out the statements as
they execute:

#define TRACE(S) cout << #S << endl; S

The #S stringizes the statement for output, and the second S reiterates the statement so it is
executed. Of course, this kind of thing can cause problems, especially in one-line for loops:

for(int i = 0; i < 100; i++)

Chapter 7: Inline Functions 272

 TRACE(f(i));

Because there are actually two statements in the TRACE() macro, the one-line for loop
executes only the first one. The solution is to replace the semicolon with a comma in the
macro.

Token pasting
Token pasting is very useful when you are manufacturing code. It allows you to take two
identifiers and paste them together to automatically create a new identifier. For example,

#define FIELD(A) char* A##_string; int A##_size
class record {
 FIELD(one);
 FIELD(two);
 FIELD(three);
 // ...
};

Each call to the FIELD() macro creates an identifier to hold a string and another to hold the
length of that string. Not only is it easier to read, it can eliminate coding errors and make
maintenance easier. Notice, however, the use of all upper-case characters in the name of the
macro. This is a helpful practice because it tells the reader this is a macro and not a function,
so if there are problems, it acts as a little reminder.

Improved error checking
It’s convenient to improve the error checking for the rest of the book; with inline functions
you can simply include the file and not worry about what to link. Up until now, the assert()
macro has been used for «error checking,» but it’s really for debugging and should be
replaced with something that provides useful information at run-time. In addition, exceptions
(presented in Chapter 16) provide a much more effective way of handling many kinds of
errors – especially those that you’d like to recover from, instead of just halting the program.
The conditions described in this section, however, are ones which prevent the continuation of
the program, such as if the user doesn’t provide enough command-line arguments or a file
cannot be opened.

Inline functions are convenient here because they allow everything to be placed in a header
file, which simplifies the process of using the package. You just include the header file and
you don’t need to worry about linking.

The following header file will be placed in the book’s root directory so it’s easily accessed
from all chapters.

//: :require.h
// Test for error conditions in programs

Chapter 7: Inline Functions 273

// Local "using namespace std" for old compilers
#ifndef REQUIRE_H_
#define REQUIRE_H_
#include <cstdio>
#include <cstdlib>
#include <fstream>

inline void require(bool requirement,
 char* msg = "Requirement failed") {
 using namespace std;
 if (!requirement) {
 fprintf(stderr, "%s", msg);
 exit(1);
 }
}

inline void requireArgs(int argc, int args,
 char* msg = "Must use %d arguments") {
 using namespace std;
 if (argc != args) {
 fprintf(stderr, msg, args);
 exit(1);
 }
}

inline void requireMinArgs(int argc, int minArgs,
 char* msg = "Must use at least %d arguments") {
 using namespace std;
 if(argc < minArgs) {
 fprintf(stderr, msg, minArgs);
 exit(1);
 }
}

inline void
assure(std::ifstream& in, char* filename = "") {
 using namespace std;
 if(!in) {
 fprintf(stderr,
 "Could not open file %s", filename);
 exit(1);
 }
}

Chapter 7: Inline Functions 274

inline void
assure(std::ofstream& in, char* filename = "") {
 using namespace std;
 if(!in) {
 fprintf(stderr,
 "Could not open file %s", filename);
 exit(1);
 }
}
#endif // REQUIRE_H_ ///:~

The default values provide reasonable messages that can be changed if necessary.

Note the use of local «using namespace std» declarations within each function. This is
because some compilers at the time of this writing incorrectly did not include the C standard
library functions in namespace std, so explicit qualification would cause a compile-time
error. The local declaration allows require.h to work with both correct and incorrect libraries.

Here’s a simple program to test require.h:

//: C09:Errtest.cpp
// Testing require.h
#include "../require.h"
#include <fstream>

int main(int argc, char* argv[]) {
 int i = 1;
 require(i, "value must be nonzero");
 requireArgs(argc, 2);
 requireMinArgs(argc, 2);
 ifstream in(argv[1]);
 assure(in, argv[1]); // Use the file name
 ifstream nofile("nofile.xxx");
 assure(nofile); // The default argument
 ofstream out("tmp.txt");
 assure(out);
} ///:~

You might be tempted to go one step further for opening files and add a macro to require.h:

#define IFOPEN(VAR, NAME) \
 ifstream VAR(NAME); \
 assure(VAR, NAME);

Which could then be used like this:

Chapter 7: Inline Functions 275

IFOPEN(in, argv[1])

At first, this might seem appealing since you’ve got less to type. It’s not terribly unsafe, but
it’s a road best avoided. Note that, once again, a macro looks like a function but behaves
differently: it’s actually creating an object (in) whose scope persists beyond the macro. You
may understand this, but for new programmers and code maintainers it’s just one more thing
they have to puzzle out. C++ is complicated enough without adding to the confusion, so try to
talk yourself out of using macros whenever you can.

Summary
It’s critical that you be able to hide the underlying implementation of a class because you may
want to change that implementation sometime later. You’ll do this for efficiency, or because
you get a better understanding of the problem, or because some new class becomes available
that you want to use in the implementation. Anything that jeopardizes the privacy of the
underlying implementation reduces the flexibility of the language. Thus, the inline function is
very important because it virtually eliminates the need for preprocessor macros and their
attendant problems. With inlines, member functions can be as efficient as preprocessor
macros.

The inline function can be overused in class definitions, of course. The programmer is
tempted to do so because it’s easier, so it will happen. However, it’s not that big an issue
because later, when looking for size reductions, you can always move the functions out of line
with no effect on their functionality. The development guideline should be «First make it
work, then optimize it.»

Exercises
 1. Take Exercise 2 from Chapter 6, and add an inline constructor, and an inline

member function called print() to print out all the values in the array.
 2. Take the NESTFRND.CPP example from Chapter 2 and replace all the

member functions with inlines. Make them non-in situ inline functions.
Also change the initialize() functions to constructors.

 3. Take the NL.CPP example from Chapter 5 and turn nl into an inline
function in its own header file.

 4. Create a class A with a default constructor that announces itself. Now make
a new class B and put an object of A as a member of B, and give B an inline
constructor. Create an array of B objects and see what happens.

 5. Create a large quantity of the objects from Exercise 4, and use the Time
class to time the difference between a non-inline constructor and an inline
constructor. (If you have a profiler, also try using that.)

277

10: Name control
Creating names is a fundamental activity in programming,
and when a project gets large the number of names can
easily be overwhelming. C++ allows you a great deal of
control over both the creation and visibility of names, where
storage for those names is placed, and linkage for names.

The static keyword was overloaded in C before people knew what the term «overload»
meant, and C++ has added yet another meaning. The underlying concept with all uses of
static seems to be «something that holds its position» (like static electricity), whether that
means a physical location in memory or visibility within a file.

In this chapter, you’ll learn how static controls storage and visibility, and an improved way to
control access to names via C++’s namespace feature. You’ll also find out how to use
functions that were written and compiled in C.

Static elements from C
In both C and C++ the keyword static has two basic meanings, which unfortunately often step
on each other’s toes:

1. Allocated once at a fixed address; that is, the object is created
in a special static data area rather than on the stack each time
a function is called. This is the concept of static storage.

2. Local to a particular translation unit (and class scope in C++,
as you will see later). Here, static controls the visibility of a
name, so that name cannot be seen outside the translation unit
or class. This also describes the concept of linkage, which
determines what names the linker will see.

This section will look at the above meanings of static as they were inherited from C.

static variables inside functions
Normally, when you create a variable inside a function, the compiler allocates storage for that
variable each time the function is called by moving the stack pointer down an appropriate

Chapter 8: Name Control 278

amount. If there is an initializer for the variable, the initialization is performed each time that
sequence point is passed.

Sometimes, however, you want to retain a value between function calls. You could
accomplish this by making a global variable, but that variable would not be under the sole
control of the function. C and C++ allow you to create a static object inside a function; the
storage for this object is not on the stack but instead in the program’s static storage area. This
object is initialized once the first time the function is called and then retains its value between
function invocations. For example, the following function returns the next character in the
string each time the function is called:

//: C10:Statfun.cpp
// Static vars inside functions
#include <iostream>
#include "../require.h"
using namespace std;

char onechar(const char* string = 0) {
 static const char* s;
 if(string) {
 s = string;
 return *s;
 }
 else
 require(s, "un-initialized s");
 if(*s == '\0')
 return 0;
 return *s++;
}

char* a = "abcdefghijklmnopqrstuvwxyz";

int main() {
 // Onechar(); // require() fails
 onechar(a); // Initializes s to a
 char c;
 while((c = onechar()) != 0)
 cout << c << endl;
} ///:~

The static char* s holds its value between calls of onechar() because its storage is not part
of the stack frame of the function, but is in the static storage area of the program. When you
call onechar() with a char* argument, s is assigned to that argument, and the first character
of the string is returned. Each subsequent call to onechar() without an argument produces the
default value of zero for string, which indicates to the function that you are still extracting

Chapter 8: Name Control 279

characters from the previously initialized value of s. The function will continue to produce
characters until it reaches the null terminator of the string, at which point it stops
incrementing the pointer so it doesn’t overrun the end of the string.

But what happens if you call onechar() with no arguments and without previously
initializing the value of s? In the definition for s, you could have provided an initializer,

static char* s = 0;

but if you do not provide an initializer for a static variable of a built-in type, the compiler
guarantees that variable will be initialized to zero (converted to the proper type) at program
start-up. So in onechar(), the first time the function is called, s is zero. In this case, the if(!s)
conditional will catch it.

The above initialization for s is very simple, but initialization for static objects (like all other
objects) can be arbitrary expressions involving constants and previously declared variables
and functions.

static class objects inside functions
The rules are the same for static objects of user-defined types, including the fact that some
initialization is required for the object. However, assignment to zero has meaning only for
built-in types; user-defined types must be initialized with constructor calls. Thus, if you don’t
specify constructor arguments when you define the static object, the class must have a default
constructor. For example,

//: C10:Funobj.cpp
// Static objects in functions
#include <iostream>
using namespace std;

class X {
 int i;
public:
 X(int I = 0) : i(I) {} // Default
 ~X() { cout << "X::~X()" << endl; }
};

void f() {
 static X x1(47);
 static X x2; // Default constructor required
}

int main() {
 f();
} ///:~

Chapter 8: Name Control 280

The static objects of type X inside f() can be initialized either with the constructor argument
list or with the default constructor. This construction occurs the first time control passes
through the definition, and only the first time.

Static object destructors
Destructors for static objects (all objects with static storage, not just local static objects as in
the above example) are called when main() exits or when the Standard C library function
exit() is explicitly called, main() in most implementations calls exit() when it terminates.
This means that it can be dangerous to call exit() inside a destructor because you can end up
with infinite recursion. Static object destructors are not called if you exit the program using
the Standard C library function abort().

You can specify actions to take place when leaving main() (or calling exit()) by using the
Standard C library function atexit(). In this case, the functions registered by atexit() may be
called before the destructors for any objects constructed before leaving main() (or calling
exit()).

Destruction of static objects occurs in the reverse order of initialization. However, only
objects that have been constructed are destroyed. Fortunately, the programming system keeps
track of initialization order and the objects that have been constructed. Global objects are
always constructed before main() is entered, so this last statement applies only to static
objects that are local to functions. If a function containing a local static object is never called,
the constructor for that object is never executed, so the destructor is also not executed. For
example,

//: C10:Statdest.cpp
// Static object destructors
#include <fstream>
using namespace std;
ofstream out("statdest.out"); // Trace file

class Obj {
 char c; // Identifier
public:
 Obj(char C) : c(C) {
 out << "Obj::Obj() for " << c << endl;
 }
 ~Obj() {
 out << "Obj::~Obj() for " << c << endl;
 }
};

Obj A('A'); // Global (static storage)
// Constructor & destructor always called

Chapter 8: Name Control 281

void f() {
 static Obj B('B');
}

void g() {
 static Obj C('C');
}

int main() {
 out << "inside main()" << endl;
 f(); // Calls static constructor for B
 // g() not called
 out << "leaving main()" << endl;
} ///:~

In Obj, the char c acts as an identifier so the constructor and destructor can print out
information about the object they’re working on. The Obj A is a global object, so the
constructor is always called for it before main() is entered, but the constructors for the static
Obj B inside f() and the static Obj C inside g() are called only if those functions are called.

To demonstrate which constructors and destructors are called, inside main() only f() is
called. The output of the program is

Obj::Obj() for A
inside main()
Obj::Obj() for B
leaving main()
Obj::~Obj() for B
Obj::~Obj() for A

The constructor for A is called before main() is entered, and the constructor for B is called
only because f() is called. When main() exits, the destructors for the objects that have been
constructed are called in reverse order of their construction. This means that if g() is called,
the order in which the destructors for B and C are called depends on whether f() or g() is
called first.

Notice that the trace file ofstream object out is also a static object. It is important that its
definition (as opposed to an extern declaration) appear at the beginning of the file, before
there is any possible use of out. Otherwise you’ll be using an object before it is properly
initialized.

In C++ the constructor for a global static object is called before main() is entered, so you
now have a simple and portable way to execute code before entering main() and to execute
code with the destructor after exiting main(). In C this was always a trial that required you to
root around in the compiler vendor’s assembly-language startup code.

Chapter 8: Name Control 282

Controlling linkage
Ordinarily, any name at file scope (that is, not nested inside a class or function) is visible
throughout all translation units in a program. This is often called external linkage because at
link time the name is visible to the linker everywhere, external to that translation unit. Global
variables and ordinary functions have external linkage.

There are times when you’d like to limit the visibility of a name. You might like to have a
variable at file scope so all the functions in that file can use it, but you don’t want functions
outside that file to see or access that variable, or to inadvertently cause name clashes with
identifiers outside the file.

An object or function name at file scope that is explicitly declared static is local to its
translation unit (in the terms of this book, the .CPP file where the declaration occurs); that
name has internal linkage. This means you can use the same name in other translation units
without a name clash.

One advantage to internal linkage is that the name can be placed in a header file without
worrying that there will be a clash at link time. Names that are commonly placed in header
files, such as const definitions and inline functions, default to internal linkage. (However,
const defaults to internal linkage only in C++; in C it defaults to external linkage.) Note that
linkage refers only to elements that have addresses at link/load time; thus, class declarations
and local variables have no linkage.

Confusion
Here’s an example of how the two meanings of static can cross over each other. All global
objects implicitly have static storage class, so if you say (at file scope),

int a = 0;

then storage for a will be in the program’s static data area, and the initialization for a will
occur once, before main() is entered. In addition, the visibility of a is global, across all
translation units. In terms of visibility, the opposite of static (visible only in this translation
unit) is extern, which explicitly states that the visibility of the name is across all translation
units. So the above definition is equivalent to saying

extern int a = 0;

But if you say instead,

static int a = 0;

all you’ve done is change the visibility, so a has internal linkage. The storage class is
unchanged — the object resides in the static data area whether the visibility is static or
extern.

Once you get into local variables, static stops altering the visibility (and extern has no
meaning) and instead alters the storage class.

Chapter 8: Name Control 283

With function names, static and extern can only alter visibility, so if you say,

extern void f();

it’s the same as the unadorned declaration

void f();

and if you say,

static void f();

it means f() is visible only within this translation unit; this is sometimes called file static.

Other storage class specifiers
You will see static and extern used commonly. There are two other storage class specifiers
that occur less often. The auto specifier is almost never used because it tells the compiler that
this is a local variable. The compiler can always determine this fact from the context in which
the variable is defined, so auto is redundant.

A register variable is a local (auto) variable, along with a hint to the compiler that this
particular variable will be heavily used, so the compiler ought to keep it in a register if it can.
Thus, it is an optimization aid. Various compilers respond differently to this hint; they have
the option to ignore it. If you take the address of the variable, the register specifier will
almost certainly be ignored. You should avoid using register because the compiler can
usually do a better job at of optimization than you.

Namespaces
Although names can be nested inside classes, the names of global functions, global variables,
and classes are still in a single global name space. The static keyword gives you some control
over this by allowing you to give variables and functions internal linkage (make them file
static). But in a large project, lack of control over the global name space can cause problems.
To solve these problems for classes, vendors often create long complicated names that are
unlikely to clash, but then you’re stuck typing those names. (A typedef is often used to
simplify this.) It’s not an elegant, language-supported solution.

You can subdivide the global name space into more manageable pieces using the namespace
feature of C++.34 The namespace keyword, like class, struct, enum, and union, puts the
names of its members in a distinct space. While the other keywords have additional purposes,
the creation of a new name space is the only purpose for namespace.

34 Your compiler may not have implemented this feature yet; check your local documentation.

Chapter 8: Name Control 284

Creating a namespace
The creation of a namespace is notably similar to the creation of a class:

namespace MyLib {
 // Declarations
}

This produces a new namespace containing the enclosed declarations. There are significant
differences with class, struct, union and enum, however:

 6. A namespace definition can only appear at the global scope, but
namespaces can be nested within each other.

 7. No terminating semicolon is necessary after the closing brace of a
namespace definition.

 8. A namespace definition can be «continued» over multiple header files
using a syntax that would appear to be a redefinition for a class:

//: C10:Header1.h
namespace MyLib {
 extern int X;
 void f();
 // ...
} ///:~
//: C10:Header2.h
// Add more names to MyLib
namespace MyLib { // NOT a redefinition!
 extern int Y;
 void g();
 // ...
} ///:~

 9. A namespace name can be aliased to another name, so you don’t have to
type an unwieldy name created by a library vendor:

namespace BobsSuperDuperLibrary {
 class widget { /* ... */ };
 class poppit { /* ... */ };
 // ...
}
// Too much to type! I’ll alias it:
namespace Bob = BobsSuperDuperLibrary;

 10. You cannot create an instance of a namespace as you can with a class.

Chapter 8: Name Control 285

Unnamed namespaces
Each translation unit contains an unnamed namespace that you can add to by saying
namespace without an identifier:

namespace {
 class Arm { /* ... */ };
 class Leg { /* ... */ };
 class Head { /* ... */ };
 class Robot {
 Arm arm[4];
 Leg leg[16];
 Head head[3];
 // ...
 } Xanthan;
 int i, j, k;
}

The names in this space are automatically available in that translation unit without
qualification. It is guaranteed that an unnamed space is unique for each translation unit. If you
put local names in an unnamed namespace, you don’t need to give them internal linkage by
making them static.

Friends
You can inject a friend declaration into a namespace by declaring it within an enclosed class:

namespace me {
 class us {
 //...
 friend you();
 };
}

Now the function you() is a member of the namespace me.

Using a namespace
You can refer to a name within a namespace in two ways: one name at a time, using the scope
resolution operator, and more expediently with the using keyword.

Scope resolution
Any name in a namespace can be explicitly specified using the scope resolution operator, just
like the names within a class:

Chapter 8: Name Control 286

namespace X {
 class Y {
 static int i;
 public:
 void f();
 };
 class Z;
 void foo();
}
int X::Y::i = 9;

class X::Z {
 int u, v, w;
public:
 Z(int I);
 int g();
};

X::Z::Z(int I) { u = v = w = I; }
int X::Z::g() { return u = v = w = 0; }

void X::foo() {
 X::Z a(1);
 a.g();
}

So far, namespaces look very much like classes.

The using directive
Because it can rapidly get tedious to type the full qualification for an identifier in a
namespace, the using keyword allows you to import an entire namespace at once. When used
in conjunction with the namespace keyword, this is called a using directive. The using
directive declares all the names of a namespace to be in the current scope, so you can
conveniently use the unqualified names:

namespace math {
 enum sign { positive, negative };
 class integer {
 int i;
 sign s;
 public:
 integer(int I = 0)
 : i(I),
 s(i >= 0 ? positive : negative)
 {}
 sign Sign() { return s; }

Chapter 8: Name Control 287

 void Sign(sign S) { s = S; }
 // ...
 };
 integer A, B, C;
 integer divide(integer, integer);
 // ...
}

Now you can declare all the names in math inside a function, but leave those names nested
within the function:

void arithmetic() {
 using namespace math;
 integer X;
 X.Sign(positive);
}

Without the using directive, all the names in the namespace would need to be fully qualified.

One aspect of the using directive may seem slightly counterintuitive at first. The visibility of
the names introduced with a using directive is the scope where the directive is made. But you
can override the names from the using directive as if they’ve been declared globally to that
scope!

void q() {
 using namespace math;
 integer A; // Hides math::A;
 A.Sign(negative);
 math::A.Sign(positive);
}

If you have a second namespace:

namespace calculation {
 class integer {};
 integer divide(integer, integer);
 // ...
}

And this namespace is also introduced with a using directive, you have the possibility of a
collision. However, the ambiguity appears at the point of use of the name, not at the using
directive:

void s() {
 using namespace math;
 using namespace calculation;
 // Everything’s ok until:
 divide(1, 2); // Ambiguity

Chapter 8: Name Control 288

}

Thus it’s possible to write using directives to introduce a number of namespaces with
conflicting names without ever producing an ambiguity.

The using declaration
You can introduce names one at a time into the current scope with a using declaration. Unlike
the using directive, which treats names as if they were declared globally to the scope, a using
declaration is a declaration within the current scope. This means it can override names from a
using directive:

namespace U {
 void f();
 void g();
}
namespace V {
 void f();
 void g();
}

void func() {
 using namespace U; // Using directive
 using V::f; // Using declaration
 f(); // Calls V::f();
 U::f(); // Must fully qualify to call
}

The using declaration just gives the fully specified name of the identifier, but no type
information. This means that if the namespace contains a set of overloaded functions with the
same name, the using declaration declares all the functions in the overloaded set.

You can put a using declaration anywhere a normal declaration can occur. A using
declaration works like a normal declaration in all ways but one: it’s possible for a using
declaration to cause the overload of a function with the same argument types (which isn’t
allowed with normal overloading). This ambiguity, however, doesn’t show up until the point
of use, rather than the point of declaration.

A using declaration can also appear within a namespace, and it has the same effect as
anywhere else: that name is declared within the space:

namespace Q {
 using U::f;
 using V::g;
 // ...
}
void m() {
 using namespace Q;

Chapter 8: Name Control 289

 f(); // Calls U::f();
 g(); // Calls V::g();
}

A using declaration is an alias, and it allows you to declare the same function in separate
namespaces. If you end up redeclaring the same function by importing different namespaces,
it’s OK — there won’t be any ambiguities or duplications.

Static members in C++
There are times when you need a single storage space to be used by all objects of a class. In
C, you would use a global variable, but this is not very safe. Global data can be modified by
anyone, and its name can clash with other identical names in a large project. It would be ideal
if the data could be stored as if it were global, but be hidden inside a class, and clearly
associated with that class.

This is accomplished with static data members inside a class. There is a single piece of
storage for a static data member, regardless of how many objects of that class you create. All
objects share the same static storage space for that data member, so it is a way for them to
«communicate» with each other. But the static data belongs to the class; its name is scoped
inside the class and it can be public, private, or protected.

Defining storage for static data members
Because static data has a single piece of storage regardless of how many objects are created,
that storage must be defined in a single place. The compiler will not allocate storage for you,
although this was once true, with some compilers. The linker will report an error if a static
data member is declared but not defined.

The definition must occur outside the class (no inlining is allowed), and only one definition is
allowed. Thus it is usual to put it in the implementation file for the class. The syntax
sometimes gives people trouble, but it is actually quite logical. For example,

class A {
 static int i;
public:
 //...
};

and later, in the definition file,

int A::i = 1;

If you were to define an ordinary global variable, you would say

int i = 1;

Chapter 8: Name Control 290

but here, the scope resolution operator and the class name are used to specify A::i.

Some people have trouble with the idea that A::i is private, and yet here’s something that
seems to be manipulating it right out in the open. Doesn’t this break the protection
mechanism? It’s a completely safe practice for two reasons. First, the only place this
initialization is legal is in the definition. Indeed, if the static data were an object with a
constructor, you would call the constructor instead of using the = operator. Secondly, once the
definition has been made, the end-user cannot make a second definition — the linker will
report an error. And the class creator is forced to create the definition, or the code won’t link
during testing. This ensures that the definition happens only once and that it’s in the hands of
the class creator.

The entire initialization expression for a static member is in the scope of the class. For
example,

//: C10:Statinit.cpp
// Scope of static initializer
#include <iostream>
using namespace std;

int x = 100;

class WithStatic {
 static int x;
 static int y;
public:
 void print() const {
 cout << "WithStatic::x = " << x << endl;
 cout << "WithStatic::y = " << y << endl;
 }
};

int WithStatic::x = 1;
int WithStatic::y = x + 1;
// WithStatic::x NOT ::x

int main() {
 WithStatic WS;
 WS.print();
} ///:~

Here, the qualification WithStatic:: extends the scope of WithStatic to the entire definition.

Chapter 8: Name Control 291

static array initialization
It’s possible to create static const objects as well as arrays of static objects, both const and
non-const. Here’s the syntax you use to initialize such elements:

//: C10:Statarry.cpp {O}
// Initializing static arrays

class Values {
 static const int size;
 static const float table[4];
 static char letters[10];
};

const int Values::size = 100;

const float Values::table[4] = {
 1.1, 2.2, 3.3, 4.4
};

char Values::letters[10] = {
 'a', 'b', 'c', 'd', 'e',
 'f', 'g', 'h', 'i', 'j'
};
///:~

As with all static member data, you must provide a single external definition for the member.
These definitions have internal linkage, so they can be placed in header files. The syntax for
initializing static arrays is the same as any aggregate, but you cannot use automatic counting.
With the exception of the above paragraph, the compiler must have enough knowledge about
the class to create an object by the end of the class declaration, including the exact sizes of all
the components.

Compile-time constants inside classes
In Chapter 6 enumerations were introduced as a way to create a compile-time constant (one
that can be evaluated by the compiler in a constant expression, such as an array size) that’s
local to a class. This practice, although commonly used, is often referred to as the «enum
hack» because it uses enumerations in a way they were not originally intended.

Chapter 8: Name Control 292

To accomplish the same thing using a better approach, you can use a static const inside a
class.35 Because it’s both const (it won’t change) and static (there’s only one definition for
the whole class), a static const inside a class can be used as a compile-time constant, like this:

class X {
 static const int size;
 int array[size];
public:
 // ...
};

const int X::size = 100; // Definition

If you’re using it in a constant expression inside a class, the definition of the static const
member must appear before any instances of the class or member function definitions
(presumably in the header file). As with an ordinary global const used with a built-in type, no
storage is allocated for the const, and it has internal linkage so no clashes occur.

An additional advantage to this approach is that any built-in type may be made a member
static const. With enum, you’re limited to integral values.

Nested and local classes
You can easily put static data members in that are nested inside other classes. The definition
of such members is an intuitive and obvious extension — you simply use another level of
scope resolution. However, you cannot have static data members inside local classes (classes
defined inside functions). Thus,

//: C10:Local.cpp {O}
// Static members & local classes
#include <iostream>
using namespace std;

// Nested class CAN have static data members:
class Outer {
 class Inner {
 static int i; // OK
 };
};

int Outer::Inner::i = 47;

35 Your compiler may not have implemented this feature yet; check your local documentation.

Chapter 8: Name Control 293

// Local class cannot have static data members:
void f() {
 class Foo {
 public:
//! static int i; // Error
 // (How would you define i?)
 } x;
} ///:~

You can see the immediate problem with a static member in a local class: How do you
describe the data member at file scope in order to define it? In practice, local classes are used
very rarely.

static member functions
You can also create static member functions that, like static data members, work for the class
as a whole rather than for a particular object of a class. Instead of making a global function
that lives in and «pollutes» the global or local namespace, you bring the function inside the
class. When you create a static member function, you are expressing an association with a
particular class.

A static member function cannot access ordinary data members, only static data members. It
can call only other static member functions. Normally, the address of the current object (this)
is quietly passed in when any member function is called, but a static member has no this,
which is the reason it cannot access ordinary members. Thus, you get the tiny increase in
speed afforded by a global function, which doesn’t have the extra overhead of passing this,
but the benefits of having the function inside the class.

Using static to indicate that only one piece of storage for a class member exists for all objects
of a class parallels its use with functions, to mean that only one copy of a local variable is
used for all calls of a function.

Here’s an example showing static data members and static member functions used together:

//: C10:StaticMemberFunctions.cpp

class X {
 int i;
 static int j;
public:
 X(int I = 0) : i(I) {
 // Non-static member function can access
 // static member function or data:
 j = i;
 }
 int val() const { return i; }

Chapter 8: Name Control 294

 static int incr() {
 //! i++; // Error: static member function
 // cannot access non-static member data
 return ++j;
 }
 static int f() {
 //! val(); // Error: static member function
 // cannot access non-static member function
 return incr(); // OK -- calls static
 }
};

int X::j = 0;

int main() {
 X x;
 X* xp = &x;
 x.f();
 xp->f();
 X::f(); // Only works with static members
} ///:~

Because they have no this pointer, static member functions can neither access nonstatic data
members nor call nonstatic member functions. (Those functions require a this pointer.)

Notice in main() that a static member can be selected using the usual dot or arrow syntax,
associating that function with an object, but also with no object (because a static member is
associated with a class, not a particular object), using the class name and scope resolution
operator.

Here’s an interesting feature: Because of the way initialization happens for static member
objects, you can put a static data member of the same class inside that class. Here’s an
example that allows only a single object of type egg to exist by making the constructor
private. You can access that object, but you can’t create any new egg objects:

//: C10:Selfmem.cpp
// Static member of same type
// ensures only one object of this type exists.
// Also referred to as a "singleton" pattern.
#include <iostream>
using namespace std;

class Egg {
 static Egg e;
 int i;

Chapter 8: Name Control 295

 Egg(int I) : i(I) {}
public:
 static Egg* instance() { return &e; }
 int val() { return i; }
};

Egg Egg::e(47);

int main() {
//! Egg x(1); // Error -- can't create an Egg
 // You can access the single instance:
 cout << Egg::instance()->val() << endl;
} ///:~

The initialization for E happens after the class declaration is complete, so the compiler has all
the information it needs to allocate storage and make the constructor call.

Static initialization dependency
Within a specific translation unit, the order of initialization of static objects is guaranteed to
be the order in which the object definitions appear in that translation unit. The order of
destruction is guaranteed to be the reverse of the order of initialization.

However, there is no guarantee concerning the order of initialization of static objects across
translation units, and there’s no way to specify this order. This can cause significant problems.
As an example of an instant disaster (which will halt primitive operating systems, and kill the
process on sophisticated ones), if one file contains

// First file
#include <fstream>
ofstream out("out.txt");

and another file uses the out object in one of its initializers

// Second file
#include <fstream>
extern ofstream out;
class oof {
public:
 oof() { out << "barf"; }
} OOF;

the program may work, and it may not. If the programming environment builds the program
so that the first file is initialized before the second file, then there will be no problem.
However, if the second file is initialized before the first, the constructor for oof relies upon the

Chapter 8: Name Control 296

existence of out, which hasn’t been constructed yet and this causes chaos. This is only a
problem with static object initializers that depend on each other, because by the time you get
into main(), all constructors for static objects have already been called.

A more subtle example can be found in the ARM.36 In one file,

extern int y;
int x = y + 1;

and in a second file,

extern int x;
int y = x + 1;

For all static objects, the linking-loading mechanism guarantees a static initialization to zero
before the dynamic initialization specified by the programmer takes place. In the previous
example, zeroing of the storage occupied by the fstream out object has no special meaning,
so it is truly undefined until the constructor is called. However, with built-in types,
initialization to zero does have meaning, and if the files are initialized in the order they are
shown above, y begins as statically initialized to zero, so x becomes one, and y is dynamically
initialized to two. However, if the files are initialized in the opposite order, x is statically
initialized to zero, y is dynamically initialized to one, and x then becomes two.

Programmers must be aware of this because they can create a program with static
initialization dependencies and get it working on one platform, but move it to another
compiling environment where it suddenly, mysteriously, doesn’t work.

What to do
There are three approaches to dealing with this problem:

 1. Don’t do it. Avoiding static initializer dependencies is the best solution.
 2. If you must do it, put the critical static object definitions in a single file, so

you can portably control their initialization by putting them in the correct
order.

 3. If you’re convinced it’s unavoidable to scatter static objects across
translation units — as in the case of a library, where you can’t control the
programmer who uses it — there is a technique pioneered by Jerry Schwarz
while creating the iostream library (because the definitions for cin, cout,
and cerr live in a separate file).

This technique requires an additional class in your library header file. This class is responsible
for the dynamic initialization of your library’s static objects. Here is a simple example:

36Bjarne Stroustrup and Margaret Ellis, The Annotated C++ Reference Manual, Addison-
Wesley, 1990, pp. 20-21.

Chapter 8: Name Control 297

//: C10:Depend.h
// Static initialization technique
#ifndef DEPEND_H_
#define DEPEND_H_
#include <iostream>
extern int x; // Delarations, not definitions
extern int y;

class Initializer {
 static int init_count;
public:
 Initializer() {
 std::cout << "Initializer()" << endl;
 // Initialize first time only
 if(init_count++ == 0) {
 std::cout << "performing initialization"
 << endl;
 x = 100;
 y = 200;
 }
 }
 ~Initializer() {
 std::cout << "~Initializer()" << endl;
 // Clean up last time only
 if(--init_count == 0) {
 std::cout << "performing cleanup" << endl;
 // Any necessary cleanup here
 }
 }
};

// The following creates one object in each
// file where DEPEND.H is included, but that
// object is only visible within that file:
static Initializer init;
#endif // DEPEND_H_ ///:~

The declarations for x and y announce only that these objects exist, but don’t allocate storage
for them. However, the definition for the Initializer init allocates storage for that object in
every file where the header is included, but because the name is static (controlling visibility
this time, not the way storage is allocated because that is at file scope by default), it is only
visible within that translation unit, so the linker will not complain about multiple definition
errors.

Chapter 8: Name Control 298

Here is the file containing the definitions for x, y, and init_count:

//: C10:Depdefs.cpp {O}
// Definitions for DEPEND.H
#include "Depend.h"
// Static initialization will force
// all these values to zero:
int x;
int y;
int Initializer::init_count;
///:~

(Of course, a file static instance of init is also placed in this file.) Suppose that two other files
are created by the library user:

//: C10:Depend.cpp {O}
// Static initialization
#include "Depend.h"
///:~

and

//: C10:Depend2.cpp
//{L} Depdefs Depend
// Static initialization
#include "Depend.h"
using namespace std;

int main() {
 cout << "inside main()" << endl;
 cout << "leaving main()" << endl;
} ///:~

Now it doesn’t matter which translation unit is initialized first. The first time a translation unit
containing DEPEND.H is initialized, init_count will be zero so the initialization will be
performed. (This depends heavily on the fact that global objects of built-in types are set to
zero before any dynamic initialization takes place.) For all the rest of the translation units, the
initialization will be skipped. Cleanup happens in the reverse order, and ~Initializer()
ensures that it will happen only once.

This example used built-in types as the global static objects. The technique also works with
classes, but those objects must then be dynamically initialized by the Initializer class. One
way to do this is to create the classes without constructors and destructors, but instead with
initialization and cleanup member functions using different names. A more common
approach, however, is to have pointers to objects and to create them dynamically on the heap
inside Initializer(). This requires the use of two C++ keywords, new and delete, which will
be explored in Chapter 11.

Chapter 8: Name Control 299

Alternate linkage specifications
What happens if you’re writing a program in C++ and you want to use a C library? If you
make the C function declaration,

float f(int a, char b);

the C++ compiler will mangle (decorate) this name to something like _f_int_int to support
function overloading (and type-safe linkage). However, the C compiler that compiled your C
library has most definitely not mangled the name, so its internal name will be _f. Thus, the
linker will not be able to resolve your C++ calls to f().

The escape mechanism provided in C++ is the alternate linkage specification, which was
produced in the language by overloading the extern keyword. The extern is followed by a
string that specifies the linkage you want for the declaration, followed by the declaration
itself:

extern "C" float f(int a, char b);

This tells the compiler to give C linkage to f(); that is, don’t mangle the name. The only two
types of linkage specifications supported by the standard are «C» and «C++,» but compiler
vendors have the option of supporting other languages in the same way.

If you have a group of declarations with alternate linkage, put them inside braces, like this:

extern "C" {
 float f(int a, char b);
 double d(int a, char b);
}

Or, for a header file,

extern "C" {
#include "Myheader.h"
}

Most C++ compiler vendors handle the alternate linkage specifications inside their header
files that work with both C and C++, so you don’t have to worry about it.

The only alternate linkage specification strings that are standard are «C» and «C++» but
implementations can support other languages using the same mechanism.

Summary
The static keyword can be confusing because in some situations it controls the location of
storage, and in others it controls visibility and linkage of a name.

Chapter 8: Name Control 300

With the introduction of C++ namespaces, you have an improved and more flexible
alternative to control the proliferation of names in large projects.

The use of static inside classes is one more way to control names in a program. The names do
not clash with global names, and the visibility and access is kept within the program, giving
you greater control in the maintenance of your code.

Exercises
 1. Create a class that holds an array of ints. Set the size of the array using an

untagged enumeration inside the class. Add a const int variable, and
initialize it in the constructor initializer list. Add a static int member
variable and initialize it to a specific value. Add a static member function
that prints the static data member. Add an inline constructor and an inline
member function called print() to print out all the values in the array, and
to call the static member function.

 2. In STATDEST.CPP, experiment with the order of constructor and
destructor calls by calling f() and g() inside main() in different orders.
Does your compiler get it right?

 3. In STATDEST.CPP, test the default error handling of your implementation
by turning the original definition of out into an extern declaration and
putting the actual definition after the definition of A (whose obj constructor
sends information to out). Make sure there’s nothing else important running
on your machine when you run the program or that your machine will
handle faults robustly.

 4. Create a class with a destructor that prints a message and then calls exit().
Create a global static object of this class and see what happens.

 5. Modify VOLATILE.CPP from Chapter 6 to make comm::isr() something
that would actually work as an interrupt service routine.

301

11: References &
the copy-
constructor

References are a C++ feature that are like constant pointers
automatically dereferenced by the compiler.

Although references also exist in Pascal, the C++ version was taken from the Algol language.
They are essential in C++ to support the syntax of operator overloading (see Chapter 10), but
are also a general convenience to control the way arguments are passed into and out of
functions.

This chapter will first look briefly at the differences between pointers in C and C++, then
introduce references. But the bulk of the chapter will delve into a rather confusing issue for
the new C++ programmer: the copy-constructor, a special constructor (requiring references)
that makes a new object from an existing object of the same type. The copy-constructor is
used by the compiler to pass and return objects by value into and out of functions.

Finally, the somewhat obscure C++ pointer-to-member feature is illuminated.

Pointers in C++
The most important difference between pointers in C and in C++ is that C++ is a more
strongly typed language. This stands out where void* is concerned. C doesn’t let you casually
assign a pointer of one type to another, but it does allow you to quietly accomplish this
through a void*. Thus,

bird* b;
rock* r;
void* v;
v = r;
b = v;

Chapter 9: References & the Copy-Constructor
302

C++ doesn’t allow this because it leaves a big hole in the type system. The compiler gives you
an error message, and if you really want to do it, you must make it explicit, both to the
compiler and to the reader, using a cast. (See Chapter 17 for C++’s improved casting syntax.)

References in C++
A reference (&) is like a constant pointer that is automatically dereferenced. It is usually used
for function argument lists and function return values. But you can also make a free-standing
reference. For example,

int x;
int & r = x;

When a reference is created, it must be initialized to a live object. However, you can also say

int & q = 12;

Here, the compiler allocates a piece of storage, initializes it with the value 12, and ties the
reference to that piece of storage. The point is that any reference must be tied to someone
else’s piece of storage. When you access a reference, you’re accessing that storage. Thus if
you say,

int x = 0;
int & a = x;
a++;

incrementing a is actually incrementing x. Again, the easiest way to think about a reference is
as a fancy pointer. One advantage of this pointer is you never have to wonder whether it’s
been initialized (the compiler enforces it) and how to dereference it (the compiler does it).

There are certain rules when using references:

 6. A reference must be initialized when it is created. (Pointers can be
initialized at any time.)

 7. Once a reference is initialized to an object, it cannot be changed to refer to
another object. (Pointers can be pointed to another object at any time.)

 8. You cannot have NULL references. You must always be able to assume that
a reference is connected to a legitimate piece of storage.

References in functions
The most common place you’ll see references is in function arguments and return values.
When a reference is used as a function argument, any modification to the reference inside the
function will cause changes to the argument outside the function. Of course, you could do the

Chapter 9: References & the Copy-Constructor
303

same thing by passing a pointer, but a reference has much cleaner syntax. (You can think of a
reference as nothing more than a syntax convenience, if you want.)

If you return a reference from a function, you must take the same care as if you return a
pointer from a function. Whatever the reference is connected to shouldn’t go away when the
function returns; otherwise you’ll be referring to unknown memory.

Here’s an example:

//: C11:Refrnce.cpp
// Simple C++ references

int* f(int* x) {
 (*x)++;
 return x; // Safe; x is outside this scope
}

int& g(int& x) {
 x++; // Same effect as in f()
 return x; // Safe; outside this scope
}

int& h() {
 int q;
//! return q; // Error
 static int x;
 return x; // Safe; x lives outside scope
}

int main() {
 int A = 0;
 f(&A); // Ugly (but explicit)
 g(A); // Clean (but hidden)
} ///:~

The call to f() doesn’t have the convenience and cleanliness of using references, but it’s clear
that an address is being passed. In the call to g(), an address is being passed (via a reference),
but you don’t see it.

const references
The reference argument in REFRNCE.CPP works only when the argument is a non-const
object. If it is a const object, the function g() will not accept the argument, which is actually a
good thing, because the function does modify the outside argument. If you know the function
will respect the constness of an object, making the argument a const reference will allow the
function to be used in all situations. This means that, for built-in types, the function will not

Chapter 9: References & the Copy-Constructor
304

modify the argument, and for user-defined types the function will call only const member
functions, and won’t modify any public data members.

The use of const references in function arguments is especially important because your
function may receive a temporary object, created as a return value of another function or
explicitly by the user of your function. Temporary objects are always const, so if you don’t
use a const reference, that argument won’t be accepted by the compiler. As a very simple
example,

//: C11:Pasconst.cpp
// Passing references as const

void f(int&) {}
void g(const int&) {}

int main() {
//! f(1); // Error
 g(1);
} ///:~

The call to f(1) produces a compiler error because the compiler must first create a reference. It
does so by allocating storage for an int, initializing it to one and producing the address to bind
to the reference. The storage must be a const because changing it would make no sense —
you can never get your hands on it again. With all temporary objects you must make the same
assumption, that they’re inaccessible. It’s valuable for the compiler to tell you when you’re
changing such data because the result would be lost information.

Pointer references
In C, if you wanted to modify the contents of the pointer rather than what it points to, your
function declaration would look like

void f(int**);

and you’d have to take the address of the pointer when passing it in:

int I = 47;
int* ip = &I;
f(&ip);

With references in C++, the syntax is cleaner. The function argument becomes a reference to
a pointer, and you no longer have to take the address of that pointer. Thus,

//: C11:Refptr.cpp
// Reference to pointer
#include <iostream>
using namespace std;

void increment(int*& i) { i++; }

Chapter 9: References & the Copy-Constructor
305

int main() {
 int* i = 0;
 cout << "i = " << i << endl;
 increment(i);
 cout << "i = " << i << endl;
} ///:~

By running this program, you’ll prove to yourself that the pointer itself is incremented, not
what it points to.

Argument-passing guidelines
Your normal habit when passing an argument to a function should be to pass by const
reference. Although this may at first seem like only an efficiency concern (and you normally
don’t want to concern yourself with efficiency tuning while you’re designing and assembling
your program), there’s more at stake: as you’ll see in the remainder of the chapter, a copy-
constructor is required to pass an object by value, and this isn’t always available.

The efficiency savings can be substantial for such a simple habit: to pass an argument by
value requires a constructor and destructor call, but if you’re not going to modify the
argument then passing by const reference only needs an address pushed on the stack.

In fact, virtually the only time passing an address isn’t preferable is when you’re going to do
such damage to an object that passing by value is the only safe approach (rather than
modifying the outside object, something the caller doesn’t usually expect). This is the subject
of the next section.

The copy-constructor
Now that you understand the basics of the reference in C++, you’re ready to tackle one of the
more confusing concepts in the language: the copy-constructor, often called X(X&) («X of X
ref»). This constructor is essential to control passing and returning of user-defined types by
value during function calls.

Passing & returning by value
To understand the need for the copy-constructor, consider the way C handles passing and
returning variables by value during function calls. If you declare a function and make a
function call,

int f(int x, char c);
int g = f(a, b);

Chapter 9: References & the Copy-Constructor
306

how does the compiler know how to pass and return those variables? It just knows! The range
of the types it must deal with is so small — char, int, float, and double and their variations
— that this information is built into the compiler.

If you figure out how to generate assembly code with your compiler and determine the
statements generated by the function call to f(), you’ll get the equivalent of,

 push b
 push a
 call f()
 add sp,4

mov g, register a

This code has been cleaned up significantly to make it generic — the expressions for b and a
will be different depending on whether the variables are global (in which case they will be _b
and _a) or local (the compiler will index them off the stack pointer). This is also true for the
expression for g. The appearance of the call to f() will depend on your name-mangling
scheme, and «register a» depends on how the CPU registers are named within your assembler.
The logic behind the code, however, will remain the same.

In C and C++, arguments are pushed on the stack from right to left, the function call is made,
then the calling code is responsible for cleaning the arguments off the stack (which accounts
for the add sp,4). But notice that to pass the arguments by value, the compiler simply pushes
copies on the stack — it knows how big they are and that pushing those arguments makes
accurate copies of them.

The return value of f() is placed in a register. Again, the compiler knows everything there is
to know about the return value type because it’s built into the language, so the compiler can
return it by placing it in a register. The simple act of copying the bits of the value is
equivalent to copying the object.

Passing & returning large objects
But now consider user-defined types. If you create a class and you want to pass an object of
that class by value, how is the compiler supposed to know what to do? This is no longer a
built-in type the compiler writer knows about; it’s a type someone has created since then.

To investigate this, you can start with a simple structure that is clearly too large to return in
registers:

//: C11:Passtruc.cpp
// Passing a big structure

struct big {
 char buf[100];
 int i;
 long d;
} B, B2;

Chapter 9: References & the Copy-Constructor
307

big bigfun(big b) {
 b.i = 100; // Do something to the argument
 return b;
}

int main() {
 B2 = bigfun(B);
} ///:~

Decoding the assembly output is a little more complicated here because most compilers use
«helper» functions rather than putting all functionality inline. In main(), the call to bigfun()
starts as you might guess — the entire contents of B is pushed on the stack. (Here, you might
see some compilers load registers with the address of B and its size, then call a helper
function to push it onto the stack.)

In the previous example, pushing the arguments onto the stack was all that was required
before making the function call. In PASSTRUC.CPP, however, you’ll see an additional
action: The address of B2 is pushed before making the call, even though it’s obviously not an
argument. To comprehend what’s going on here, you need to understand the constraints on
the compiler when it’s making a function call.

Function-call stack frame
When the compiler generates code for a function call, it first pushes all the arguments on the
stack, then makes the call. Inside the function itself, code is generated to move the stack
pointer down even further to provide storage for the function’s local variables. («Down» is
relative here; your machine may increment or decrement the stack pointer during a push.) But
during the assembly-language CALL, the CPU pushes the address in the program code where
the function call came from, so the assembly-language RETURN can use that address to
return to the calling point. This address is of course sacred, because without it your program
will get completely lost. Here’s what the stack frame looks like after the CALL and the
allocation of local variable storage in the function:

r e t u r n a d d r e s s

fu n c t i o n

a r gu m e n t s

l o c a l v a r ia b l e s

Chapter 9: References & the Copy-Constructor
308

The code generated for the rest of the function expects the memory to be laid out exactly this
way, so it can carefully pick from the function arguments and local variables without touching
the return address. I shall call this block of memory, which is everything used by a function in
the process of the function call, the function frame.

You might think it reasonable to try to return values on the stack. The compiler could simply
push it, and the function could return an offset to indicate how far down in the stack the return
value begins.

Re-entrancy
The problem occurs because functions in C and C++ support interrupts; that is, the languages
are re-entrant. They also support recursive function calls. This means that at any point in the
execution of a program an interrupt can occur without disturbing the program. Of course, the
person who writes the interrupt service routine (ISR) is responsible for saving and restoring
all the registers he uses, but if the ISR needs to use any memory that’s further down on the
stack, that must be a safe thing to do. (You can think of an ISR as an ordinary function with
no arguments and void return value that saves and restores the CPU state. An ISR function
call is triggered by some hardware event rather than an explicit call from within a program.)

Now imagine what would happen if the called function tried to return values on the stack
from an ordinary function. You can’t touch any part of the stack that’s above the return
address, so the function would have to push the values below the return address. But when the
assembly-language RETURN is executed, the stack pointer must be pointing to the return
address (or right below it, depending on your machine), so right before the RETURN, the
function must move the stack pointer up, thus clearing off all its local variables. If you’re
trying to return values on the stack below the return address, you become vulnerable at that
moment because an interrupt could come along. The ISR would move the stack pointer down
to hold its return address and its local variables and overwrite your return value.

To solve this problem, the caller could be responsible for allocating the extra storage on the
stack for the return values before calling the function. However, C was not designed this way,
and C++ must be compatible. As you’ll see shortly, the C++ compiler uses a more efficient
scheme.

Your next idea might be to return the value in some global data area, but this doesn’t work
either. Re-entrancy means that any function can interrupt any other function, including the
same function you’re currently inside. Thus, if you put the return value in a global area, you
might return into the same function, which would overwrite that return value. The same logic
applies to recursion.

The only safe place to return values is in the registers, so you’re back to the problem of what
to do when the registers aren’t large enough to hold the return value. The answer is to push
the address of the return value’s destination on the stack as one of the function arguments, and
let the function copy the return information directly into the destination. This not only solves
all the problems, it’s more efficient. It’s also the reason that, in PASSTRUC.CPP, the
compiler pushes the address of B2 before the call to bigfun() in main(). If you look at the

Chapter 9: References & the Copy-Constructor
309

assembly output for bigfun(), you can see it expects this hidden argument and performs the
copy to the destination inside the function.

Bitcopy versus initialization
So far, so good. There’s a workable process for passing and returning large simple structures.
But notice that all you have is a way to copy the bits from one place to another, which
certainly works fine for the primitive way that C looks at variables. But in C++ objects can be
much more sophisticated than a patch of bits; they have meaning. This meaning may not
respond well to having its bits copied.

Consider a simple example: a class that knows how many objects of its type exist at any one
time. From Chapter 8, you know the way to do this is by including a static data member:

//: C11:HowMany.cpp
// Class counts its objects
#include <fstream>
using namespace std;
ofstream out("HowMany.out");

class HowMany {
 static int object_count;
public:
 HowMany() {
 object_count++;
 }
 static void print(const char* msg = 0) {
 if(msg) out << msg << ": ";
 out << "object_count = "
 << object_count << endl;
 }
 ~HowMany() {
 object_count--;
 print("~HowMany()");
 }
};

int HowMany::object_count = 0;

// Pass and return BY VALUE:
HowMany f(HowMany x) {
 x.print("x argument inside f()");
 return x;
}

Chapter 9: References & the Copy-Constructor
310

int main() {
 HowMany h;
 HowMany::print("after construction of h");
 HowMany h2 = f(h);
 HowMany::print("after call to f()");
} ///:~

The class HowMany contains a static int and a static member function print() to report the
value of that int, along with an optional message argument. The constructor increments the
count each time an object is created, and the destructor decrements it.

The output, however, is not what you would expect:

after construction of h: object_count = 1
x argument inside f(): object_count = 1
~HowMany(): object_count = 0
after call to f(): object_count = 0
~HowMany(): object_count = -1
~HowMany(): object_count = -2

After h is created, the object count is one, which is fine. But after the call to f() you would
expect to have an object count of two, because h2 is now in scope as well. Instead, the count
is zero, which indicates something has gone horribly wrong. This is confirmed by the fact that
the two destructors at the end make the object count go negative, something that should never
happen.

Look at the point inside f(), which occurs after the argument is passed by value. This means
the original object h exists outside the function frame, and there’s an additional object inside
the function frame, which is the copy that has been passed by value. However, the argument
has been passed using C’s primitive notion of bitcopying, whereas the C++ HowMany class
requires true initialization to maintain its integrity, so the default bitcopy fails to produce the
desired effect.

When the local object goes out of scope at the end of the call to f(), the destructor is called,
which decrements object_count, so outside the function, object_count is zero. The creation
of h2 is also performed using a bitcopy, so the constructor isn’t called there, either, and when
h and h2 go out of scope, their destructors cause the negative values of object_count.

Copy-construction
The problem occurs because the compiler makes an assumption about how to create a new
object from an existing object. When you pass an object by value, you create a new object, the
passed object inside the function frame, from an existing object, the original object outside the
function frame. This is also often true when returning an object from a function. In the
expression

HowMany h2 = f(h);

Chapter 9: References & the Copy-Constructor
311

h2, a previously unconstructed object, is created from the return value of f(), so again a new
object is created from an existing one.

The compiler’s assumption is that you want to perform this creation using a bitcopy, and in
many cases this may work fine but in HowMany it doesn’t fly because the meaning of
initialization goes beyond simply copying. Another common example occurs if the class
contains pointers — what do they point to, and should you copy them or should they be
connected to some new piece of memory?

Fortunately, you can intervene in this process and prevent the compiler from doing a bitcopy.
You do this by defining your own function to be used whenever the compiler needs to make a
new object from an existing object. Logically enough, you’re making a new object, so this
function is a constructor, and also logically enough, the single argument to this constructor
has to do with the object you’re constructing from. But that object can’t be passed into the
constructor by value because you’re trying to define the function that handles passing by
value, and syntactically it doesn’t make sense to pass a pointer because, after all, you’re
creating the new object from an existing object. Here, references come to the rescue, so you
take the reference of the source object. This function is called the copy-constructor and is
often referred to as X(X&), which is its appearance for a class called X.

If you create a copy-constructor, the compiler will not perform a bitcopy when creating a new
object from an existing one. It will always call your copy-constructor. So, if you don’t create a
copy-constructor, the compiler will do something sensible, but you have the choice of taking
over complete control of the process.

Now it’s possible to fix the problem in HowMany.cpp:

//: C11:HowMany2.cpp
// The copy-constructor
#include <fstream>
#include <cstring>
using namespace std;
ofstream out("HowMany2.out");

class HowMany2 {
 enum { bufsize = 30 };
 char id[bufsize]; // Object identifier
 static int object_count;
public:
 HowMany2(const char* ID = 0) {
 if(ID) strncpy(id, ID, bufsize);
 else *id = 0;
 ++object_count;
 print("HowMany2()");
 }
 // The copy-constructor:

Chapter 9: References & the Copy-Constructor
312

 HowMany2(const HowMany2& h) {
 strncpy(id, h.id, bufsize);
 strncat(id, " copy", bufsize - strlen(id));
 ++object_count;
 print("HowMany2(HowMany2&)");
 }
 // Can't be static (printing id):
 void print(const char* msg = 0) const {
 if(msg) out << msg << endl;
 out << '\t' << id << ": "
 << "object_count = "
 << object_count << endl;
 }
 ~HowMany2() {
 --object_count;
 print("~HowMany2()");
 }
};

int HowMany2::object_count = 0;

// Pass and return BY VALUE:
HowMany2 f(HowMany2 x) {
 x.print("x argument inside f()");
 out << "returning from f()" << endl;
 return x;
}

int main() {
 HowMany2 h("h");
 out << "entering f()" << endl;
 HowMany2 h2 = f(h);
 h2.print("h2 after call to f()");
 out << "call f(), no return value" << endl;
 f(h);
 out << "after call to f()" << endl;
} ///:~

There are a number of new twists thrown in here so you can get a better idea of what’s
happening. First, the character buffer id acts as an object identifier so you can figure out
which object the information is being printed about. In the constructor, you can put an
identifier string (usually the name of the object) that is copied to id using the Standard C
library function strncpy(), which only copies a certain number of characters, preventing
overrun of the buffer.

Chapter 9: References & the Copy-Constructor
313

Next is the copy-constructor, HowMany2(HowMany2&). The copy-constructor can create a
new object only from an existing one, so the existing object’s name is copied to id, followed
by the word «copy» so you can see where it came from. Note the use of the Standard C library
function strncat() to copy a maximum number of characters into id, again to prevent
overrunning the end of the buffer.

Inside the copy-constructor, the object count is incremented just as it is inside the normal
constructor. This means you’ll now get an accurate object count when passing and returning
by value.

The print() function has been modified to print out a message, the object identifier, and the
object count. It must now access the id data of a particular object, so it can no longer be a
static member function.

Inside main(), you can see a second call to f() has been added. However, this call uses the
common C approach of ignoring the return value. But now that you know how the value is
returned (that is, code inside the function handles the return process, putting the result in a
destination whose address is passed as a hidden argument), you might wonder what happens
when the return value is ignored. The output of the program will throw some illumination on
this.

Before showing the output, here’s a little program that uses iostreams to add line numbers to
any file:

//: C11:Linenum.cpp
// Add line numbers
#include <fstream>
#include <strstream>
#include <cstdlib>
#include "../require.h"
using namespace std;

int main(int argc, char* argv[]) {
 requireArgs(argc, 2, "Usage: linenum file\n"
 "Adds line numbers to file");
 strstream text;
 {
 ifstream in(argv[1]);
 assure(in, argv[1]);
 text << in.rdbuf(); // Read in whole file
 } // Close file
 ofstream out(argv[1]); // Overwrite file
 assure(out, argv[1]);
 const bsz = 100;
 char buf[bsz];
 int line = 0;

Chapter 9: References & the Copy-Constructor
314

 while(text.getline(buf, bsz)) {
 out.setf(ios::right, ios::adjustfield);
 out.width(2);
 out << ++line << ") " << buf << endl;
 }
} ///:~

The entire file is read into a strstream (which can be both written to and read from) and the
ifstream is closed with scoping. Then an ofstream is created for the same file, overwriting it.
getline() fetches a line at a time from the strstream and line numbers are added as the line is
written back into the file.

The line numbers are printed right-aligned in a field width of two, so the output still lines up
in its original configuration. You can change the program to add an optional second
command-line argument that allows the user to select a field width, or you can be more clever
and count all the lines in the file to determine the field width automatically.

When LINENUM.CPP is applied to HOWMANY2.OUT, the result is

 1) HowMany2()
 2) h: object_count = 1
 3) entering f()
 4) HowMany2(HowMany2&)
 5) h copy: object_count = 2
 6) x argument inside f()
 7) h copy: object_count = 2
 8) returning from f()
 9) HowMany2(HowMany2&)
10) h copy copy: object_count = 3
11) ~HowMany2()
12) h copy: object_count = 2
13) h2 after call to f()
14) h copy copy: object_count = 2
15) call f(), no return value
16) HowMany2(HowMany2&)
17) h copy: object_count = 3
18) x argument inside f()
19) h copy: object_count = 3
20) returning from f()
21) HowMany2(HowMany2&)
22) h copy copy: object_count = 4
23) ~HowMany2()
24) h copy: object_count = 3
25) ~HowMany2()
26) h copy copy: object_count = 2

Chapter 9: References & the Copy-Constructor
315

27) after call to f()
28) ~HowMany2()
29) h copy copy: object_count = 1
30) ~HowMany2()
31) h: object_count = 0

As you would expect, the first thing that happens is the normal constructor is called for h,
which increments the object count to one. But then, as f() is entered, the copy-constructor is
quietly called by the compiler to perform the pass-by-value. A new object is created, which is
the copy of h (thus the name «h copy») inside the function frame of f(), so the object count
becomes two, courtesy of the copy-constructor.

Line eight indicates the beginning of the return from f(). But before the local variable «h
copy» can be destroyed (it goes out of scope at the end of the function), it must be copied into
the return value, which happens to be h2. A previously unconstructed object (h2) is created
from an existing object (the local variable inside f()), so of course the copy-constructor is
used again in line nine. Now the name becomes «h copy copy» for h2’s identifier because it’s
being copied from the copy that is the local object inside f(). After the object is returned, but
before the function ends, the object count becomes temporarily three, but then the local object
«h copy» is destroyed. After the call to f() completes in line 13, there are only two objects, h
and h2, and you can see that h2 did indeed end up as «h copy copy.»

Temporary objects
Line 15 begins the call to f(h), this time ignoring the return value. You can see in line 16 that
the copy-constructor is called just as before to pass the argument in. And also, as before, line
21 shows the copy-constructor is called for the return value. But the copy-constructor must
have an address to work on as its destination (a this pointer). Where is the object returned to?

It turns out the compiler can create a temporary object whenever it needs one to properly
evaluate an expression. In this case it creates one you don’t even see to act as the destination
for the ignored return value of f(). The lifetime of this temporary object is as short as possible
so the landscape doesn’t get cluttered up with temporaries waiting to be destroyed, taking up
valuable resources. In some cases, the temporary might be immediately passed to another
function, but in this case it isn’t needed after the function call, so as soon as the function call
ends by calling the destructor for the local object (lines 23 and 24), the temporary object is
destroyed (lines 25 and 26).

Now, in lines 28-31, the h2 object is destroyed, followed by h, and the object count goes
correctly back to zero.

Default copy-constructor
Because the copy-constructor implements pass and return by value, it’s important that the
compiler will create one for you in the case of simple structures — effectively, the same thing
it does in C. However, all you’ve seen so far is the default primitive behavior: a bitcopy.

Chapter 9: References & the Copy-Constructor
316

When more complex types are involved, the C++ compiler will still automatically create a
copy-constructor if you don’t make one. Again, however, a bitcopy doesn’t make sense,
because it doesn’t necessarily implement the proper meaning.

Here’s an example to show the more intelligent approach the compiler takes. Suppose you
create a new class composed of objects of several existing classes. This is called,
appropriately enough, composition, and it’s one of the ways you can make new classes from
existing classes. Now take the role of a naive user who’s trying to solve a problem quickly by
creating the new class this way. You don’t know about copy-constructors, so you don’t create
one. The example demonstrates what the compiler does while creating the default copy-
constructor for your new class:

//: C11:Autocc.cpp
// Automatic copy-constructor
#include <iostream>
#include <cstring>
using namespace std;

class WithCC { // With copy-constructor
public:
 // Explicit default constructor required:
 WithCC() {}
 WithCC(const WithCC&) {
 cout << "WithCC(WithCC&)" << endl;
 }
};

class WoCC { // Without copy-constructor
 enum { bsz = 30 };
 char buf[bsz];
public:
 WoCC(const char* msg = 0) {
 memset(buf, 0, bsz);
 if(msg) strncpy(buf, msg, bsz);
 }
 void print(const char* msg = 0) const {
 if(msg) cout << msg << ": ";
 cout << buf << endl;
 }
};

class Composite {
 WithCC withcc; // Embedded objects
 WoCC wocc;

Chapter 9: References & the Copy-Constructor
317

public:
 Composite() : wocc("Composite()") {}
 void print(const char* msg = 0) {
 wocc.print(msg);
 }
};

int main() {
 Composite c;
 c.print("contents of c");
 cout << "calling Composite copy-constructor"
 << endl;
 Composite c2 = c; // Calls copy-constructor
 c2.print("contents of c2");
} ///:~

The class WithCC contains a copy-constructor, which simply announces it has been called,
and this brings up an interesting issue. In the class Composite, an object of WithCC is
created using a default constructor. If there were no constructors at all in WithCC, the
compiler would automatically create a default constructor, which would do nothing in this
case. However, if you add a copy-constructor, you’ve told the compiler you’re going to
handle constructor creation, so it no longer creates a default constructor for you and will
complain unless you explicitly create a default constructor as was done for WithCC.

The class WoCC has no copy-constructor, but its constructor will store a message in an
internal buffer that can be printed out using print(). This constructor is explicitly called in
Composite’s constructor initializer list (briefly introduced in Chapter 6 and covered fully in
Chapter 12). The reason for this becomes apparent later.

The class Composite has member objects of both WithCC and WoCC (note the embedded
object WOCC is initialized in the constructor-initializer list, as it must be), and no explicitly
defined copy-constructor. However, in main() an object is created using the copy-constructor
in the definition:

Composite c2 = c;

The copy-constructor for Composite is created automatically by the compiler, and the output
of the program reveals how it is created.

To create a copy-constructor for a class that uses composition (and inheritance, which is
introduced in Chapter 12), the compiler recursively calls the copy-constructors for all the
member objects and base classes. That is, if the member object also contains another object,
its copy-constructor is also called. So in this case, the compiler calls the copy-constructor for
WithCC. The output shows this constructor being called. Because WoCC has no copy-
constructor, the compiler creates one for it, which is the default behavior of a bitcopy, and
calls that inside the Composite copy-constructor. The call to Composite::print() in main
shows that this happens because the contents of c2.WOCC are identical to the contents of

Chapter 9: References & the Copy-Constructor
318

c.WOCC. The process the compiler goes through to synthesize a copy-constructor is called
memberwise initialization.

It’s best to always create your own copy-constructor rather than letting the compiler do it for
you. This guarantees it will be under your control.

Alternatives to copy-construction
At this point your head may be swimming, and you might be wondering how you could have
possibly written a functional class without knowing about the copy-constructor. But
remember: You need a copy-constructor only if you’re going to pass an object of your class
by value. If that never happens, you don’t need a copy-constructor.

Preventing pass-by-value
«But,» you say, «if I don’t make a copy-constructor, the compiler will create one for me. So
how do I know that an object will never be passed by value?»

There’s a simple technique for preventing pass-by-value: Declare a private copy-constructor.
You don’t even need to create a definition, unless one of your member functions or a friend
function needs to perform a pass-by-value. If the user tries to pass or return the object by
value, the compiler will produce an error message because the copy-constructor is private. It
can no longer create a default copy-constructor because you’ve explicitly stated you’re taking
over that job.

Here’s an example:

//: C11:Stopcc.cpp
// Preventing copy-construction

class NoCC {
 int i;
 NoCC(const NoCC&); // No definition
public:
 NoCC(int I = 0) : i(I) {}
};

void f(NoCC);

int main() {
 NoCC n;
//! f(n); // Error: copy-constructor called
//! NoCC n2 = n; // Error: c-c called
//! NoCC n3(n); // Error: c-c called
} ///:~

Chapter 9: References & the Copy-Constructor
319

Notice the use of the more general form

NoCC(const NoCC&);

using the const.

Functions that modify outside objects
Reference syntax is nicer to use than pointer syntax, yet it clouds the meaning for the reader.
For example, in the iostreams library one overloaded version of the get() function takes a
char& as an argument, and the whole point of the function is to modify its argument by
inserting the result of the get(). However, when you read code using this function it’s not
immediately obvious to you the outside object is being modified:

char c;
cin.get(c);

Instead, the function call looks like a pass-by-value, which suggests the outside object is not
modified.

Because of this, it’s probably safer from a code maintenance standpoint to use pointers when
you’re passing the address of an argument to modify. If you always pass addresses as const
references except when you intend to modify the outside object via the address, where you
pass by non-const pointer, then your code is far easier for the reader to follow.

Pointers to members
A pointer is a variable that holds the address of some location, which can be either data or a
function, so you can change what a pointer selects at run-time. The C++ pointer-to-member
follows this same concept, except that what it selects is a location inside a class. The dilemma
here is that all a pointer needs is an address, but there is no «address» inside a class; selecting
a member of a class means offsetting into that class. You can’t produce an actual address until
you combine that offset with the starting address of a particular object. The syntax of pointers
to members requires that you select an object at the same time you’re dereferencing the
pointer to member.

To understand this syntax, consider a simple structure:

struct simple { int a; };

If you have a pointer sp and an object so for this structure, you can select members by saying

sp->a;
so.a;

Now suppose you have an ordinary pointer to an integer, ip. To access what ip is pointing to,
you dereference the pointer with a *:

*ip = 4;

Chapter 9: References & the Copy-Constructor
320

Finally, consider what happens if you have a pointer that happens to point to something inside
a class object, even if it does in fact represent an offset into the object. To access what it’s
pointing at, you must dereference it with *. But it’s an offset into an object, so you must also
refer to that particular object. Thus, the * is combined with the object dereferencing. As an
example using the simple class,

sp->*pm = 47;
so.*pm = 47;

So the new syntax becomes –>* for a pointer to an object, and .* for the object or a reference.
Now, what is the syntax for defining pm? Like any pointer, you have to say what type it’s
pointing at, and you use a * in the definition. The only difference is you must say what class
of objects this pointer-to-member is used with. Of course, this is accomplished with the name
of the class and the scope resolution operator. Thus,

int simple::*pm;

You can also initialize the pointer-to-member when you define it (or any other time):

int simple::*pm = &simple::a;

There is actually no «address» of simple::a because you’re just referring to the class and not
an object of that class. Thus, &simple::a can be used only as pointer-to-member syntax.

Functions
A similar exercise produces the pointer-to-member syntax for member functions. A pointer to
a function is defined like this:

int (*fp)(float);

The parentheses around (*fp) are necessary to force the compiler to evaluate the definition
properly. Without them this would appear to be a function that returns an int*.

To define and use a pointer to a member function, parentheses play a similarly important role.
If you have a function inside a structure:

struct simple2 { int f(float); };

you define a pointer to that member function by inserting the class name and scope resolution
operator into an ordinary function pointer definition:

int (simple2::*fp)(float);

You can also initialize it when you create it, or at any other time:

int (simple2::*fp)(float) = &simple2::f;

As with normal functions, the & is optional; you can give the function identifier without an
argument list to mean the address:

fp = simple2::f;

Chapter 9: References & the Copy-Constructor
321

An example
The value of a pointer is that you can change what it points to at run-time, which provides an
important flexibility in your programming because through a pointer you can select or change
behavior at run-time. A pointer-to-member is no different; it allows you to choose a member
at run-time. Typically, your classes will have only member functions publicly visible (data
members are usually considered part of the underlying implementation), so the following
example selects member functions at run-time.

//: C11:Pmem.cpp
// Pointers to members

class Widget {
public:
 void f(int);
 void g(int);
 void h(int);
 void i(int);
};

void Widget::h(int) {}

int main() {
 Widget w;
 Widget* wp = &w;
 void (Widget::*pmem)(int) = &Widget::h;
 (w.*pmem)(1);
 (wp->*pmem)(2);
} ///:~

Of course, it isn’t particularly reasonable to expect the casual user to create such complicated
expressions. If the user must directly manipulate a pointer-to-member, then a typedef is in
order. To really clean things up, you can use the pointer-to-member as part of the internal
implementation mechanism. Here’s the preceding example using a pointer-to-member inside
the class. All the user needs to do is pass a number in to select a function.37

//: C11:Pmem2.cpp
// Pointers to members
#include <iostream>
using namespace std;

37 Thanks to Owen Mortensen for this example

Chapter 9: References & the Copy-Constructor
322

class Widget {
 void f(int) const {cout << "Widget::f()\n";}
 void g(int) const {cout << "Widget::g()\n";}
 void h(int) const {cout << "Widget::h()\n";}
 void i(int) const {cout << "Widget::i()\n";}
 enum { count = 4 };
 void (Widget::*fptr[count])(int) const;
public:
 Widget() {
 fptr[0] = &Widget::f; // Full spec required
 fptr[1] = &Widget::g;
 fptr[2] = &Widget::h;
 fptr[3] = &Widget::i;
 }
 void select(int I, int J) {
 if(I < 0 || I >= count) return;
 (this->*fptr[I])(J);
 }
 int Count() { return count; }
};

int main() {
 Widget w;
 for(int i = 0; i < w.Count(); i++)
 w.select(i, 47);
} ///:~

In the class interface and in main(), you can see that the entire implementation, including the
functions themselves, has been hidden away. The code must even ask for the Count() of
functions. This way, the class implementor can change the quantity of functions in the
underlying implementation without affecting the code where the class is used.

The initialization of the pointers-to-members in the constructor may seem overspecified.
Shouldn’t you be able to say

fptr[1] = &g;

because the name g occurs in the member function, which is automatically in the scope of the
class? The problem is this doesn’t conform to the pointer-to-member syntax, which is
required so everyone, especially the compiler, can figure out what’s going on. Similarly, when
the pointer-to-member is dereferenced, it seems like

(this->*fptr[i])(j);

is also over-specified; this looks redundant. Again, the syntax requires that a pointer-to-
member always be bound to an object when it is dereferenced.

Chapter 9: References & the Copy-Constructor
323

Summary
Pointers in C++ are remarkably similar to pointers in C, which is good. Otherwise a lot of C
code wouldn’t compile properly under C++. The only compiler errors you will produce is
where dangerous assignments occur. If these are in fact what are intended, the compiler errors
can be removed with a simple (and explicit!) cast.

C++ also adds the reference from Algol and Pascal, which is like a constant pointer that is
automatically dereferenced by the compiler. A reference holds an address, but you treat it like
an object. References are essential for clean syntax with operator overloading (the subject of
the next chapter), but they also add syntactic convenience for passing and returning objects
for ordinary functions.

The copy-constructor takes a reference to an existing object of the same type as its argument,
and it is used to create a new object from an existing one. The compiler automatically calls
the copy-constructor when you pass or return an object by value. Although the compiler will
automatically create a copy-constructor for you, if you think one will be needed for your class
you should always define it yourself to ensure that the proper behavior occurs. If you don’t
want the object passed or returned by value, you should create a private copy-constructor.

Pointers-to-members have the same functionality as ordinary pointers: You can choose a
particular region of storage (data or function) at run-time. Pointers-to-members just happen to
work with class members rather than global data or functions. You get the programming
flexibility that allows you to change behavior at run-time.

Exercises
 1. Create a function that takes a char& argument and modifies that argument.

In main(), print out a char variable, call your function for that variable,
and print it out again to prove to yourself it has been changed. How does
this affect program readability?

 2. Write a class with a copy-constructor that announces itself to cout. Now
create a function that passes an object of your new class in by value and
another one that creates a local object of your new class and returns it by
value. Call these functions to prove to yourself that the copy-constructor is
indeed quietly called when passing and returning objects by value.

 3. Discover how to get your compiler to generate assembly language, and
produce assembly for PASSTRUC.CPP. Trace through and demystify the
way your compiler generates code to pass and return large structures.

 4. (Advanced) This exercise creates an alternative to using the copy-
constructor. Create a class X and declare (but don’t define) a private copy-
constructor. Make a public clone() function as a const member function
that returns a copy of the object created using new (a forward reference to

Chapter 9: References & the Copy-Constructor
324

Chapter 11). Now create a function that takes as an argument a const X&
and clones a local copy that can be modified. The drawback to this approach
is that you are responsible for explicitly destroying the cloned object (using
delete) when you’re done with it.

325

12: Operator
overloading

Operator overloading is just «syntactic sugar,» which means
it is simply another way for you to make a function call.

The difference is the arguments for this function don’t appear inside parentheses, but instead
surrounding or next to characters you’ve always thought of as immutable operators.

But in C++, it’s possible to define new operators that work with classes. This definition is just
like an ordinary function definition except the name of the function begins with the keyword
operator and ends with the operator itself. That’s the only difference, and it becomes a
function like any other function, which the compiler calls when it sees the appropriate pattern.

Warning & reassurance
It’s very tempting to become overenthusiastic with operator overloading. It’s a fun toy, at
first. But remember it’s only syntactic sugar, another way of calling a function. Looking at it
this way, you have no reason to overload an operator except that it will make the code
involving your class easier to write and especially read. (Remember, code is read much more
than it is written.) If this isn’t the case, don’t bother.

Another common response to operator overloading is panic: Suddenly, C operators have no
familiar meaning anymore. «Everything’s changed and all my C code will do different things
!» This isn’t true. All the operators used in expressions that contain only built-in data types
cannot be changed. You can never overload operators such that

1 << 4;

behaves differently, or

1.414 << 2;

has meaning. Only an expression containing a user-defined type can have an overloaded
operator.

Chapter 10: Operator Overloading
326

Syntax
Defining an overloaded operator is like defining a function, but the name of that function is
operator@, where @ represents the operator. The number of arguments in the function
argument list depends on two factors:

 1. Whether it’s a unary (one argument) or binary (two argument) operator.
 2. Whether the operator is defined as a global function (one argument for

unary, two for binary) or a member function (zero arguments for unary, one
for binary — the object becomes the left-hand argument).

Here’s a small class that shows the syntax for operator overloading:

//: C12:Opover.cpp
// Operator overloading syntax
#include <iostream>
using namespace std;

class Integer {
 int i;
public:
 Integer(int I) { i = I; }
 const Integer
 operator+(const Integer& rv) const {
 cout << "operator+" << endl;
 return Integer(i + rv.i);
 }
 Integer&
 operator+=(const Integer& rv){
 cout << "operator+=" << endl;
 i += rv.i;
 return *this;
 }
};

int main() {
 cout << "built-in types:" << endl;
 int i = 1, j = 2, k = 3;
 k += i + j;
 cout << "user-defined types:" << endl;
 Integer I(1), J(2), K(3);
 K += I + J;
} ///:~

Chapter 10: Operator Overloading
327

The two overloaded operators are defined as inline member functions that announce when
they are called. The single argument is what appears on the right-hand side of the operator for
binary operators. Unary operators have no arguments when defined as member functions. The
member function is called for the object on the left-hand side of the operator.

For nonconditional operators (conditionals usually return a Boolean value) you’ll almost
always want to return an object or reference of the same type you’re operating on if the two
arguments are the same type. If they’re not, the interpretation of what it should produce is up
to you. This way complex expressions can be built up:

 K += I + J;

The operator+ produces a new Integer (a temporary) that is used as the rv argument for the
operator+=. This temporary is destroyed as soon as it is no longer needed.

Overloadable operators
Although you can overload almost all the operators available in C, the use is fairly restrictive.
In particular, you cannot combine operators that currently have no meaning in C (such as **
to represent exponentiation), you cannot change the evaluation precedence of operators, and
you cannot change the number of arguments an operator takes. This makes sense — all these
actions would produce operators that confuse meaning rather than clarify it.

The next two subsections give examples of all the «regular» operators, overloaded in the form
that you’ll most likely use.

Unary operators
The following example shows the syntax to overload all the unary operators, both in the form
of global functions and member functions. These will expand upon the Integer class shown
previously and add a new byte class. The meaning of your particular operators will depend on
the way you want to use them, but consider the client programmer before doing something
unexpected.

//: C12:Unary.cpp
// Overloading unary operators
#include <iostream>
using namespace std;

class Integer {
 long i;
 Integer* This() { return this; }
public:
 Integer(long I = 0) : i(I) {}
 // No side effects takes const& argument:

Chapter 10: Operator Overloading
328

 friend const Integer&
 operator+(const Integer& a);
 friend const Integer
 operator-(const Integer& a);
 friend const Integer
 operator~(const Integer& a);
 friend Integer*
 operator&(Integer& a);
 friend int
 operator!(const Integer& a);
 // Side effects don't take const& argument:
 // Prefix:
 friend const Integer&
 operator++(Integer& a);
 // Postfix:
 friend const Integer
 operator++(Integer& a, int);
 // Prefix:
 friend const Integer&
 operator--(Integer& a);
 // Postfix:
 friend const Integer
 operator--(Integer& a, int);
};

// Global operators:
const Integer& operator+(const Integer& a) {
 cout << "+Integer\n";
 return a; // Unary + has no effect
}
const Integer operator-(const Integer& a) {
 cout << "-Integer\n";
 return Integer(-a.i);
}
const Integer operator~(const Integer& a) {
 cout << "~Integer\n";
 return Integer(~a.i);
}
Integer* operator&(Integer& a) {
 cout << "&Integer\n";
 return a.This(); // &a is recursive!
}
int operator!(const Integer& a) {

Chapter 10: Operator Overloading
329

 cout << "!Integer\n";
 return !a.i;
}
// Prefix; return incremented value
const Integer& operator++(Integer& a) {
 cout << "++Integer\n";
 a.i++;
 return a;
}
// Postfix; return the value before increment:
const Integer operator++(Integer& a, int) {
 cout << "Integer++\n";
 Integer r(a.i);
 a.i++;
 return r;
}
// Prefix; return decremented value
const Integer& operator--(Integer& a) {
 cout << "--Integer\n";
 a.i--;
 return a;
}
// Postfix; return the value before decrement:
const Integer operator--(Integer& a, int) {
 cout << "Integer--\n";
 Integer r(a.i);
 a.i--;
 return r;
}

void f(Integer a) {
 +a;
 -a;
 ~a;
 Integer* ip = &a;
 !a;
 ++a;
 a++;
 --a;
 a--;
}

// Member operators (implicit "this"):

Chapter 10: Operator Overloading
330

class Byte {
 unsigned char b;
public:
 Byte(unsigned char B = 0) : b(B) {}
 // No side effects: const member function:
 const Byte& operator+() const {
 cout << "+Byte\n";
 return *this;
 }
 const Byte operator-() const {
 cout << "-Byte\n";
 return Byte(-b);
 }
 const Byte operator~() const {
 cout << "~Byte\n";
 return Byte(~b);
 }
 Byte operator!() const {
 cout << "!Byte\n";
 return Byte(!b);
 }
 Byte* operator&() {
 cout << "&Byte\n";
 return this;
 }
 // Side effects: non-const member function:
 const Byte& operator++() { // Prefix
 cout << "++Byte\n";
 b++;
 return *this;
 }
 const Byte operator++(int) { // Postfix
 cout << "Byte++\n";
 Byte before(b);
 b++;
 return before;
 }
 const Byte& operator--() { // Prefix
 cout << "--Byte\n";
 --b;
 return *this;
 }
 const Byte operator--(int) { // Postfix

Chapter 10: Operator Overloading
331

 cout << "Byte--\n";
 Byte before(b);
 --b;
 return before;
 }
};

void g(Byte b) {
 +b;
 -b;
 ~b;
 Byte* bp = &b;
 !b;
 ++b;
 b++;
 --b;
 b--;
}

int main() {
 Integer a;
 f(a);
 Byte b;
 g(b);
} ///:~

The functions are grouped according to the way their arguments are passed. Guidelines for
how to pass and return arguments are given later. The above forms (and the ones that follow
in the next section) are typically what you’ll use, so start with them as a pattern when
overloading your own operators.

Increment & decrement
The overloaded ++ and – – operators present a dilemma because you want to be able to call
different functions depending on whether they appear before (prefix) or after (postfix) the
object they’re acting upon. The solution is simple, but some people find it a bit confusing at
first. When the compiler sees, for example, ++a (a preincrement), it generates a call to
operator++(a); but when it sees a++, it generates a call to operator++(a, int). That is, the
compiler differentiates between the two forms by making different function calls. In
UNARY.CPP for the member function versions, if the compiler sees ++b, it generates a call
to B::operator++(); and if it sees b++ it calls B::operator++(int).

The user never sees the result of her action except that a different function gets called for the
prefix and postfix versions. Underneath, however, the two functions calls have different
signatures, so they link to two different function bodies. The compiler passes a dummy

Chapter 10: Operator Overloading
332

constant value for the int argument (which is never given an identifier because the value is
never used) to generate the different signature for the postfix version.

Binary operators
The following listing repeats the example of UNARY.CPP for binary operators. Both global
versions and member function versions are shown.

//: C12:Binary.cpp
// Overloading binary operators
#include <fstream>
#include "../require.h"
using namespace std;

ofstream out("binary.out");

class Integer { // Combine this with UNARY.CPP
 long i;
public:
 Integer(long I = 0) : i(I) {}
 // Operators that create new, modified value:
 friend const Integer
 operator+(const Integer& left,
 const Integer& right);
 friend const Integer
 operator-(const Integer& left,
 const Integer& right);
 friend const Integer
 operator*(const Integer& left,
 const Integer& right);
 friend const Integer
 operator/(const Integer& left,
 const Integer& right);
 friend const Integer
 operator%(const Integer& left,
 const Integer& right);
 friend const Integer
 operator^(const Integer& left,
 const Integer& right);
 friend const Integer
 operator&(const Integer& left,
 const Integer& right);
 friend const Integer

Chapter 10: Operator Overloading
333

 operator|(const Integer& left,
 const Integer& right);
 friend const Integer
 operator<<(const Integer& left,
 const Integer& right);
 friend const Integer
 operator>>(const Integer& left,
 const Integer& right);
 // Assignments modify & return lvalue:
 friend Integer&
 operator+=(Integer& left,
 const Integer& right);
 friend Integer&
 operator-=(Integer& left,
 const Integer& right);
 friend Integer&
 operator*=(Integer& left,
 const Integer& right);
 friend Integer&
 operator/=(Integer& left,
 const Integer& right);
 friend Integer&
 operator%=(Integer& left,
 const Integer& right);
 friend Integer&
 operator^=(Integer& left,
 const Integer& right);
 friend Integer&
 operator&=(Integer& left,
 const Integer& right);
 friend Integer&
 operator|=(Integer& left,
 const Integer& right);
 friend Integer&
 operator>>=(Integer& left,
 const Integer& right);
 friend Integer&
 operator<<=(Integer& left,
 const Integer& right);
 // Conditional operators return true/false:
 friend int
 operator==(const Integer& left,
 const Integer& right);

Chapter 10: Operator Overloading
334

 friend int
 operator!=(const Integer& left,
 const Integer& right);
 friend int
 operator<(const Integer& left,
 const Integer& right);
 friend int
 operator>(const Integer& left,
 const Integer& right);
 friend int
 operator<=(const Integer& left,
 const Integer& right);
 friend int
 operator>=(const Integer& left,
 const Integer& right);
 friend int
 operator&&(const Integer& left,
 const Integer& right);
 friend int
 operator||(const Integer& left,
 const Integer& right);
 // Write the contents to an ostream:
 void print(ostream& os) const { os << i; }
};

const Integer
 operator+(const Integer& left,
 const Integer& right) {
 return Integer(left.i + right.i);
}
const Integer
 operator-(const Integer& left,
 const Integer& right) {
 return Integer(left.i - right.i);
}
const Integer
 operator*(const Integer& left,
 const Integer& right) {
 return Integer(left.i * right.i);
}
const Integer
 operator/(const Integer& left,
 const Integer& right) {

Chapter 10: Operator Overloading
335

 require(right.i != 0, "divide by zero");
 return Integer(left.i / right.i);
}
const Integer
 operator%(const Integer& left,
 const Integer& right) {
 require(right.i != 0, "modulo by zero");
 return Integer(left.i % right.i);
}
const Integer
 operator^(const Integer& left,
 const Integer& right) {
 return Integer(left.i ^ right.i);
}
const Integer
 operator&(const Integer& left,
 const Integer& right) {
 return Integer(left.i & right.i);
}
const Integer
 operator|(const Integer& left,
 const Integer& right) {
 return Integer(left.i | right.i);
}
const Integer
 operator<<(const Integer& left,
 const Integer& right) {
 return Integer(left.i << right.i);
}
const Integer
 operator>>(const Integer& left,
 const Integer& right) {
 return Integer(left.i >> right.i);
}
// Assignments modify & return lvalue:
Integer& operator+=(Integer& left,
 const Integer& right) {
 if(&left == &right) {/* self-assignment */}
 left.i += right.i;
 return left;
}
Integer& operator-=(Integer& left,
 const Integer& right) {

Chapter 10: Operator Overloading
336

 if(&left == &right) {/* self-assignment */}
 left.i -= right.i;
 return left;
}
Integer& operator*=(Integer& left,
 const Integer& right) {
 if(&left == &right) {/* self-assignment */}
 left.i *= right.i;
 return left;
}
Integer& operator/=(Integer& left,
 const Integer& right) {
 require(right.i != 0, "divide by zero");
 if(&left == &right) {/* self-assignment */}
 left.i /= right.i;
 return left;
}
Integer& operator%=(Integer& left,
 const Integer& right) {
 require(right.i != 0, "modulo by zero");
 if(&left == &right) {/* self-assignment */}
 left.i %= right.i;
 return left;
}
Integer& operator^=(Integer& left,
 const Integer& right) {
 if(&left == &right) {/* self-assignment */}
 left.i ^= right.i;
 return left;
}
Integer& operator&=(Integer& left,
 const Integer& right) {
 if(&left == &right) {/* self-assignment */}
 left.i &= right.i;
 return left;
}
Integer& operator|=(Integer& left,
 const Integer& right) {
 if(&left == &right) {/* self-assignment */}
 left.i |= right.i;
 return left;
}
Integer& operator>>=(Integer& left,

Chapter 10: Operator Overloading
337

 const Integer& right) {
 if(&left == &right) {/* self-assignment */}
 left.i >>= right.i;
 return left;
}
Integer& operator<<=(Integer& left,
 const Integer& right) {
 if(&left == &right) {/* self-assignment */}
 left.i <<= right.i;
 return left;
}
// Conditional operators return true/false:
int operator==(const Integer& left,
 const Integer& right) {
 return left.i == right.i;
}
int operator!=(const Integer& left,
 const Integer& right) {
 return left.i != right.i;
}
int operator<(const Integer& left,
 const Integer& right) {
 return left.i < right.i;
}
int operator>(const Integer& left,
 const Integer& right) {
 return left.i > right.i;
}
int operator<=(const Integer& left,
 const Integer& right) {
 return left.i <= right.i;
}
int operator>=(const Integer& left,
 const Integer& right) {
 return left.i >= right.i;
}
int operator&&(const Integer& left,
 const Integer& right) {
 return left.i && right.i;
}
int operator||(const Integer& left,
 const Integer& right) {
 return left.i || right.i;

Chapter 10: Operator Overloading
338

}

void h(Integer& c1, Integer& c2) {
 // A complex expression:
 c1 += c1 * c2 + c2 % c1;
 #define TRY(op) \
 out << "c1 = "; c1.print(out); \
 out << ", c2 = "; c2.print(out); \
 out << "; c1 " #op " c2 produces "; \
 (c1 op c2).print(out); \
 out << endl;
 TRY(+) TRY(-) TRY(*) TRY(/)
 TRY(%) TRY(^) TRY(&) TRY(|)
 TRY(<<) TRY(>>) TRY(+=) TRY(-=)
 TRY(*=) TRY(/=) TRY(%=) TRY(^=)
 TRY(&=) TRY(|=) TRY(>>=) TRY(<<=)
 // Conditionals:
 #define TRYC(op) \
 out << "c1 = "; c1.print(out); \
 out << ", c2 = "; c2.print(out); \
 out << "; c1 " #op " c2 produces "; \
 out << (c1 op c2); \
 out << endl;
 TRYC(<) TRYC(>) TRYC(==) TRYC(!=) TRYC(<=)
 TRYC(>=) TRYC(&&) TRYC(||)
}

// Member operators (implicit "this"):
class Byte { // Combine this with UNARY.CPP
 unsigned char b;
public:
 Byte(unsigned char B = 0) : b(B) {}
 // No side effects: const member function:
 const Byte
 operator+(const Byte& right) const {
 return Byte(b + right.b);
 }
 const Byte
 operator-(const Byte& right) const {
 return Byte(b - right.b);
 }
 const Byte
 operator*(const Byte& right) const {

Chapter 10: Operator Overloading
339

 return Byte(b * right.b);
 }
 const Byte
 operator/(const Byte& right) const {
 require(right.b != 0, "divide by zero");
 return Byte(b / right.b);
 }
 const Byte
 operator%(const Byte& right) const {
 require(right.b != 0, "modulo by zero");
 return Byte(b % right.b);
 }
 const Byte
 operator^(const Byte& right) const {
 return Byte(b ^ right.b);
 }
 const Byte
 operator&(const Byte& right) const {
 return Byte(b & right.b);
 }
 const Byte
 operator|(const Byte& right) const {
 return Byte(b | right.b);
 }
 const Byte
 operator<<(const Byte& right) const {
 return Byte(b << right.b);
 }
 const Byte
 operator>>(const Byte& right) const {
 return Byte(b >> right.b);
 }
 // Assignments modify & return lvalue.
 // operator= can only be a member function:
 Byte& operator=(const Byte& right) {
 // Handle self-assignment:
 if(this == &right) return *this;
 b = right.b;
 return *this;
 }
 Byte& operator+=(const Byte& right) {
 if(this == &right) {/* self-assignment */}
 b += right.b;

Chapter 10: Operator Overloading
340

 return *this;
 }
 Byte& operator-=(const Byte& right) {
 if(this == &right) {/* self-assignment */}
 b -= right.b;
 return *this;
 }
 Byte& operator*=(const Byte& right) {
 if(this == &right) {/* self-assignment */}
 b *= right.b;
 return *this;
 }
 Byte& operator/=(const Byte& right) {
 require(right.b != 0, "divide by zero");
 if(this == &right) {/* self-assignment */}
 b /= right.b;
 return *this;
 }
 Byte& operator%=(const Byte& right) {
 require(right.b != 0, "modulo by zero");
 if(this == &right) {/* self-assignment */}
 b %= right.b;
 return *this;
 }
 Byte& operator^=(const Byte& right) {
 if(this == &right) {/* self-assignment */}
 b ^= right.b;
 return *this;
 }
 Byte& operator&=(const Byte& right) {
 if(this == &right) {/* self-assignment */}
 b &= right.b;
 return *this;
 }
 Byte& operator|=(const Byte& right) {
 if(this == &right) {/* self-assignment */}
 b |= right.b;
 return *this;
 }
 Byte& operator>>=(const Byte& right) {
 if(this == &right) {/* self-assignment */}
 b >>= right.b;
 return *this;

Chapter 10: Operator Overloading
341

 }
 Byte& operator<<=(const Byte& right) {
 if(this == &right) {/* self-assignment */}
 b <<= right.b;
 return *this;
 }
 // Conditional operators return true/false:
 int operator==(const Byte& right) const {
 return b == right.b;
 }
 int operator!=(const Byte& right) const {
 return b != right.b;
 }
 int operator<(const Byte& right) const {
 return b < right.b;
 }
 int operator>(const Byte& right) const {
 return b > right.b;
 }
 int operator<=(const Byte& right) const {
 return b <= right.b;
 }
 int operator>=(const Byte& right) const {
 return b >= right.b;
 }
 int operator&&(const Byte& right) const {
 return b && right.b;
 }
 int operator||(const Byte& right) const {
 return b || right.b;
 }
 // Write the contents to an ostream:
 void print(ostream& os) const {
 os << "0x" << hex << int(b) << dec;
 }
};

void k(Byte& b1, Byte& b2) {
 b1 = b1 * b2 + b2 % b1;

 #define TRY2(op) \
 out << "b1 = "; b1.print(out); \
 out << ", b2 = "; b2.print(out); \

Chapter 10: Operator Overloading
342

 out << "; b1 " #op " b2 produces "; \
 (b1 op b2).print(out); \
 out << endl;

 b1 = 9; b2 = 47;
 TRY2(+) TRY2(-) TRY2(*) TRY2(/)
 TRY2(%) TRY2(^) TRY2(&) TRY2(|)
 TRY2(<<) TRY2(>>) TRY2(+=) TRY2(-=)
 TRY2(*=) TRY2(/=) TRY2(%=) TRY2(^=)
 TRY2(&=) TRY2(|=) TRY2(>>=) TRY2(<<=)
 TRY2(=) // Assignment operator

 // Conditionals:
 #define TRYC2(op) \
 out << "b1 = "; b1.print(out); \
 out << ", b2 = "; b2.print(out); \
 out << "; b1 " #op " b2 produces "; \
 out << (b1 op b2); \
 out << endl;

 b1 = 9; b2 = 47;
 TRYC2(<) TRYC2(>) TRYC2(==) TRYC2(!=) TRYC2(<=)
 TRYC2(>=) TRYC2(&&) TRYC2(||)

 // Chained assignment:
 Byte b3 = 92;
 b1 = b2 = b3;
}

int main() {
 Integer c1(47), c2(9);
 h(c1, c2);
 out << "\n member functions:" << endl;
 Byte b1(47), b2(9);
 k(b1, b2);
} ///:~

You can see that operator= is only allowed to be a member function. This is explained later.

Notice that all the assignment operators have code to check for self-assignment, as a general
guideline. In some cases this is not necessary; for example, with operator+= you may want to
say A+=A and have it add A to itself. The most important place to check for self-assignment
is operator= because with complicated objects disastrous results may occur. (In some cases
it’s OK, but you should always keep it in mind when writing operator=.)

Chapter 10: Operator Overloading
343

All of the operators shown in the previous two examples are overloaded to handle a single
type. It’s also possible to overload operators to handle mixed types, so you can add apples to
oranges, for example. Before you start on an exhaustive overloading of operators, however,
you should look at the section on automatic type conversion later in this chapter. Often, a type
conversion in the right place can save you a lot of overloaded operators.

Arguments & return values
It may seem a little confusing at first when you look at UNARY.CPP and BINARY.CPP and
see all the different ways that arguments are passed and returned. Although you can pass and
return arguments any way you want to, the choices in these examples were not selected at
random. They follow a very logical pattern, the same one you’ll want to use in most of your
choices.

 3. As with any function argument, if you only need to read from the argument
and not change it, default to passing it as a const reference. Ordinary
arithmetic operations (like + and –, etc.) and Booleans will not change their
arguments, so pass by const reference is predominantly what you’ll use.
When the function is a class member, this translates to making it a const
member function. Only with the operator-assignments (like +=) and the
operator=, which change the left-hand argument, is the left argument not a
constant, but it’s still passed in as an address because it will be changed.

 4. The type of return value you should select depends on the expected
meaning of the operator. (Again, you can do anything you want with the
arguments and return values.) If the effect of the operator is to produce a
new value, you will need to generate a new object as the return value. For
example, Integer::operator+ must produce an Integer object that is the
sum of the operands. This object is returned by value as a const, so the
result cannot be modified as an lvalue.

 5. All the assignment operators modify the lvalue. To allow the result of the
assignment to be used in chained expressions, like A=B=C, it’s expected
that you will return a reference to that same lvalue that was just modified.
But should this reference be a const or nonconst? Although you read
A=B=C from left to right, the compiler parses it from right to left, so you’re
not forced to return a nonconst to support assignment chaining. However,
people do sometimes expect to be able to perform an operation on the thing
that was just assigned to, such as (A=B).foo(); to call foo() on A after
assigning B to it. Thus the return value for all the assignment operators
should be a nonconst reference to the lvalue.

Chapter 10: Operator Overloading
344

 6. For the logical operators, everyone expects to get at worst an int back, and
at best a bool. (Libraries developed before most compilers supported C++’s
built-in bool will use int or an equivalent typedef).

 7. The increment and decrement operators present a dilemma because of the
pre- and postfix versions. Both versions change the object and so cannot
treat the object as a const. The prefix version returns the value of the object
after it was changed, so you expect to get back the object that was changed.
Thus, with prefix you can just return *this as a reference. The postfix
version is supposed to return the value before the value is changed, so
you’re forced to create a separate object to represent that value and return it.
Thus, with postfix you must return by value if you want to preserve the
expected meaning. (Note that you’ll often find the increment and decrement
operators returning an int or bool to indicate, for example, whether an
iterator is at the end of a list). Now the question is: Should these be returned
as const or nonconst? If you allow the object to be modified and someone
writes (++A).foo();, foo() will be operating on A itself, but with
(A++).foo();, foo() operates on the temporary object returned by the
postfix operator++. Temporary objects are automatically const, so this
would be flagged by the compiler, but for consistency’s sake it may make
more sense to make them both const, as was done here. Because of the
variety of meanings you may want to give the increment and decrement
operators, they will need to be considered on a case-by-case basis.

Return by value as const
Returning by value as a const can seem a bit subtle at first, and so deserves a bit more
explanation. Consider the binary operator+. If you use it in an expression such as f(A+B), the
result of A+B becomes a temporary object that is used in the call to f(). Because it’s a
temporary, it’s automatically const, so whether you explicitly make the return value const or
not has no effect.

However, it’s also possible for you to send a message to the return value of A+B, rather than
just passing it to a function. For example, you can say (A+B).g(), where g() is some member
function of Integer, in this case. By making the return value const, you state that only a const
member function can be called for that return value. This is const-correct, because it prevents
you from storing potentially valuable information in an object that will most likely be lost.

return efficiency
When new objects are created to return by value, notice the form used. In operator+, for
example:

return Integer(left.i + right.i);

Chapter 10: Operator Overloading
345

This may look at first like a «function call to a constructor,» but it’s not. The syntax is that of
a temporary object; the statement says «make a temporary Integer object and return it.»
Because of this, you might think that the result is the same as creating a named local object
and returning that. However, it’s quite different. If you were to say instead:

Integer tmp(left.i + right.i);
return tmp;

three things will happen. First, the tmp object is created including its constructor call. Then,
the copy-constructor copies the tmp to the location of the outside return value. Finally, the
destructor is called for tmp at the end of the scope.

In contrast, the «returning a temporary» approach works quite differently. When the compiler
sees you do this, it knows that you have no other need for the object it’s creating than to
return it so it builds the object directly into the location of the outside return value. This
requires only a single ordinary constructor call (no copy-constructor is necessary) and there’s
no destructor call because you never actually create a local object. Thus, while it doesn’t cost
anything but programmer awareness, it’s significantly more efficient.

Unusual operators
Several additional operators have a slightly different syntax for overloading.

The subscript, operator[], must be a member function and it requires a single argument.
Because it implies that the object acts like an array, you will often return a reference from this
operator, so it can be used conveniently on the left-hand side of an equal sign. This operator is
commonly overloaded; you’ll see examples in the rest of the book.

The comma operator is called when it appears next to an object of the type the comma is
defined for. However, operator, is not called for function argument lists, only for objects that
are out in the open, separated by commas. There doesn’t seem to be a lot of practical uses for
this operator; it’s in the language for consistency. Here’s an example showing how the comma
function can be called when the comma appears before an object, as well as after:

//: C12:Comma.cpp
// Overloading the ‘,’ operator
#include <iostream>
using namespace std;

class After {
public:
 const After& operator,(const After&) const {
 cout << "After::operator,()" << endl;
 return *this;
 }
};

Chapter 10: Operator Overloading
346

class Before {};

Before& operator,(int, Before& b) {
 cout << "Before::operator,()" << endl;
 return b;
}

int main() {
 After a, b;
 a, b; // Operator comma called

 Before c;
 1, c; // Operator comma called
} ///:~

The global function allows the comma to be placed before the object in question. The usage
shown is fairly obscure and questionable. Although you would probably use a comma-
separated list as part of a more complex expression, it’s too subtle to use in most situations.

The function call operator() must be a member function, and it is unique in that it allows any
number of arguments. It makes your object look like it’s actually a function name, so it’s
probably best used for types that only have a single operation, or at least an especially
prominent one.

The operators new and delete control dynamic storage allocation, and can be overloaded. This
very important topic is covered in the next chapter.

The operator–>* is a binary operator that behaves like all the other binary operators. It is
provided for those situations when you want to mimic the behavior provided by the built-in
pointer-to-member syntax, described in the previous chapter.

The smart pointer operator–> is designed to be used when you want to make an object
appear to be a pointer. This is especially useful if you want to «wrap» a class around a pointer
to make that pointer safe, or in the common usage of an iterator, which is an object that
moves through a collection or container of other objects and selects them one at a time,
without providing direct access to the implementation of the container. (You’ll often find
containers and iterators in class libraries.)

A smart pointer must be a member function. It has additional, atypical constraints: It must
return either an object (or reference to an object) that also has a smart pointer or a pointer that
can be used to select what the smart pointer arrow is pointing at. Here’s a simple example:

//: C12:Smartp.cpp
// Smart pointer example
#include <iostream>
#include <cstring>
using namespace std;

Chapter 10: Operator Overloading
347

class Obj {
 static int i, j;
public:
 void f() { cout << i++ << endl; }
 void g() { cout << j++ << endl; }
};

// Static member definitions:
int Obj::i = 47;
int Obj::j = 11;

// Container:
class ObjContainer {
 enum { sz = 100 };
 Obj* a[sz];
 int index;
public:
 ObjContainer() {
 index = 0;
 memset(a, 0, sz * sizeof(Obj*));
 }
 void add(Obj* OBJ) {
 if(index >= sz) return;
 a[index++] = OBJ;
 }
 friend class Sp;
};

// Iterator:
class Sp {
 ObjContainer* oc;
 int index;
public:
 Sp(ObjContainer* objc) {
 index = 0;
 oc = objc;
 }
 // Return value indicates end of list:
 int operator++() { // Prefix
 if(index >= oc->sz) return 0;
 if(oc->a[++index] == 0) return 0;
 return 1;

Chapter 10: Operator Overloading
348

 }
 int operator++(int) { // Postfix
 return operator++(); // Use prefix version
 }
 Obj* operator->() const {
 if(oc->a[index]) return oc->a[index];
 static Obj dummy;
 return &dummy;
 }
};

int main() {
 const sz = 10;
 Obj o[sz];
 ObjContainer oc;
 for(int i = 0; i < sz; i++)
 oc.add(&o[i]); // Fill it up
 Sp sp(&oc); // Create an iterator
 do {
 sp->f(); // Smart pointer calls
 sp->g();
 } while(sp++);
} ///:~

The class Obj defines the objects that are manipulated in this program. The functions f() and
g() simply print out interesting values using static data members. Pointers to these objects are
stored inside containers of type ObjContainer using its add() function. ObjContainer looks
like an array of pointers, but you’ll notice there’s no way to get the pointers back out again.
However, Sp is declared as a friend class, so it has permission to look inside the container.
The Sp class looks very much like an intelligent pointer — you can move it forward using
operator++ (you can also define an operator– –), it won’t go past the end of the container
it’s pointing to, and it returns (via the smart pointer operator) the value it’s pointing to. Notice
that an iterator is a custom fit for the container it’s created for — unlike a pointer, there isn’t a
«general purpose» iterator. Containers and iterators are covered in more depth in Chapter XX.

In main(), once the container oc is filled with Obj objects, an iterator SP is created. The
smart pointer calls happen in the expressions:

 sp->f(); // Smart pointer calls
 sp->g();

Here, even though sp doesn’t actually have f() and g() member functions, the smart pointer
mechanism calls those functions for the Obj* that is returned by Sp::operator–>. The
compiler performs all the checking to make sure the function call works properly.

Chapter 10: Operator Overloading
349

Although the underlying mechanics of the smart pointer are more complex than the other
operators, the goal is exactly the same — to provide a more convenient syntax for the users of
your classes.

Operators you can’t overload
There are certain operators in the available set that cannot be overloaded. The general reason
for the restriction is safety: If these operators were overloadable, it would somehow
jeopardize or break safety mechanisms. Often it makes things harder, or confuses existing
practice.

The member selection operator.. Currently, the dot has a meaning for any member in a class,
but if you allow it to be overloaded, then you couldn’t access members in the normal way;
instead you’d have to use a pointer and the arrow operator –>.

The pointer to member dereference operator.*. For the same reason as operator..

There’s no exponentiation operator. The most popular choice for this was operator** from
Fortran, but this raised difficult parsing questions. Also, C has no exponentiation operator, so
C++ didn’t seem to need one either because you can always perform a function call. An
exponentiation operator would add a convenient notation, but no new language functionality,
to account for the added complexity of the compiler.

There are no user-defined operators. That is, you can’t make up new operators that aren’t
currently in the set. Part of the problem is how to determine precedence, and part of the
problem is an insufficient need to account for the necessary trouble.

You can’t change the precedence rules. They’re hard enough to remember as it is, without
letting people play with them.

Nonmember operators
In some of the previous examples, the operators may be members or nonmembers, and it
doesn’t seem to make much difference. This usually raises the question, «Which should I
choose?» In general, if it doesn’t make any difference, they should be members, to emphasize
the association between the operator and its class. When the left-hand operand is an object of
the current class, it works fine.

This isn’t always the case — sometimes you want the left-hand operand to be an object of
some other class. A very common place to see this is when the operators << and >> are
overloaded for iostreams:

//: C12:Iosop.cpp
// Iostream operator overloading
// Example of non-member overloaded operators
#include <iostream>

Chapter 10: Operator Overloading
350

#include <strstream>
#include <cstring>
#include "../require.h"
using namespace std;

class IntArray {
 enum { sz = 5 };
 int i[sz];
public:
 IntArray() {
 memset(i, 0, sz* sizeof(*i));
 }
 int& operator[](int x) {
 require(x >= 0 && x < sz,
 "operator[] out of range");
 return i[x];
 }
 friend ostream&
 operator<<(ostream& os,
 const IntArray& ia);
 friend istream&
 operator>>(istream& is, IntArray& ia);
};

ostream& operator<<(ostream& os,
 const IntArray& ia){
 for(int j = 0; j < ia.sz; j++) {
 os << ia.i[j];
 if(j != ia.sz -1)
 os << ", ";
 }
 os << endl;
 return os;
}

istream& operator>>(istream& is, IntArray& ia){
 for(int j = 0; j < ia.sz; j++)
 is >> ia.i[j];
 return is;
}

int main() {
 istrstream input("47 34 56 92 103");

Chapter 10: Operator Overloading
351

 IntArray I;
 input >> I;
 I[4] = -1; // Use overloaded operator[]
 cout << I;
} ///:~

This class also contains an overloaded operator[], which returns a reference to a legitimate
value in the array. A reference is returned, so the expression

 I[4] = -1;

not only looks much more civilized than if pointers were used, it also accomplishes the
desired effect.

The overloaded shift operators pass and return by reference, so the actions will affect the
external objects. In the function definitions, expressions like

 os << ia.i[j];

cause existing overloaded operator functions to be called (that is, those defined in
IOSTREAM.H). In this case, the function called is ostream& operator<<(ostream&, int)
because ia.i[j] resolves to an int.

Once all the actions are performed on the istream or ostream, it is returned so it can be used
in a more complicated expression.

The form shown in this example for the inserter and extractor is standard. If you want to
create a set for your own class, copy the function signatures and return types and follow the
form of the body.

Basic guidelines
Murray38 suggests these guidelines for choosing between members and nonmembers:

Operator Recommended use
All unary operators member

= () [] –> must be member

+= –= /= *= ^=
&= |= %= >>= <<=

member

All other binary operators nonmember

38 Rob Murray, C++ Strategies & Tactics, Addison-Wesley, 1993, page 47.

Chapter 10: Operator Overloading
352

Overloading assignment
A common source of confusion with new C++ programmers is assignment. This is no doubt
because the = sign is such a fundamental operation in programming, right down to copying a
register at the machine level. In addition, the copy-constructor (from the previous chapter) can
also be invoked when using the = sign:

foo b;
foo a = b;
a = b;

In the second line, the object a is being defined. A new object is being created where one
didn’t exist before. Because you know by now how defensive the C++ compiler is about
object initialization, you know that a constructor must always be called at the point where an
object is defined. But which constructor? a is being created from an existing foo object, so
there’s only one choice: the copy-constructor. So even though an equal sign is involved, the
copy-constructor is called.

In the third line, things are different. On the left side of the equal sign, there’s a previously
initialized object. Clearly, you don’t call a constructor for an object that’s already been
created. In this case foo::operator= is called for a, taking as an argument whatever appears
on the right-hand side. (You can have multiple operator= functions to take different right-
hand arguments.)

This behavior is not restricted to the copy-constructor. Any time you’re initializing an object
using an = instead of the ordinary function-call form of the constructor, the compiler will look
for a constructor that accepts whatever is on the right-hand side:

//: C12:FeeFi.cpp
// Copying vs. initialization

class Fi {
public:
 Fi() {}
};

class Fee {
public:
 Fee(int) {}
 Fee(const Fi&) {}
};

int main() {
 Fee f = 1; // Fee(int)
 Fi fi;

Chapter 10: Operator Overloading
353

 Fee fum = fi; // Fee(Fi)
} ///:~

When dealing with the = sign, it’s important to keep this distinction in mind: If the object
hasn’t been created yet, initialization is required; otherwise the assignment operator= is used.

It’s even better to avoid writing code that uses the = for initialization; instead, always use the
explicit constructor form; the last line becomes

 Fee fum(fi);

This way, you’ll avoid confusing your readers.

Behavior of operator=
In BINARY.CPP, you saw that operator= can be only a member function. It is intimately
connected to the object on the left side of the =, and if you could define operator= globally,
you could try to redefine the built-in = sign:

int operator=(int, foo); // Global = not allowed!

The compiler skirts this whole issue by forcing you to make operator= a member function.

When you create an operator=, you must copy all the necessary information from the right-
hand object into yourself to perform whatever you consider «assignment» for your class. For
simple objects, this is obvious:

//: C12:Simpcopy.cpp
// Simple operator=()
#include <iostream>
using namespace std;

class Value {
 int a, b;
 float c;
public:
 Value(int A = 0, int B = 0, float C = 0.0) {
 a = A;
 b = B;
 c = C;
 }
 Value& operator=(const Value& rv) {
 a = rv.a;
 b = rv.b;
 c = rv.c;
 return *this;
 }

Chapter 10: Operator Overloading
354

 friend ostream&
 operator<<(ostream& os, const Value& rv) {
 return os << "a = " << rv.a << ", b = "
 << rv.b << ", c = " << rv.c;
 }
};

int main() {
 Value A, B(1, 2, 3.3);
 cout << "A: " << A << endl;
 cout << "B: " << B << endl;
 A = B;
 cout << "A after assignment: " << A << endl;
} ///:~

Here, the object on the left side of the = copies all the elements of the object on the right, then
returns a reference to itself, so a more complex expression can be created.

A common mistake was made in this example. When you’re assigning two objects of the
same type, you should always check first for self-assignment: Is the object being assigned to
itself? In some cases, such as this one, it’s harmless if you perform the assignment operations
anyway, but if changes are made to the implementation of the class it, can make a difference,
and if you don’t do it as a matter of habit, you may forget and cause hard-to-find bugs.

Pointers in classes
What happens if the object is not so simple? For example, what if the object contains pointers
to other objects? Simply copying a pointer means you’ll end up with two objects pointing to
the same storage location. In situations like these, you need to do bookkeeping of your own.

There are two common approaches to this problem. The simplest technique is to copy
whatever the pointer refers to when you do an assignment or a copy-constructor. This is very
straightforward:

//: C12:Copymem.cpp {O}
// Duplicate during assignment
#include <cstdlib>
#include <cstring>
#include "../require.h"
using namespace std;

class WithPointer {
 char* p;
 enum { blocksz = 100 };
public:
 WithPointer() {

Chapter 10: Operator Overloading
355

 p = (char*)malloc(blocksz);
 require(p != 0);
 memset(p, 1, blocksz);
 }
 WithPointer(const WithPointer& wp) {
 p = (char*)malloc(blocksz);
 require(p != 0);
 memcpy(p, wp.p, blocksz);
 }
 WithPointer&
 operator=(const WithPointer& wp) {
 // Check for self-assignment:
 if(&wp != this)
 memcpy(p, wp.p, blocksz);
 return *this;
 }
 ~WithPointer() {
 free(p);
 }
}; ///:~

This shows the four functions you will always need to define when your class contains
pointers: all necessary ordinary constructors, the copy-constructor, operator= (either define it
or disallow it), and a destructor. The operator= checks for self-assignment as a matter of
course, even though it’s not strictly necessary here. This virtually eliminates the possibility
that you’ll forget to check for self-assignment if you do change the code so that it matters.

Here, the constructors allocate the memory and initialize it, the operator= copies it, and the
destructor frees the memory. However, if you’re dealing with a lot of memory or a high
overhead to initialize that memory, you may want to avoid this copying. A very common
approach to this problem is called reference counting. You make the block of memory smart,
so it knows how many objects are pointing to it. Then copy-construction or assignment means
attaching another pointer to an existing block of memory and incrementing the reference
count. Destruction means reducing the reference count and destroying the object if the
reference count goes to zero.

But what if you want to write to the block of memory? More than one object may be using
this block, so you’d be modifying someone else’s block as well as yours, which doesn’t seem
very neighborly. To solve this problem, an additional technique called copy-on-write is often
used. Before writing to a block of memory, you make sure no one else is using it. If the
reference count is greater than one, you must make yourself a personal copy of that block
before writing it, so you don’t disturb someone else’s turf. Here’s a simple example of
reference counting and copy-on-write:

//: C12:Refcount.cpp
// Reference count, copy-on-write

Chapter 10: Operator Overloading
356

#include <cstring>
#include "../require.h"
using namespace std;

class Counted {
 class MemBlock {
 enum { size = 100 };
 char c[size];
 int refcount;
 public:
 MemBlock() {
 memset(c, 1, size);
 refcount = 1;
 }
 MemBlock(const MemBlock& rv) {
 memcpy(c, rv.c, size);
 refcount = 1;
 }
 void attach() { ++refcount; }
 void detach() {
 require(refcount != 0);
 // Destroy object if no one is using it:
 if(--refcount == 0) delete this;
 }
 int count() const { return refcount; }
 void set(char x) { memset(c, x, size); }
 // Conditionally copy this MemBlock.
 // Call before modifying the block; assign
 // resulting pointer to your block;
 MemBlock* unalias() {
 // Don't duplicate if not aliased:
 if(refcount == 1) return this;
 --refcount;
 // Use copy-constructor to duplicate:
 return new MemBlock(*this);
 }
 } * block;
public:
 Counted() {
 block = new MemBlock; // Sneak preview
 }
 Counted(const Counted& rv) {
 block = rv.block; // Pointer assignment

Chapter 10: Operator Overloading
357

 block->attach();
 }
 void unalias() { block = block->unalias(); }
 Counted& operator=(const Counted& rv) {
 // Check for self-assignment:
 if(&rv == this) return *this;
 // Clean up what you're using first:
 block->detach();
 block = rv.block; // Like copy-constructor
 block->attach();
 return *this;
 }
 // Decrement refcount, conditionally destroy
 ~Counted() { block->detach(); }
 // Copy-on-write:
 void write(char value) {
 // Do this before any write operation:
 unalias();
 // It's safe to write now.
 block->set(value);
 }
};

int main() {
 Counted A, B;
 Counted C(A);
 B = A;
 C = C;
 C.write('x');
} ///:~

The nested class MemBlock is the block of memory pointed to. (Notice the pointer block
defined at the end of the nested class.) It contains a reference count and functions to control
and read the reference count. There’s a copy-constructor so you can make a new MemBlock
from an existing one.

The attach() function increments the reference count of a MemBlock to indicate there’s
another object using it. detach() decrements the reference count. If the reference count goes
to zero, then no one is using it anymore, so the member function destroys its own object by
saying delete this.

You can modify the memory with the set() function, but before you make any modifications,
you should ensure that you aren’t walking on a MemBlock that some other object is using.
You do this by calling Counted::unalias(), which in turn calls MemBlock::unalias(). The

Chapter 10: Operator Overloading
358

latter function will return the block pointer if the reference count is one (meaning no one else
is pointing to that block), but will duplicate the block if the reference count is more than one.

This example includes a sneak preview of the next chapter. Instead of C’s malloc() and
free() to create and destroy the objects, the special C++ operators new and delete are used.
For this example, you can think of new and delete just like malloc() and free(), except new
calls the constructor after allocating memory, and delete calls the destructor before freeing the
memory.

The copy-constructor, instead of creating its own memory, assigns block to the block of the
source object. Then, because there’s now an additional object using that block of memory, it
increments the reference count by calling MemBlock::attach().

The operator= deals with an object that has already been created on the left side of the =, so
it must first clean that up by calling detach() for that MemBlock, which will destroy the old
MemBlock if no one else is using it. Then operator= repeats the behavior of the copy-
constructor. Notice that it first checks to detect whether you’re assigning the same object to
itself.

The destructor calls detach() to conditionally destroy the MemBlock.

To implement copy-on-write, you must control all the actions that write to your block of
memory. This means you can’t ever hand a raw pointer to the outside world. Instead you say,
«Tell me what you want done and I’ll do it for you!» For example, the write() member
function allows you to change the values in the block of memory. But first, it uses unalias()
to prevent the modification of an aliased block (a block with more than one Counted object
using it).

main() tests the various functions that must work correctly to implement reference counting:
the constructor, copy-constructor, operator=, and destructor. It also tests the copy-on-write
by calling the write() function for object C, which is aliased to A’s memory block.

Tracing the output
To verify that the behavior of this scheme is correct, the best approach is to add information
and functionality to the class to generate a trace output that can be analyzed. Here’s
REFCOUNT.CPP with added trace information:

//: C12:Rctrace.cpp
// REFCOUNT.CPP w/ trace info
#include <cstring>
#include <fstream>
#include "../require.h"
using namespace std;

ofstream out("rctrace.out");

class Counted {

Chapter 10: Operator Overloading
359

 class MemBlock {
 enum { size = 100 };
 char c[size];
 int refcount;
 static int blockcount;
 int blocknum;
 public:
 MemBlock() {
 memset(c, 1, size);
 refcount = 1;
 blocknum = blockcount++;
 }
 MemBlock(const MemBlock& rv) {
 memcpy(c, rv.c, size);
 refcount = 1;
 blocknum = blockcount++;
 print("copied block");
 out << endl;
 rv.print("from block");
 }
 ~MemBlock() {
 out << "\tdestroying block "
 << blocknum << endl;
 }
 void print(const char* msg = "") const {
 if(*msg) out << msg << ", ";
 out << "blocknum:" << blocknum;
 out << ", refcount:" << refcount;
 }
 void attach() { ++refcount; }
 void detach() {
 require(refcount != 0);
 // Destroy object if no one is using it:
 if(--refcount == 0) delete this;
 }
 int count() const { return refcount; }
 void set(char x) { memset(c, x, size); }
 // Conditionally copy this MemBlock.
 // Call before modifying the block; assign
 // resulting pointer to your block;
 MemBlock* unalias() {
 // Don't duplicate if not aliased:
 if(refcount == 1) return this;

Chapter 10: Operator Overloading
360

 --refcount;
 // Use copy-constructor to duplicate:
 return new MemBlock(*this);
 }
 } * block;
 enum { sz = 30 };
 char id[sz];
public:
 Counted(const char* ID = "tmp") {
 block = new MemBlock; // Sneak preview
 strncpy(id, ID, sz);
 }
 Counted(const Counted& rv) {
 block = rv.block; // Pointer assignment
 block->attach();
 strncpy(id, rv.id, sz);
 strncat(id, " copy", sz - strlen(id));
 }
 void unalias() { block = block->unalias(); }
 void addname(const char* nm) {
 strncat(id, nm, sz - strlen(id));
 }
 Counted& operator=(const Counted& rv) {
 print("inside operator=\n\t");
 if(&rv == this) {
 out << "self-assignment" << endl;
 return *this;
 }
 // Clean up what you're using first:
 block->detach();
 block = rv.block; // Like copy-constructor
 block->attach();
 return *this;
 }
 // Decrement refcount, conditionally destroy
 ~Counted() {
 out << "preparing to destroy: " << id
 << endl << "\tdecrementing refcount ";
 block->print();
 out << endl;
 block->detach();
 }
 // Copy-on-write:

Chapter 10: Operator Overloading
361

 void write(char value) {
 unalias();
 block->set(value);
 }
 void print(const char* msg = "") {
 if(*msg) out << msg << " ";
 out << "object " << id << ": ";
 block->print();
 out << endl;
 }
};

int Counted::MemBlock::blockcount = 0;

int main() {
 Counted A("A"), B("B");
 Counted C(A);
 C.addname(" (C) ");
 A.print();
 B.print();
 C.print();
 B = A;
 A.print("after assignment\n\t");
 B.print();
 out << "Assigning C = C" << endl;
 C = C;
 C.print("calling C.write('x')\n\t");
 C.write('x');
 out << endl << "exiting main()" << endl;
} ///:~

Now MemBlock contains a static data member blockcount to keep track of the number of
blocks created, and to create a unique number (stored in blocknum) for each block so you can
tell them apart. The destructor announces which block is being destroyed, and the print()
function displays the block number and reference count.

The Counted class contains a buffer id to keep track of information about the object. The
Counted constructor creates a new MemBlock object and assigns the result (a pointer to the
MemBlock object on the heap) to block. The identifier, copied from the argument, has the
word «copy» appended to show where it’s copied from. Also, the addname() function lets
you put additional information about the object in id (the actual identifier, so you can see
what it is as well as where it’s copied from).

Here’s the output:

Chapter 10: Operator Overloading
362

object A: blocknum:0, refcount:2
object B: blocknum:1, refcount:1
object A copy (C) : blocknum:0, refcount:2
inside operator=
 object B: blocknum:1, refcount:1
 destroying block 1
after assignment
 object A: blocknum:0, refcount:3
object B: blocknum:0, refcount:3
Assigning C = C
inside operator=
 object A copy (C) : blocknum:0, refcount:3
self-assignment
calling C.write('x')
 object A copy (C) : blocknum:0, refcount:3
copied block, blocknum:2, refcount:1
from block, blocknum:0, refcount:2
exiting main()
preparing to destroy: A copy (C)
 decrementing refcount blocknum:2, refcount:1
 destroying block 2
preparing to destroy: B
 decrementing refcount blocknum:0, refcount:2
preparing to destroy: A
 decrementing refcount blocknum:0, refcount:1

destroying block 0

By studying the output, tracing through the source code, and experimenting with the program,
you’ll deepen your understanding of these techniques.

Automatic operator= creation
Because assigning an object to another object of the same type is an activity most people
expect to be possible, the compiler will automatically create a type::operator=(type) if you
don’t make one. The behavior of this operator mimics that of the automatically created copy-
constructor: If the class contains objects (or is inherited from another class), the operator=
for those objects is called recursively. This is called memberwise assignment. For example,

//: C12:Autoeq.cpp
// Automatic operator=()
#include <iostream>
using namespace std;

class Bar {
public:

Chapter 10: Operator Overloading
363

 Bar& operator=(const Bar&) {
 cout << "inside Bar::operator=()" << endl;
 return *this;
 }
};

class Foo {
 Bar b;
};

int main() {
 Foo a, b;
 a = b; // Prints: "inside Bar::operator=()"
} ///:~

The automatically generated operator= for Foo calls Bar::operator=.

Generally you don’t want to let the compiler do this for you. With classes of any
sophistication (especially if they contain pointers!) you want to explicitly create an
operator=. If you really don’t want people to perform assignment, declare operator= as a
private function. (You don’t need to define it unless you’re using it inside the class.)

Automatic type conversion
In C and C++, if the compiler sees an expression or function call using a type that isn’t quite
the one it needs, it can often perform an automatic type conversion from the type it has to the
type it wants. In C++, you can achieve this same effect for user-defined types by defining
automatic type-conversion functions. These functions come in two flavors: a particular type of
constructor and an overloaded operator.

Constructor conversion
If you define a constructor that takes as its single argument an object (or reference) of another
type, that constructor allows the compiler to perform an automatic type conversion. For
example,

//: C12:Autocnst.cpp
// Type conversion constructor

class One {
public:
 One() {}
};

Chapter 10: Operator Overloading
364

class Two {
public:
 Two(const One&) {}
};

void f(Two) {}

int main() {
 One one;
 f(one); // Wants a Two, has a One
} ///:~

When the compiler sees f() called with a One object, it looks at the declaration for f() and
notices it wants a Two. Then it looks to see if there’s any way to get a Two from a One, and
it finds the constructor Two::Two(One), which it quietly calls. The resulting Two object is
handed to f().

In this case, automatic type conversion has saved you from the trouble of defining two
overloaded versions of f(). However, the cost is the hidden constructor call to Two, which
may matter if you’re concerned about the efficiency of calls to f().

Preventing constructor conversion
There are times when automatic type conversion via the constructor can cause problems. To
turn it off, you modify the constructor by prefacing with the keyword explicit39 (which only
works with constructors). Used to modify the constructor of class Two in the above example:

class One {
public:
 One() {}
};

class Two {
public:
 explicit Two(const One&) {}
};

void f(Two) {}

int main() {
 One one;

39 At the time of this writing, explicit was a new keyword in the language. Your compiler may
not support it yet.

Chapter 10: Operator Overloading
365

//! f(one); // No auto conversion allowed
 f(Two(one)); // OK -- user performs conversion
}

By making Two’s constructor explicit, the compiler is told not to perform any automatic
conversion using that particular constructor (other non-explicit constructors in that class can
still perform automatic conversions). If the user wants to make the conversion happen, the
code must be written out. In the above code, f(Two(one)) creates a temporary object of type
Two from one, just like the compiler did in the previous version.

Operator conversion
The second way to effect automatic type conversion is through operator overloading. You can
create a member function that takes the current type and converts it to the desired type using
the operator keyword followed by the type you want to convert to. This form of operator
overloading is unique because you don’t appear to specify a return type — the return type is
the name of the operator you’re overloading. Here’s an example:

//: C12:Opconv.cpp
// Op overloading conversion

class Three {
 int i;
public:
 Three(int I = 0, int = 0) : i(I) {}
};

class Four {
 int x;
public:
 Four(int X) : x(X) {}
 operator Three() const { return Three(x); }
};

void g(Three) {}

int main() {
 Four four(1);
 g(four);
 g(1); // Calls Three(1,0)
} ///:~

With the constructor technique, the destination class is performing the conversion, but with
operators, the source class performs the conversion. The value of the constructor technique is
you can add a new conversion path to an existing system as you’re creating a new class.

Chapter 10: Operator Overloading
366

However, creating a single-argument constructor always defines an automatic type conversion
(even if it’s got more than one argument, if the rest of the arguments are defaulted), which
may not be what you want. In addition, there’s no way to use a constructor conversion from a
user-defined type to a built-in type; this is possible only with operator overloading.

Reflexivity
One of the most convenient reasons to use global overloaded operators rather than member
operators is that in the global versions, automatic type conversion may be applied to either
operand, whereas with member objects, the left-hand operand must already be the proper
type. If you want both operands to be converted, the global versions can save a lot of coding.
Here’s a small example:

//: C12:Reflex.cpp
// Reflexivity in overloading

class Number {
 int i;
public:
 Number(int I = 0) { i = I; }
 const Number
 operator+(const Number& n) const {
 return Number(i + n.i);
 }
 friend const Number
 operator-(const Number&, const Number&);
};

const Number
 operator-(const Number& n1,
 const Number& n2) {
 return Number(n1.i - n2.i);
}

int main() {
 Number a(47), b(11);
 a + b; // OK
 a + 1; // 2nd arg converted to Number
//! 1 + a; // Wrong! 1st arg not of type Number
 a - b; // OK
 a - 1; // 2nd arg converted to Number
 1 - a; // 1st arg converted to Number
} ///:~

Chapter 10: Operator Overloading
367

Class Number has a member operator+ and a friend operator–. Because there’s a
constructor that takes a single int argument, an int can be automatically converted to a
Number, but only under the right conditions. In main(), you can see that adding a Number
to another Number works fine because it’s an exact match to the overloaded operator. Also,
when the compiler sees a Number followed by a + and an int, it can match to the member
function Number::operator+ and convert the int argument to a Number using the
constructor. But when it sees an int and a + and a Number, it doesn’t know what to do
because all it has is Number::operator+, which requires that the left operand already be a
Number object. Thus the compiler issues an error.

With the friend operator–, things are different. The compiler needs to fill in both its
arguments however it can; it isn’t restricted to having a Number as the left-hand argument.
Thus, if it sees 1 – a, it can convert the first argument to a Number using the constructor.

Sometimes you want to be able to restrict the use of your operators by making them members.
For example, when multiplying a matrix by a vector, the vector must go on the right. But if
you want your operators to be able to convert either argument, make the operator a friend
function.

Fortunately, the compiler will not take 1 – 1 and convert both arguments to Number objects
and then call operator–. That would mean that existing C code might suddenly start to work
differently. The compiler matches the «simplest» possibility first, which is the built-in
operator for the expression 1 – 1.

A perfect example: strings
An example where automatic type conversion is extremely helpful occurs with a string class.
Without automatic type conversion, if you wanted to use all the existing string functions from
the Standard C library, you’d have to create a member function for each one, like this:

//: C12:Strings1.cpp
// No auto type conversion
#include <cstring>
#include <cstdlib>
#include "../require.h"
using namespace std;

class Stringc {
 char* s;
public:
 Stringc(const char* S = "") {
 s = (char*)malloc(strlen(S) + 1);
 require(s != 0);
 strcpy(s, S);
 }
 ~Stringc() { free(s); }

Chapter 10: Operator Overloading
368

 int Strcmp(const Stringc& S) const {
 return ::strcmp(s, S.s);
 }
 // ... etc., for every function in string.h
};

int main() {
 Stringc s1("hello"), s2("there");
 s1.Strcmp(s2);
} ///:~

Here, only the strcmp() function is created, but you’d have to create a corresponding
function for every one in STRING.H that might be needed. Fortunately, you can provide an
automatic type conversion allowing access to all the functions in STRING.H:

//: C12:Strings2.cpp
// With auto type conversion
#include <cstring>
#include <cstdlib>
#include "../require.h"
using namespace std;

class Stringc {
 char* s;
public:
 Stringc(const char* S = "") {
 s = (char*)malloc(strlen(S) + 1);
 require(s != 0);
 strcpy(s, S);
 }
 ~Stringc() { free(s); }
 operator const char*() const { return s; }
};

int main() {
 Stringc s1("hello"), s2("there");
 strcmp(s1, s2); // Standard C function
 strspn(s1, s2); // Any string function!
} ///:~

Now any function that takes a char* argument can also take a Stringc argument because the
compiler knows how to make a char* from a Stringc.

Chapter 10: Operator Overloading
369

Pitfalls in automatic type conversion
Because the compiler must choose how to quietly perform a type conversion, it can get into
trouble if you don’t design your conversions correctly. A simple and obvious situation occurs
with a class X that can convert itself to an object of class Y with an operator Y(). If class Y
has a constructor that takes a single argument of type X, this represents the identical type
conversion. The compiler now has two ways to go from X to Y, so it will generate an
ambiguity error when that conversion occurs:

//: C12:Ambig.cpp
// Ambiguity in type conversion

class Y; // Class declaration

class X {
public:
 operator Y() const; // Convert X to Y
};

class Y {
public:
 Y(X); // Convert X to Y
};

void f(Y);

int main() {
 X x;
//! f(x); // Error: ambiguous conversion
} ///:~

The obvious solution to this problem is not to do it: Just provide a single path for automatic
conversion from one type to another.

A more difficult problem to spot occurs when you provide automatic conversion to more than
one type. This is sometimes called fan-out:

//: C12:Fanout.cpp
// Type conversion fanout

class A {};
class B {};

class C {
public:

Chapter 10: Operator Overloading
370

 operator A() const;
 operator B() const;
};

// Overloaded h():
void h(A);
void h(B);

int main() {
 C c;
//! h(c); // Error: C -> A or C -> B ???
} ///:~

Class C has automatic conversions to both A and B. The insidious thing about this is that
there’s no problem until someone innocently comes along and creates two overloaded
versions of h(). (With only one version, the code in main() works fine.)

Again, the solution — and the general watchword with automatic type conversion — is to
only provide a single automatic conversion from one type to another. You can have
conversions to other types; they just shouldn’t be automatic. You can create explicit function
calls with names like make_A() and make_B().

Hidden activities
Automatic type conversion can introduce more underlying activities than you may expect. As
a little brain teaser, look at this modification of FeeFi.cpp:

//: C12:FeeFi2.cpp
// Copying vs. initialization

class Fi {};

class Fee {
public:
 Fee(int) {}
 Fee(const Fi&) {}
};

class Fo {
 int i;
public:
 Fo(int x = 0) { i = x; }
 operator Fee() const { return Fee(i); }
};

Chapter 10: Operator Overloading
371

int main() {
 Fo fo;
 Fee fiddle = fo;
} ///:~

There is no constructor to create the Fee fiddle from a Fo object. However, Fo has an
automatic type conversion to a Fee. There’s no copy-constructor to create a Fee from a Fee,
but this is one of the special functions the compiler can create for you. (The default
constructor, copy-constructor, operator=, and destructor can be created automatically.) So for
the relatively innocuous statement

Fee fiddle = FO;

the automatic type conversion operator is called, and a copy-constructor is created.

Automatic type conversion should be used carefully. It’s excellent when it significantly
reduces a coding task, but it’s usually not worth using gratuitously.

Summary
The whole reason for the existence of operator overloading is for those situations when it
makes life easier. There’s nothing particularly magical about it; the overloaded operators are
just functions with funny names, and the function calls happen to be made for you by the
compiler when it spots the right pattern. But if operator overloading doesn’t provide a
significant benefit to you (the creator of the class) or the user of the class, don’t confuse the
issue by adding it.

Exercises
 1. Create a simple class with an overloaded operator++. Try calling this

operator in both pre- and postfix form and see what kind of compiler
warning you get.

 2. Create a class that contains a single private char. Overload the iostream
operators << and >> (as in IOSOP.CPP) and test them. You can test them
with fstreams, strstreams, and stdiostreams (cin and cout).

 3. Write a Number class with overloaded operators for +, –, *, /, and
assignment. Choose the return values for these functions so that expressions
can be chained together, and for efficiency. Write an automatic type
conversion operator int().

 4. Combine the classes in UNARY.CPP and BINARY.CPP.
 5. Fix FANOUT.CPP by creating an explicit function to call to perform the

type conversion, instead of one of the automatic conversion operators.

373

13: Dynamic object
creation

Sometimes you know the exact quantity, type, and lifetime
of the objects in your program. But not always.

How many planes will an air-traffic system have to handle? How many shapes will a CAD
system need? How many nodes will there be in a network?

To solve the general programming problem, it’s essential that you be able to create and
destroy objects at run-time. Of course, C has always provided the dynamic memory allocation
functions malloc()and free()(along with variants of malloc()) that allocate storage from the
heap (also called the free store) at run-time.

However, this simply won’t work in C++. The constructor doesn’t allow you to hand it the
address of the memory to initialize, and for good reason: If you could do that, you might

 6. Forget. Then guaranteed initialization of objects in C++ wouldn’t be
guaranteed.

 7. Accidentally do something to the object before you initialize it, expecting
the right thing to happen.

 8. Hand it the wrong-sized object.

And of course, even if you did everything correctly, anyone who modifies your program is
prone to the same errors. Improper initialization is responsible for a large portion of
programming errors, so it’s especially important to guarantee constructor calls for objects
created on the heap.

So how does C++ guarantee proper initialization and cleanup, but allow you to create objects
dynamically, on the heap?

The answer is, «by bringing dynamic object creation into the core of the language.» malloc()
and free() are library functions, and thus outside the control of the compiler. However, if you
have an operator to perform the combined act of dynamic storage allocation and initialization
and another to perform the combined act of cleanup and releasing storage, the compiler can
still guarantee that constructors and destructors will be called for all objects.

Chapter 11: Dynamic Object Creation
374

In this chapter, you’ll learn how C++’s new and delete elegantly solve this problem by safely
creating objects on the heap.

Object creation
When a C++ object is created, two events occur:

 9. Storage is allocated for the object.

 10. The constructor is called to initialize that storage.

By now you should believe that step two always happens. C++ enforces it because
uninitialized objects are a major source of program bugs. It doesn’t matter where or how the
object is created — the constructor is always called.

Step one, however, can occur in several ways, or at alternate times:

 11. Storage can be allocated before the program begins, in the static storage
area. This storage exists for the life of the program.

 12. Storage can be created on the stack whenever a particular execution point is
reached (an opening brace). That storage is released automatically at the
complementary execution point (the closing brace). These stack-allocation
operations are built into the instruction set of the processor and are very
efficient. However, you have to know exactly how much storage you need
when you’re writing the program so the compiler can generate the right
code.

 13. Storage can be allocated from a pool of memory called the heap (also
known as the free store). This is called dynamic memory allocation. To
allocate this memory, a function is called at run-time; this means you can
decide at any time that you want some memory and how much you need.
You are also responsible for determining when to release the memory,
which means the lifetime of that memory can be as long as you choose — it
isn’t determined by scope.

Often these three regions are placed in a single contiguous piece of physical memory: the
static area, the stack, and the heap (in an order determined by the compiler writer). However,
there are no rules. The stack may be in a special place, and the heap may be implemented by
making calls for chunks of memory from the operating system. As a programmer, these things
are normally shielded from you, so all you need to think about is that the memory is there
when you call for it.

Chapter 11: Dynamic Object Creation
375

C’s approach to the heap
To allocate memory dynamically at run-time, C provides functions in its standard library:
malloc() and its variants calloc() and realloc() to produce memory from the heap, and
free() to release the memory back to the heap. These functions are pragmatic but primitive
and require understanding and care on the part of the programmer. To create an instance of a
class on the heap using C’s dynamic memory functions, you’d have to do something like this:

//: C13:Malclass.cpp
// Malloc with class objects
// What you'd have to do if not for "new"
#include <cstdlib> // Malloc() & free()
#include <cstring> // Memset()
#include <iostream>
#include "../require.h"
using namespace std;

class Obj {
 int i, j, k;
 enum { sz = 100 };
 char buf[sz];
public:
 void initialize() { // Can't use constructor
 cout << "initializing Obj" << endl;
 i = j = k = 0;
 memset(buf, 0, sz);
 }
 void destroy() { // Can't use destructor
 cout << "destroying Obj" << endl;
 }
};

int main() {
 Obj* obj = (Obj*)malloc(sizeof(Obj));
 require(obj != 0);
 obj->initialize();
 // ... sometime later:
 obj->destroy();
 free(obj);
} ///:~

You can see the use of malloc() to create storage for the object in the line:

Obj* obj = (Obj*)malloc(sizeof(Obj));

Chapter 11: Dynamic Object Creation
376

Here, the user must determine the size of the object (one place for an error). malloc() returns
a void* because it’s just a patch of memory, not an object. C++ doesn’t allow a void* to be
assigned to any other pointer, so it must be cast.

Because malloc() may fail to find any memory (in which case it returns zero), you must
check the returned pointer to make sure it was successful.

But the worst problem is this line:

Obj->initialize();

If they make it this far correctly, users must remember to initialize the object before it is used.
Notice that a constructor was not used because the constructor cannot be called explicitly —
it’s called for you by the compiler when an object is created. The problem here is that the user
now has the option to forget to perform the initialization before the object is used, thus
reintroducing a major source of bugs.

It also turns out that many programmers seem to find C’s dynamic memory functions too
confusing and complicated; it’s not uncommon to find C programmers who use virtual
memory machines allocating huge arrays of variables in the static storage area to avoid
thinking about dynamic memory allocation. Because C++ is attempting to make library use
safe and effortless for the casual programmer, C’s approach to dynamic memory is
unacceptable.

operator new
The solution in C++ is to combine all the actions necessary to create an object into a single
operator called new. When you create an object with new (using a new-expression), it
allocates enough storage on the heap to hold the object, and calls the constructor for that
storage. Thus, if you say

Foo *fp = new Foo(1,2);

at run-time, the equivalent of malloc(sizeof(Foo)) is called (often, it is literally a call to
malloc()), and the constructor for Foo is called with the resulting address as the this pointer,
using (1,2) as the argument list. By the time the pointer is assigned to fp, it’s a live, initialized
object — you can’t even get your hands on it before then. It’s also automatically the proper
Foo type so no cast is necessary.

The default new also checks to make sure the memory allocation was successful before
passing the address to the constructor, so you don’t have to explicitly determine if the call was
successful. Later in the chapter you’ll find out what happens if there’s no memory left.

You can create a new-expression using any constructor available for the class. If the
constructor has no arguments, you can make the new-expression without the constructor
argument list:

Foo *fp = new Foo;

Chapter 11: Dynamic Object Creation
377

Notice how simple the process of creating objects on the heap becomes — a single
expression, with all the sizing, conversions, and safety checks built in. It’s as easy to create an
object on the heap as it is on the stack.

operator delete
The complement to the new-expression is the delete-expression, which first calls the
destructor and then releases the memory (often with a call to free()). Just as a new-expression
returns a pointer to the object, a delete-expression requires the address of an object.

delete fp;

cleans up the dynamically allocated Foo object created earlier.

delete can be called only for an object created by new. If you malloc() (or calloc() or
realloc()) an object and then delete it, the behavior is undefined. Because most default
implementations of new and delete use malloc() and free(), you’ll probably release the
memory without calling the destructor.

If the pointer you’re deleting is zero, nothing will happen. For this reason, people often
recommend setting a pointer to zero immediately after you delete it, to prevent deleting it
twice. Deleting an object more than once is definitely a bad thing to do, and will cause
problems.

A simple example
This example shows that the initialization takes place:

//: C13:Newdel.cpp
// Simple demo of new & delete
#include <iostream>
using namespace std;

class Tree {
 int height;
public:
 Tree(int Height) {
 height = Height;
 }
 ~Tree() { cout << "*"; }
 friend ostream&
 operator<<(ostream& os, const Tree* t) {
 return os << "Tree height is: "
 << t->height << endl;
 }
};

Chapter 11: Dynamic Object Creation
378

int main() {
 Tree* t = new Tree(40);
 cout << t;
 delete t;
} ///:~

We can prove that the constructor is called by printing out the value of the Tree. Here, it’s
done by overloading the operator<< to use with an ostream. Note, however, that even
though the function is declared as a friend, it is defined as an inline! This is a mere
convenience — defining a friend function as an inline to a class doesn’t change the friend
status or the fact that it’s a global function and not a class member function. Also notice that
the return value is the result of the entire output expression, which is itself an ostream&
(which it must be, to satisfy the return value type of the function).

Memory manager overhead
When you create auto objects on the stack, the size of the objects and their lifetime is built
right into the generated code, because the compiler knows the exact quantity and scope.
Creating objects on the heap involves additional overhead, both in time and in space. Here’s a
typical scenario. (You can replace malloc() with calloc() or realloc().)

 14. You call malloc(), which requests a block of memory from the pool. (This
code may actually be part of malloc().)

 15. The pool is searched for a block of memory large enough to satisfy the
request. This is done by checking a map or directory of some sort that
shows which blocks are currently in use and which blocks are available. It’s
a quick process, but it may take several tries so it might not be deterministic
— that is, you can’t necessarily count on malloc() always taking exactly
the same amount of time.

 16. Before a pointer to that block is returned, the size and location of the block
must be recorded so further calls to malloc() won’t use it, and so that when
you call free(), the system knows how much memory to release.

The way all this is implemented can vary widely. For example, there’s nothing to prevent
primitives for memory allocation being implemented in the processor. If you’re curious, you
can write test programs to try to guess the way your malloc() is implemented. You can also
read the library source code, if you have it.

Chapter 11: Dynamic Object Creation
379

Early examples redesigned
Now that new and delete have been introduced (as well as many other subjects), the Stash
and Stack examples from the early part of this book can be rewritten using all the features
discussed in the book so far. Examining the new code will also give you a useful review of the
topics.

Heap-only string class
At this point in the book, neither the Stash nor Stack classes will «own» the objects they
point to; that is, when the Stash or Stack object goes out of scope, it will not call delete for
all the objects it points to. The reason this is not possible is because, in an attempt to be
generic, they hold void pointers. If you delete a void pointer, the only thing that happens is
the memory gets released, because there’s no type information and no way for the compiler to
know what destructor to call. When a pointer is returned from the Stash or Stack object, you
must cast it to the proper type before using it. These problems will be dealt with in the next
chapter, and in Chapter 14.

Because the container doesn’t own the pointer, the user must be responsible for it. This means
there’s a serious problem if you add pointers to objects created on the stack and objects
created on the heap to the same container because a delete-expression is unsafe for a pointer
that hasn’t been allocated on the heap. (And when you fetch a pointer back from the
container, how will you know where its object has been allocated?) To solve this problem in
the following version of a simple String class, steps have been taken to prevent the creation
of a String anywhere but on the heap:

//: C13:Strings.h
// Simple string class
// Can only be built on the heap
#ifndef STRINGS_H_
#define STRINGS_H_
#include <cstring>
#include <iostream>

class String {
 char* s;
 String(const char* S) {
 s = new char[strlen(S) + 1];
 std::strcpy(s, S);
 }
 // Prevent copying:
 String(const String&);
 void operator=(String&);

Chapter 11: Dynamic Object Creation
380

public:
 // Only make Strings on the heap:
 friend String* makeString(const char* S) {
 return new String(S);
 }
 // Alternate approach:
 static String* make(const char* S) {
 return new String(S);
 }
 ~String() { delete s; }
 operator char*() const { return s;}
 char* str() const { return s; }
 friend std::ostream&
 operator<<(std::ostream& os, const String& S) {
 return os << S.s;
 }
};
#endif // STRINGS_H_ ///:~

To restrict what the user can do with this class, the main constructor is made private, so no
one can use it but you. In addition, the copy-constructor is declared private but never defined,
because you want to prevent anyone from using it, and the same goes for the operator=. The
only way for the user to create an object is to call a special function that creates a String on
the heap (so you know all String objects are created on the heap) and returns its pointer.

There are two approaches to this function. For ease of use, it can be a global friend function
(called makeString()), but if you don’t want to pollute the global name space, you can make
it a static member function (called make()) and call it by saying String::make(). The latter
form has the benefit of more explicitly belonging to the class.

In the constructor, note the expression:

s = new char[strlen(S) + 1];

The square brackets mean that an array of objects is being created (in this case, an array of
char), and the number inside the brackets is the number of objects to create. This is how you
create an array at run-time.

The automatic type conversion to char* means that you can use a String object anywhere you
need a char*. In addition, an iostream output operator extends the iostream library to handle
String objects.

Stash for pointers
This version of the Stash class, which you last saw in Chapter 4, is changed to reflect all the
new material introduced since Chapter 4. In addition, the new PStash holds pointers to
objects that exist by themselves on the heap, whereas the old Stash in Chapter 4 and earlier

Chapter 11: Dynamic Object Creation
381

copied the objects into the Stash container. With the introduction of new and delete, it’s easy
and safe to hold pointers to objects that have been created on the heap.

Here’s the header file for the «pointer Stash»:

//: C13:PStash.h
// Holds pointers instead of objects
#ifndef PSTASH_H_
#define PSTASH_H_

class PStash {
 int quantity; // Number of storage spaces
 int next; // Next empty space
 // Pointer storage:
 void** storage;
 void inflate(int increase);
public:
 PStash() {
 quantity = 0;
 storage = 0;
 next = 0;
 }
 // No ownership:
 ~PStash() { delete storage; }
 int add(void* element);
 void* operator[](int index) const; // Fetch
 // Number of elements in Stash:
 int count() const { return next; }
};
#endif // PSTASH_H_ ///:~

The underlying data elements are fairly similar, but now storage is an array of void pointers,
and the allocation of storage for that array is performed with new instead of malloc(). In the
expression

storage = new void*[quantity = Quantity];

the type of object allocated is a void*, so the expression allocates an array of void pointers.

The destructor deletes the storage where the void pointers are held, rather than attempting to
delete what they point at (which, as previously noted, will release their storage and not call
the destructors because a void pointer has no type information).

The other change is the replacement of the fetch() function with operator[], which makes
more sense syntactically. Again, however, a void* is returned, so the user must remember
what types are stored in the container and cast the pointers when fetching them out (a problem
which will be repaired in future chapters).

Chapter 11: Dynamic Object Creation
382

Here are the member function definitions:

//: C13:PStash.cpp {O}
// Pointer Stash definitions
#include "PStash.h"
#include <iostream>
#include <cstring> // Mem functions
using namespace std;

int PStash::add(void* element) {
 const InflateSize = 10;
 if(next >= quantity)
 inflate(InflateSize);
 storage[next++] = element;
 return(next - 1); // Index number
}

// Operator overloading replacement for fetch
void* PStash::operator[](int index) const {
 if(index >= next || index < 0)
 return 0; // Out of bounds
 // Produce pointer to desired element:
 return storage[index];
}

void PStash::inflate(int increase) {
 const psz = sizeof(void*);
 // realloc() is cleaner than this:
 void** st = new void*[quantity + increase];
 memset(st, 0, (quantity + increase) * psz);
 memcpy(st, storage, quantity * psz);
 quantity += increase;
 delete storage; // Old storage
 storage = st; // Point to new memory
} ///:~

The add() function is effectively the same as before, except that the pointer is stored instead
of a copy of the whole object, which, as you’ve seen, actually requires a copy-constructor for
normal objects.

The inflate() code is actually more complicated and less efficient than in the earlier version.
This is because realloc(), which was used before, can resize an existing chunk of memory, or
failing that, automatically copy the contents of your old chunk to a bigger piece. In either
event you don’t have to worry about it, and it’s potentially faster if memory doesn’t have to
be moved. There’s no equivalent of realloc() with new, however, so in this example you

Chapter 11: Dynamic Object Creation
383

always have to allocate a bigger chunk, perform a copy, and delete the old chunk. In this
situation it might make sense to use malloc(), realloc(), and free() in the underlying
implementation rather than new and delete. Fortunately, the implementation is hidden so the
client programmer will remain blissfully ignorant of these kinds of changes; also the malloc()
family of functions is guaranteed to interact safely in parallel with new and delete, as long as
you don’t mix calls with the same chunk of memory, so this is a completely plausible thing to
do.

A test
Here’s the old test program for Stash rewritten for the PStash:

//: C13:Pstest.cpp
//{L} PStash
// Test of pointer stash
#include <iostream>
#include <fstream>
#include "../require.h"
#include "PStash.h"
#include "Strings.h"
using namespace std;

int main() {
 PStash intStash;
 // new works with built-in types, too:
 for(int i = 0; i < 25; i++)
 intStash.add(new int(i)); // Pseudo-constr.
 for(int u = 0; u < intStash.count(); u++)
 cout << "intStash[" << u << "] = "
 << *(int*)intStash[u] << endl;

 ifstream infile("pstest.cpp");
 assure(infile, "pstest.cpp");
 const bufsize = 80;
 char buf[bufsize];
 PStash stringStash;
 // Use global function makeString:
 for(int j = 0; j < 10; j++)
 if(infile.getline(buf, bufsize))
 stringStash.add(makeString(buf));
 // Use static member make:
 while(infile.getline(buf, bufsize))
 stringStash.add(String::make(buf));
 // Print out the strings:

Chapter 11: Dynamic Object Creation
384

 for(int v = 0; stringStash[v]; v++) {
 char* p = *(String*)stringStash[v];
 cout << "stringStash[" << v << "] = "
 << p << endl;
 }
} ///:~

As before, Stashes are created and filled with information, but this time the information is the
pointers resulting from new-expressions. In the first case, note the line:

intStash.add(new int(i));

The expression new int(i) uses the pseudoconstructor form, so storage for a new int object is
created on the heap, and the int is initialized to the value i.

Note that during printing, the value returned by PStash::operator[] must be cast to the
proper type; this is repeated for the rest of the PStash objects in the program. It’s an
undesirable effect of using void pointers as the underlying representation and will be fixed in
later chapters.

The second test opens the source code file and reads it into another PStash, converting each
line into a String object. You can see that both makeString() and String::make() are used
to show the difference between the two. The static member is probably the better approach
because it’s more explicit.

When fetching the pointers back out, you see the expression:

char* p = *(String*)stringStash[i];

The pointer returned from operator[] must be cast to a String* to give it the proper type.
Then the String* is dereferenced so the expression evaluates to an object, at which point the
compiler sees a String object when it wants a char*, so it calls the automatic type conversion
operator in String to produce a char*.

In this example, the objects created on the heap are never destroyed. This is not harmful here
because the storage is released when the program ends, but it’s not something you want to do
in practice. It will be fixed in later chapters.

The stack
The Stack benefits greatly from all the features introduced since Chapter 3. Here’s the new
header file:

//: C13:Stack11.h
// New version of Stack
#ifndef STACK11_H_
#define STACK11_H_

class Stack {

Chapter 11: Dynamic Object Creation
385

 struct link {
 void* data;
 link* next;
 link(void* Data, link* Next) {
 data = Data;
 next = Next;
 }
 } * head;
public:
 Stack() { head = 0; }
 ~Stack();
 void push(void* Data) {
 head = new link(Data,head);
 }
 void* peek() const { return head->data; }
 void* pop();
};
#endif // STACK11_H_ ///:~

The nested struct link can now have its own constructor because in Stack::push() the use of
new safely calls that constructor. (And notice how much cleaner the syntax is, which reduces
potential bugs.) The link::link() constructor simply initializes the data and next pointers, so
in Stack::push() the line

head = new link(Data,head);

not only allocates a new link, but neatly initializes the pointers for that link.

The rest of the logic is virtually identical to what it was in Chapter 3. Here is the
implementation of the two remaining (non-inline) functions:

//: C13:Stack11.cpp {O}
// New version of Stack
#include "Stack11.h"

void* Stack::pop() {
 if(head == 0) return 0;
 void* result = head->data;
 link* oldHead = head;
 head = head->next;
 delete oldHead;
 return result;
}

Stack::~Stack() {
 link* cursor = head;

Chapter 11: Dynamic Object Creation
386

 while(head) {
 cursor = cursor->next;
 delete head;
 head = cursor;
 }
} ///:~

The only difference is the use of delete instead of free() in the destructor.

As with the Stash, the use of void pointers means that the objects created on the heap cannot
be destroyed by the Stack, so again there is the possibility of an undesirable memory leak if
the user doesn’t take responsibility for the pointers in the Stack. You can see this in the test
program:

//: C13:Stktst11.cpp
//{L} Stack11
// Test new Stack
#include <iostream>
#include <fstream>
#include "../require.h"
#include "Stack11.h"
#include "Strings.h"
using namespace std;

int main() {
 // Could also use command-line argument:
 ifstream file("stktst11.cpp");
 assure(file, "stktst11.cpp");
 const bufsize = 100;
 char buf[bufsize];
 Stack textlines;
 // Read file and store lines in the Stack:
 while(file.getline(buf,bufsize))
 textlines.push(String::make(buf));
 // Pop lines from the Stack and print them:
 String* s;
 while((s = (String*)textlines.pop()) != 0)
 cout << *s << endl;
} ///:~

As with the Stash example, a file is opened and each line is turned into a String object, which
is stored in a Stack and then printed. This program doesn’t delete the pointers in the Stack
and the Stack itself doesn’t do it, so that memory is lost.

Chapter 11: Dynamic Object Creation
387

new & delete for arrays
In C++, you can create arrays of objects on the stack or on the heap with equal ease, and (of
course) the constructor is called for each object in the array. There’s one constraint, however:
There must be a default constructor, except for aggregate initialization on the stack (see
Chapter 3), because a constructor with no arguments must be called for every object.

When creating arrays of objects on the heap using new, there’s something else you must do.
An example of such an array is

Foo* fp = new Foo[100];

This allocates enough storage on the heap for 100 Foo objects and calls the constructor for
each one. Now, however, you simply have a Foo*, which is exactly the same as you’d get if
you said

Foo* fp2 = new Foo;

to create a single object. Because you wrote the code, you know that fp is actually the starting
address of an array, so it makes sense to select array elements with fp[2]. But what happens
when you destroy the array? The statements

delete fp2; // OK
delete fp; // Not the desired effect

look exactly the same, and their effect will be the same: The destructor will be called for the
Foo object pointed to by the given address, and then the storage will be released. For fp2 this
is fine, but for fp this means the other 99 destructor calls won’t be made. The proper amount
of storage will still be released, however, because it is allocated in one big chunk, and the size
of the whole chunk is stashed somewhere by the allocation routine.

The solution requires you to give the compiler the information that this is actually the starting
address of an array. This is accomplished with the following syntax:

delete []fp;

The empty brackets tell the compiler to generate code that fetches the number of objects in the
array, stored somewhere when the array is created, and calls the destructor for that many array
objects. This is actually an improved syntax from the earlier form, which you may still
occasionally see in old code:

delete [100]fp;

which forced the programmer to include the number of objects in the array and introduced the
possibility that the programmer would get it wrong. The additional overhead of letting the
compiler handle it was very low, and it was considered better to specify the number of objects
in one place rather than two.

Chapter 11: Dynamic Object Creation
388

Making a pointer more like an array
As an aside, the fp defined above can be changed to point to anything, which doesn’t make
sense for the starting address of an array. It makes more sense to define it as a constant, so any
attempt to modify the pointer will be flagged as an error. To get this effect, you might try

int const* q = new int[10];

or

const int* q = new int[10];

but in both cases the const will bind to the int, that is, what is being pointed to, rather than the
quality of the pointer itself. Instead, you must say

int* const q = new int[10];

Now the array elements in q can be modified, but any change to q itself (like q++) is illegal,
as it is with an ordinary array identifier.

Running out of storage
What happens when the operator new cannot find a contiguous block of storage large enough
to hold the desired object? A special function called the new-handler is called. Or rather, a
pointer to a function is checked, and if the pointer is nonzero, then the function it points to is
called.

The default behavior for the new-handler is to throw an exception, the subject covered in
Chapter 16. However, if you’re using heap allocation in your program, it’s wise to at least
replace the new-handler with a message that says you’ve run out of memory and then aborts
the program. That way, during debugging, you’ll have a clue about what happened. For the
final program you’ll want to use more robust recovery.

You replace the new-handler by including NEW.H and then calling set_new_handler() with
the address of the function you want installed:

//: C13:Newhandl.cpp
// Changing the new-handler
#include <iostream>
#include <cstdlib>
#include <new>
using namespace std;

void out_of_memory() {
 cerr << "memory exhausted!" << endl;
 exit(1);
}

Chapter 11: Dynamic Object Creation
389

int main() {
 set_new_handler(out_of_memory);
 while(1)
 new int[1000]; // Exhausts memory
} ///:~

The new-handler function must take no arguments and have void return value. The while loop
will keep allocating int objects (and throwing away their return addresses) until the free store
is exhausted. At the very next call to new, no storage can be allocated, so the new-handler
will be called.

Of course, you can write more sophisticated new-handlers, even one to try to reclaim memory
(commonly known as a garbage collector). This is not a job for the novice programmer.

Overloading new & delete
When you create a new-expression, two things occur: First, storage is allocated using the
operator new, then the constructor is called. In a delete-expression, the destructor is called,
then storage is deallocated using the operator delete. The constructor and destructor calls are
never under your control (otherwise you might accidentally subvert them), but you can
change the storage allocation functions operator new and operator delete.

The memory allocation system used by new and delete is designed for general-purpose use.
In special situations, however, it doesn’t serve your needs. The most common reason to
change the allocator is efficiency: You might be creating and destroying so many objects of a
particular class that it has become a speed bottleneck. C++ allows you to overload new and
delete to implement your own storage allocation scheme, so you can handle problems like
this.

Another issue is heap fragmentation: By allocating objects of different sizes it’s possible to
break up the heap so that you effectively run out of storage. That is, the storage might be
available, but because of fragmentation no piece is big enough to satisfy your needs. By
creating your own allocator for a particular class, you can ensure this never happens.

In embedded and real-time systems, a program may have to run for a very long time with
restricted resources. Such a system may also require that memory allocation always take the
same amount of time, and there’s no allowance for heap exhaustion or fragmentation. A
custom memory allocator is the solution; otherwise programmers will avoid using new and
delete altogether in such cases and miss out on a valuable C++ asset.

When you overload operator new and operator delete, it’s important to remember that
you’re changing only the way raw storage is allocated. The compiler will simply call your
new instead of the default version to allocate storage, then call the constructor for that storage.
So, although the compiler allocates storage and calls the constructor when it sees new, all you
can change when you overload new is the storage allocation portion. (delete has a similar
limitation.)

Chapter 11: Dynamic Object Creation
390

When you overload operator new, you also replace the behavior when it runs out of memory,
so you must decide what to do in your operator new: return zero, write a loop to call the
new-handler and retry allocation, or (typically) throw a bad_alloc exception (discussed in
Chapter 16).

Overloading new and delete is like overloading any other operator. However, you have a
choice of overloading the global allocator or using a different allocator for a particular class.

Overloading global new & delete
This is the drastic approach, when the global versions of new and delete are unsatisfactory for
the whole system. If you overload the global versions, you make the defaults completely
inaccessible — you can’t even call them from inside your redefinitions.

The overloaded new must take an argument of size_t (the Standard C standard type for sizes).
This argument is generated and passed to you by the compiler and is the size of the object
you’re responsible for allocating. You must return a pointer either to an object of that size (or
bigger, if you have some reason to do so), or to zero if you can’t find the memory (in which
case the constructor is not called!). However, if you can’t find the memory, you should
probably do something more drastic than just returning zero, like calling the new-handler or
throwing an exception, to signal that there’s a problem.

The return value of operator new is a void*, not a pointer to any particular type. All you’ve
done is produce memory, not a finished object — that doesn’t happen until the constructor is
called, an act the compiler guarantees and which is out of your control.

The operator delete takes a void* to memory that was allocated by operator new. It’s a
void* because you get that pointer after the destructor is called, which removes the object-
ness from the piece of storage. The return type is void.

Here’s a very simple example showing how to overload the global new and delete:

//: C13:GlobalNew.cpp
// Overload global new/delete
#include <cstdio>
#include <cstdlib>
using namespace std;

void* operator new(size_t sz) {
 printf("operator new: %d Bytes\n", sz);
 void* m = malloc(sz);
 if(!m) puts("out of memory");
 return m;
}

void operator delete(void* m) {
 puts("operator delete");

Chapter 11: Dynamic Object Creation
391

 free(m);
}

class S {
 int i[100];
public:
 S() { puts("S::S()"); }
 ~S() { puts("S::~S()"); }
};

int main() {
 puts("creating & destroying an int");
 int* p = new int(47);
 delete p;
 puts("creating & destroying an s");
 S* s = new S;
 delete s;
 puts("creating & destroying S[3]");
 S* sa = new S[3];
 delete []sa;
} ///:~

Here you can see the general form for overloading new and delete. These use the Standard C
library functions malloc() and free() for the allocators (which is probably what the default
new and delete use, as well!). However, they also print out messages about what they are
doing. Notice that printf() and puts() are used rather than iostreams. Thus, when an
iostream object is created (like the global cin, cout, and cerr), they call new to allocate
memory. With printf(), you don’t get into a deadlock because it doesn’t call new to initialize
itself.

In main(), objects of built-in types are created to prove that the overloaded new and delete
are also called in that case. Then a single object of type s is created, followed by an array. For
the array, you’ll see that extra memory is requested to put information about the number of
objects in the array. In all cases, the global overloaded versions of new and delete are used.

Overloading new & delete for a class
Although you don’t have to explicitly say static, when you overload new and delete for a
class, you’re creating static member functions. Again, the syntax is the same as overloading
any other operator. When the compiler sees you use new to create an object of your class, it
chooses the member operator new over the global version. However, the global versions of
new and delete are used for all other types of objects (unless they have their own new and
delete).

Chapter 11: Dynamic Object Creation
392

In the following example, a very primitive storage allocation system is created for the class
Framis. A chunk of memory is set aside in the static data area at program start-up, and that
memory is used to allocate space for objects of type Framis. To determine which blocks have
been allocated, a simple array of bytes is used, one byte for each block:

//: C13:Framis.cpp
// Local overloaded new & delete
#include <cstddef> // Size_t
#include <fstream>
using namespace std;
ofstream out("Framis.out");

class Framis {
 char c[10];
 static unsigned char pool[];
 static unsigned char alloc_map[];
public:
 enum { psize = 100 }; // # of frami allowed
 Framis() { out << "Framis()\n"; }
 ~Framis() { out << "~Framis() ... "; }
 void* operator new(size_t);
 void operator delete(void*);
};
unsigned char Framis::pool[psize * sizeof(Framis)];
unsigned char Framis::alloc_map[psize] = {0};

// Size is ignored -- assume a Framis object
void* Framis::operator new(size_t) {
 for(int i = 0; i < psize; i++)
 if(!alloc_map[i]) {
 out << "using block " << i << " ... ";
 alloc_map[i] = 1; // Mark it used
 return pool + (i * sizeof(Framis));
 }
 out << "out of memory" << endl;
 return 0;
}

void Framis::operator delete(void* m) {
 if(!m) return; // Check for null pointer
 // Assume it was created in the pool
 // Calculate which block number it is:
 unsigned long block = (unsigned long)m
 - (unsigned long)pool;

Chapter 11: Dynamic Object Creation
393

 block /= sizeof(Framis);
 out << "freeing block " << block << endl;
 // Mark it free:
 alloc_map[block] = 0;
}

int main() {
 Framis* f[Framis::psize];
 for(int i = 0; i < Framis::psize; i++)
 f[i] = new Framis;
 new Framis; // Out of memory
 delete f[10];
 f[10] = 0;
 // Use released memory:
 Framis* x = new Framis;
 delete x;
 for(int j = 0; j < Framis::psize; j++)
 delete f[j]; // Delete f[10] OK
} ///:~

The pool of memory for the Framis heap is created by allocating an array of bytes large
enough to hold psize Framis objects. The allocation map is psize bytes long, so there’s one
byte for every block. All the bytes in the allocation map are initialized to zero using the
aggregate initialization trick of setting the first element to zero so the compiler automatically
initializes all the rest.

The local operator new has the same form as the global one. All it does is search through the
allocation map looking for a zero byte, then sets that byte to one to indicate it’s been allocated
and returns the address of that particular block. If it can’t find any memory, it issues a
message and returns zero (Notice that the new-handler is not called and no exceptions are
thrown because the behavior when you run out of memory is now under your control.) In this
example, it’s OK to use iostreams because the global operator new and delete are untouched.

The operator delete assumes the Framis address was created in the pool. This is a fair
assumption, because the local operator new will be called whenever you create a single
Framis object on the heap — but not an array. Global new is used in that case. So the user
might accidentally have called operator delete without using the empty bracket syntax to
indicate array destruction. This would cause a problem. Also, the user might be deleting a
pointer to an object created on the stack. If you think these things could occur, you might
want to add a line to make sure the address is within the pool and on a correct boundary.

operator delete calculates which block in the pool this pointer represents, and then sets the
allocation map’s flag for that block to zero to indicate the block has been released.

Chapter 11: Dynamic Object Creation
394

In main(), enough Framis objects are dynamically allocated to run out of memory; this
checks the out-of-memory behavior. Then one of the objects is freed, and another one is
created to show that the released memory is reused.

Because this allocation scheme is specific to Framis objects, it’s probably much faster than
the general-purpose memory allocation scheme used for the default new and delete.

Overloading new & delete for arrays
If you overload operator new and delete for a class, those operators are called whenever you
create an object of that class. However, if you create an array of those class objects, the
global operator new is called to allocate enough storage for the array all at once, and the
global operator delete is called to release that storage. You can control the allocation of
arrays of objects by overloading the special array versions of operator new[] and operator
delete[] for the class. Here’s an example that shows when the two different versions are
called:

//: C13:ArrayNew.cpp
// Operator new for arrays
#include <new> // Size_t definition
#include <fstream>
using namespace std;
ofstream trace("ArrayNew.out");

class Widget {
 int i[10];
public:
 Widget() { trace << "*"; }
 ~Widget() { trace << "~"; }
 void* operator new(size_t sz) {
 trace << "Widget::new: "
 << sz << " bytes" << endl;
 return ::new char[sz];
 }
 void operator delete(void* p) {
 trace << "Widget::delete" << endl;
 ::delete []p;
 }
 void* operator new[](size_t sz) {
 trace << "Widget::new[]: "
 << sz << " bytes" << endl;
 return ::new char[sz];
 }
 void operator delete[](void* p) {

Chapter 11: Dynamic Object Creation
395

 trace << "Widget::delete[]" << endl;
 ::delete []p;
 }
};

int main() {
 trace << "new Widget" << endl;
 Widget* w = new Widget;
 trace << "\ndelete Widget" << endl;
 delete w;
 trace << "\nnew Widget[25]" << endl;
 Widget* wa = new Widget[25];
 trace << "\ndelete []Widget" << endl;
 delete []wa;
} ///:~

Here, the global versions of new and delete are called so the effect is the same as having no
overloaded versions of new and delete except that trace information is added. Of course, you
can use any memory allocation scheme you want in the overloaded new and delete.

You can see that the array versions of new and delete are the same as the individual-object
versions with the addition of the brackets. In both cases you’re handed the size of the memory
you must allocate. The size handed to the array version will be the size of the entire array. It’s
worth keeping in mind that the only thing the overloaded operator new is required to do is
hand back a pointer to a large enough memory block. Although you may perform
initialization on that memory, normally that’s the job of the constructor that will automatically
be called for your memory by the compiler.

The constructor and destructor simply print out characters so you can see when they’ve been
called. Here’s what the trace file looks like for one compiler:

new Widget
Widget::new: 20 bytes
*
delete Widget
~Widget::delete

new Widget[25]
Widget::new[]: 504 bytes

delete []Widget
~~~~~~~~~~~~~~~~~~~~~~~~~Widget::delete[]

Creating an individual object requires 20 bytes, as you might expect. (This machine uses two
bytes for an int). The operator new is called, then the constructor (indicated by the *). In a
complementary fashion, calling delete causes the destructor to be called, then the operator
delete.



Chapter 11: Dynamic Object Creation
396

When an array of Widget objects is created, the array version of operator new is used, as
promised. But notice that the size requested is four more bytes than expected. This extra four
bytes is where the system keeps information about the array, in particular, the number of
objects in the array. That way, when you say

delete []Widget;

the brackets tell the compiler it’s an array of objects, so the compiler generates code to look
for the number of objects in the array and to call the destructor that many times.

You can see that, even though the array operator new and operator delete are only called
once for the entire array chunk, the default constructor and destructor are called for each
object in the array.

Constructor calls
Considering that

Foo* f = new Foo;

calls new to allocate a Foo-sized piece of storage, then invokes the Foo constructor on that
storage, what happens if all the safeguards fail and the value returned by operator new is
zero? The constructor is not called in that case, so although you still have an unsuccessfully
created object, at least you haven’t invoked the constructor and handed it a zero pointer.
Here’s an example to prove it:

//: C13:NoMemory.cpp
// Constructor isn't called
// If new returns 0
#include <iostream>
#include <new> // size_t definition
using namespace std;

void my_new_handler() {
  cout << "new handler called" << endl;
}

class NoMemory {
public:
  NoMemory() {
    cout << "NoMemory::NoMemory()" << endl;
  }
  void* operator new(size_t sz) {
    cout << "NoMemory::operator new" << endl;
    return 0; // "Out of memory"
  }
};



Chapter 11: Dynamic Object Creation
397

int main() {
  set_new_handler(my_new_handler);
  NoMemory* nm = new NoMemory;
  cout << "nm = " << nm << endl;
} ///:~

When the program runs, it prints only the message from operator new. Because new returns
zero, the constructor is never called so its message is not printed.

Object placement
There are two other, less common, uses for overloading operator new.

 1.  You may want to place an object in a specific location in memory. This is
especially important with hardware-oriented embedded systems where an
object may be synonymous with a particular piece of hardware.

 2.  You may want to be able to choose from different allocators when calling
new.

Both of these situations are solved with the same mechanism: The overloaded operator new
can take more than one argument. As you’ve seen before, the first argument is always the size
of the object, which is secretly calculated and passed by the compiler. But the other arguments
can be anything you want: the address you want the object placed at, a reference to a memory
allocation function or object, or anything else that is convenient for you.

The way you pass the extra arguments to operator new during a call may seem slightly
curious at first: You put the argument list (without the size_t argument, which is handled by
the compiler) after the keyword new and before the class name of the object you’re creating.
For example,

X* xp = new(a) X;

will pass a as the second argument to operator new. Of course, this can work only if such an
operator new has been declared.

Here’s an example showing how you can place an object at a particular location:

//: C13:PlacementNew.cpp
// Placement with operator new
#include <cstddef> // Size_t
#include <iostream>
using namespace std;

class X {
  int i;
public:



Chapter 11: Dynamic Object Creation
398

  X(int I = 0) { i = I; }
  ~X() {
    cout << "X::~X()" << endl;
  }
  void* operator new(size_t, void* loc) {
    return loc;
  }
};

int main() {
  int l[10];
  X* xp = new(l) X(47); // X at location l
  xp->X::~X(); // Explicit destructor call
  // ONLY use with placement!
} ///:~

Notice that operator new only returns the pointer that’s passed to it. Thus, the caller decides
where the object is going to sit, and the constructor is called for that memory as part of the
new-expression.

A dilemma occurs when you want to destroy the object. There’s only one version of operator
delete, so there’s no way to say, «Use my special deallocator for this object.» You want to
call the destructor, but you don’t want the memory to be released by the dynamic memory
mechanism because it wasn’t allocated on the heap.

The answer is a very special syntax: You can explicitly call the destructor, as in

xp->X::~X(); // Explicit destructor call

A stern warning is in order here. Some people see this as a way to destroy objects at some
time before the end of the scope, rather than either adjusting the scope or (more correctly)
using dynamic object creation if they want the object’s lifetime to be determined at run-time.
You will have serious problems if you call the destructor this way for an object created on the
stack because the destructor will be called again at the end of the scope. If you call the
destructor this way for an object that was created on the heap, the destructor will execute, but
the memory won’t be released, which probably isn’t what you want. The only reason that the
destructor can be called explicitly this way is to support the placement syntax for operator
new.

Although this example shows only one additional argument, there’s nothing to prevent you
from adding more if you need them for other purposes.

Summary
It’s convenient and optimally efficient to create automatic objects on the stack, but to solve
the general programming problem you must be able to create and destroy objects at any time



Chapter 11: Dynamic Object Creation
399

during a program’s execution, particularly to respond to information from outside the
program. Although C’s dynamic memory allocation will get storage from the heap, it doesn’t
provide the ease of use and guaranteed construction necessary in C++. By bringing dynamic
object creation into the core of the language with new and delete, you can create objects on
the heap as easily as making them on the stack. In addition, you get a great deal of flexibility.
You can change the behavior of new and delete if they don’t suit your needs, particularly if
they aren’t efficient enough. Also, you can modify what happens when the heap runs out of
storage. (However, exception handling, described in Chapter 16, also comes into play here.)

Exercises
 1.  Prove to yourself that new and delete always call the constructors and

destructors by creating a class with a constructor and destructor that
announce themselves through cout. Create an object of that class with new,
and destroy it with delete. Also create and destroy an array of these objects
on the heap.

 2.  Create a PStash object, and fill it with new objects from Exercise 1.
Observe what happens when this PStash object goes out of scope and its
destructor is called.

 3.  Create a class with an overloaded operator new and delete, both the single-
object versions and the array versions. Demonstrate that both versions
work.

 4.  Devise a test for FRAMIS.CPP to show yourself approximately how much
faster the custom new and delete run than the global new and delete.





401

14: Inheritance &
composition

One of the most compelling features about C++ is code
reuse. But to be revolutionary, you’ve got to be able to do a
lot more than copy code and change it.

That’s the C approach, and it hasn’t worked very well. As with most everything in C++, the
solution revolves around the class. You reuse code by creating new classes, but instead of
creating them from scratch, you use existing classes that someone else has built and
debugged.

The trick is to use the classes without soiling the existing code. In this chapter you’ll see two
ways to accomplish this. The first is quite straightforward: You simply create objects of your
existing class inside the new class. This is called composition because the new class is
composed of objects of existing classes.

The second approach is more subtle. You create a new class as a type of an existing class. You
literally take the form of the existing class and add code to it, without modifying the existing
class. This magical act is called inheritance, and most of the work is done by the compiler.
Inheritance is one of the cornerstones of object-oriented programming and has additional
implications that will be explored in the next chapter.

It turns out that much of the syntax and behavior are similar for both composition and
inheritance (which makes sense; they are both ways of making new types from existing
types). In this chapter, you’ll learn about these code reuse mechanisms.

Composition syntax
Actually, you’ve been using composition all along to create classes. You’ve just been
composing classes using built-in types. It turns out to be almost as easy to use composition
with user-defined types.

Consider an existing class that is valuable for some reason:

//: C14:Useful.h
// A class to reuse



Chapter 12: Inheritance & Composition
402

#ifndef USEFUL_H_
#define USEFUL_H_

class X {
  int i;
  enum { factor = 11 };
public:
  X() { i = 0; }
  void set(int I) { i = I; }
  int read() const { return i; }
  int permute() { return i = i * factor; }
};
#endif // USEFUL_H_ ///:~

The data members are private in this class, so it’s completely safe to embed an object of type
X as a public object in a new class, which makes the interface straightforward:

//: C14:Compose.cpp
// Reuse code with composition
#include "Useful.h"

class Y {
  int i;
public:
  X x; // Embedded object
  Y() { i = 0; }
  void f(int I) { i = I; }
  int g() const { return i; }
};

int main() {
  Y y;
  y.f(47);
  y.x.set(37); // Access the embedded object
} ///:~

Accessing the member functions of the embedded object (referred to as a subobject) simply
requires another member selection.

It’s probably more common to make the embedded objects private, so they become part of
the underlying implementation (which means you can change the implementation if you
want). The public interface functions for your new class then involve the use of the embedded
object, but they don’t necessarily mimic the object’s interface:

//: C14:Compose2.cpp
// Private embedded objects



Chapter 12: Inheritance & Composition
403

#include "Useful.h"

class Y {
  int i;
  X x; // Embedded object
public:
  Y() { i = 0; }
  void f(int I) { i = I; x.set(I); }
  int g() const { return i * x.read(); }
  void permute() { x.permute(); }
};

int main() {
  Y y;
  y.f(47);
  y.permute();
} ///:~

Here, the permute( ) function is carried through to the new class interface, but the other
member functions of X are used within the members of Y.

Inheritance syntax
The syntax for composition is obvious, but to perform inheritance there’s a new and different
form.

When you inherit, you are saying, «This new class is like that old class.» You state this in
code by giving the name of the class, as usual, but before the opening brace of the class body,
you put a colon and the name of the base class (or classes, for multiple inheritance). When
you do this, you automatically get all the data members and member functions in the base
class. Here’s an example:

//: C14:Inherit.cpp
// Simple inheritance
#include "Useful.h"
#include <iostream>
using namespace std;

class Y : public X {
  int i; // Different from X's i
public:
  Y() { i = 0; }
  int change() {
    i = permute(); // Different name call



Chapter 12: Inheritance & Composition
404

    return i;
  }
  void set(int I) {
    i = I;
    X::set(I); // Same-name function call
  }
};

int main() {
  cout << "sizeof(X) = " << sizeof(X) << endl;
  cout << "sizeof(Y) = "
       << sizeof(Y) << endl;
  Y D;
  D.change();
  // X function interface comes through:
  D.read();
  D.permute();
  // Redefined functions hide base versions:
  D.set(12);
} ///:~

In Y you can see inheritance going on, which means that Y will contain all the data elements
in X and all the member functions in X. In fact, Y contains a subobject of X just as if you had
created a member object of X inside Y instead of inheriting from X. Both member objects and
base class storage are referred to as subobjects.

In main( ) you can see that the data elements are added because the sizeof(Y) is twice as big
as sizeof(X).

You’ll notice that the base class is preceded by public. During inheritance, everything
defaults to private, which means all the public members of the base class are private in the
derived class. This is almost never what you want; the desired result is to keep all the public
members of the base class public in the derived class. You do this by using the public
keyword during inheritance.

In change( ), the base-class permute( ) function is called. The derived class has direct access
to all the public base-class functions.

The set( ) function in the derived class redefines the set( ) function in the base class. That is, if
you call the functions read( ) and permute( ) for an object of type Y, you’ll get the base-class
versions of those functions (you can see this happen inside main( )), but if you call set( ) for a
Y object, you get the redefined version. This means that if you don’t like the version of a
function you get during inheritance, you can change what it does. (You can also add
completely new functions like change( ).)

However, when you’re redefining a function, you may still want to call the base-class version.
If, inside set( ), you simply call set( ) you’ll get the local version of the function — a



Chapter 12: Inheritance & Composition
405

recursive function call. To call the base-class version, you must explicitly name it, using the
base-class name and the scope resolution operator.

The constructor initializer list
You’ve seen how important it is in C++ to guarantee proper initialization, and it’s no different
during composition and inheritance. When an object is created, the compiler guarantees that
constructors for all its subobjects are called. In the examples so far, all the subobjects have
default constructors, and that’s what the compiler automatically calls. But what happens if
your subobjects don’t have default constructors, or if you want to change a default argument
in a constructor? This is a problem because the new class constructor doesn’t have permission
to access the private data elements of the subobject, so it can’t initialize them directly.

The solution is simple: Call the constructor for the subobject. C++ provides a special syntax
for this, the constructor initializer list. The form of the constructor initializer list echoes the
act of inheritance. With inheritance, you put the base classes after a colon and before the
opening brace of the class body. In the constructor initializer list, you put the calls to
subobject constructors after the constructor argument list and a colon, but before the opening
brace of the function body. For a class Foo, inherited from Bar, this might look like

Foo::Foo(int i) : Bar(i) { // ...

if Bar has a constructor that takes a single int argument.

Member object initialization
It turns out that you use this very same syntax for member object initialization when using
composition. For composition, you give the names of the objects rather than the class names.
If you have more than one constructor call in the initializer list, you separate the calls with
commas:

Foo2:Foo2(int I) : Bar(i), memb(i+1) { // ...

This is the beginning of a constructor for class Foo2, which is inherited from Bar and
contains a member object called memb. Note that while you can see the type of the base class
in the constructor initializer list, you only see the member object identifier.

Built-in types in the initializer list
The constructor initializer list allows you to explicitly call the constructors for member
objects. In fact, there’s no other way to call those constructors. The idea is that the
constructors are all called before you get into the body of the new class’s constructor. That
way, any calls you make to member functions of subobjects will always go to initialized
objects. There’s no way to get to the opening brace of the constructor without some
constructor being called for all the member objects and base-class objects, even if the
compiler must make a hidden call to a default constructor. This is a further enforcement of the



Chapter 12: Inheritance & Composition
406

C++ guarantee that no object (or part of an object) can get out of the starting gate without its
constructor being called.

This idea that all the member objects are initialized by the opening brace of the constructor is
a convenient programming aid, as well. Once you hit the opening brace, you can assume all
subobjects are properly initialized and focus on specific tasks you want to accomplish in the
constructor. However, there’s a hitch: What about embedded objects of built-in types, which
don’t have constructors?

To make the syntax consistent, you’re allowed to treat built-in types as if they have a single
constructor, which takes a single argument: a variable of the same type as the variable you’re
initializing. Thus, you can say

class X {
  int i;
  float f;
  char c;
  char* s;
public:
  X() : i(7), f(1.4), c(‘x’), s("howdy") {}
  // ...

The action of these «pseudoconstructor calls» is to perform a simple assignment. It’s a
convenient technique and a good coding style, so you’ll often see it used.

It’s even possible to use the pseudoconstructor syntax when creating a variable of this type
outside of a class:

int i(100);

This makes built-in types act a little bit more like objects. Remember, though, that these are
not real constructors. In particular, if you don’t explicitly make a pseudo-constructor call, no
initialization is performed.

Combining composition &
inheritance

Of course, you can use the two together. The following example shows the creation of a more
complex class, using both inheritance and composition.

//: C14:Combined.cpp
// Inheritance & composition

class A {
  int i;



Chapter 12: Inheritance & Composition
407

public:
  A(int I) { i = I; }
  ~A() {}
  void f() const {}
};

class B {
  int i;
public:
  B(int I) { i = I; }
  ~B() {}
  void f() const {}
};

class C : public B {
  A a;
public:
  C(int I) : B(I), a(I) {}
  ~C() {} // Calls ~A() and ~B()
  void f() const {  // Redefinition
    a.f();
    B::f();
  }
};

int main() {
  C c(47);
} ///:~

C inherits from B and has a member object («is composed of») A. You can see the
constructor initializer list contains calls to both the base-class constructor and the member-
object constructor.

The function C::f( ) redefines B::f( ) that it inherits, and also calls the base-class version. In
addition, it calls a.f( ). Notice that the only time you can talk about redefinition of functions is
during inheritance; with a member object you can only manipulate the public interface of the
object, not redefine it. In addition, calling f( ) for an object of class C would not call a.f( ) if
C::f( ) had not been defined, whereas it would call B::f( ).

Automatic destructor calls
Although you are often required to make explicit constructor calls in the initializer list, you
never need to make explicit destructor calls because there’s only one destructor for any class,
and it doesn’t take any arguments. However, the compiler still ensures that all destructors are



Chapter 12: Inheritance & Composition
408

called, and that means all the destructors in the entire hierarchy, starting with the most-
derived destructor and working back to the root.

It’s worth emphasizing that constructors and destructors are quite unusual in that every one in
the hierarchy is called, whereas with a normal member function only that function is called,
but not any of the base-class versions. If you also want to call the base-class version of a
normal member function that you’re overriding, you must do it explicitly.

Order of constructor & destructor calls
It’s interesting to know the order of constructor and destructor calls when an object has many
subobjects. The following example shows exactly how it works:

//: C14:Order.cpp
// Constructor/destructor order
#include <fstream>
using namespace std;
ofstream out("order.out");

#define CLASS(ID) class ID { \
public: \
  ID(int) { out << #ID " constructor\n"; } \
  ~ID() { out << #ID " destructor\n"; } \
};

CLASS(Base1);
CLASS(Member1);
CLASS(Member2);
CLASS(Member3);
CLASS(Member4);

class Derived1 : public Base1 {
  Member1 m1;
  Member2 m2;
public:
  Derived1(int) : m2(1), m1(2), Base1(3) {
    out << "Derived1 constructor\n";
  }
  ~Derived1() {
    out << "Derived1 destructor\n";
  }
};

class Derived2 : public Derived1 {



Chapter 12: Inheritance & Composition
409

  Member3 m3;
  Member4 m4;
public:
  Derived2() : m3(1), Derived1(2), m4(3) {
    out << "Derived2 constructor\n";
  }
  ~Derived2() {
    out << "Derived2 destructor\n";
  }
};

int main() {
  Derived2 d2;
} ///:~

First, an ofstream object is created to send all the output to a file. Then, to save some typing
and demonstrate a macro technique that will be replaced by a much improved technique in
Chapter 17, a macro is created to build some of the classes, which are then used in inheritance
and composition. Each of the constructors and destructors report themselves to the trace file.
Note that the constructors are not default constructors; they each have an int argument. The
argument itself has no identifier; its only job is to force you to explicitly call the constructors
in the initializer list. (Eliminating the identifier prevents compiler warning messages.)

The output of this program is

Base1 constructor
Member1 constructor
Member2 constructor
Derived1 constructor
Member3 constructor
Member4 constructor
Derived2 constructor
Derived2 destructor
Member4 destructor
Member3 destructor
Derived1 destructor
Member2 destructor
Member1 destructor
Base1 destructor

You can see that construction starts at the very root of the class hierarchy, and that at each
level the base class constructor is called first, followed by the member object constructors.
The destructors are called in exactly the reverse order of the constructors — this is important
because of potential dependencies.



Chapter 12: Inheritance & Composition
410

It’s also interesting that the order of constructor calls for member objects is completely
unaffected by the order of the calls in the constructor initializer list. The order is determined
by the order that the member objects are declared in the class. If you could change the order
of constructor calls via the constructor initializer list, you could have two different call
sequences in two different constructors, but the poor destructor wouldn’t know how to
properly reverse the order of the calls for destruction, and you could end up with a
dependency problem.

Name hiding
If a base class has a function name that’s overloaded several times, redefining that function
name in the derived class will hide all the base-class versions. That is, they become
unavailable in the derived class:

//: C14:Hide.cpp
// Name hiding during inheritance

class Homer {
public:
  int doh(int) const { return 1; }
  char doh(char) const { return 'd';}
  float doh(float) const { return 1.0; }
};

class Bart : public Homer {
public:
  class Milhouse {};
  void doh(Milhouse) const {}
};

int main() {
  Bart b;
//! b.doh(1); // Error
//! b.doh('x'); // Error
//! b.doh(1.0); // Error
} ///:~

Because Bart redefines doh( ), none of the base-class versions can be called for a Bart
object. In each case, the compiler attempts to convert the argument into a Milhouse object
and complains because it can’t find a conversion.

As you’ll see in the next chapter, it’s far more common to redefine functions using exactly the
same signature and return type as in the base class.



Chapter 12: Inheritance & Composition
411

Functions that don’t automatically
inherit

Not all functions are automatically inherited from the base class into the derived class.
Constructors and destructors deal with the creation and destruction of an object, and they can
know what to do with the aspects of the object only for their particular level, so all the
constructors and destructors in the entire hierarchy must be called. Thus, constructors and
destructors don’t inherit.

In addition, the operator= doesn’t inherit because it performs a constructor-like activity. That
is, just because you know how to initialize all the members of an object on the left-hand side
of the = from an object on the right-hand side doesn’t mean that initialization will still have
meaning after inheritance.

In lieu of inheritance, these functions are synthesized by the compiler if you don’t create them
yourself. (With constructors, you can’t create any constructors for the default constructor and
the copy-constructor to be automatically created.) This was briefly described in Chapter 10.
The synthesized constructors use memberwise initialization and the synthesized operator=
uses memberwise assignment. Here’s an example of the functions that are created by the
compiler rather than inherited:

//: C14:Ninherit.cpp
// Non-inherited functions
#include <fstream>
using namespace std;
ofstream out("ninherit.out");

class Root {
public:
  Root() { out << "Root()\n"; }
  Root(Root&) { out << "Root(Root&)\n"; }
  Root(int) { out << "Root(int)\n"; }
  Root& operator=(const Root&) {
    out << "Root::operator=()\n";
    return *this;
  }
  class Other {};
  operator Other() const {
    out << "Root::operator Other()\n";
    return Other();
  }
  ~Root() { out << "~Root()\n"; }
};



Chapter 12: Inheritance & Composition
412

class Derived : public Root {};

void f(Root::Other) {}

int main() {
  Derived d1;  // Default constructor
  Derived d2 = d1; // Copy-constructor
//! Derived d3(1); // Error: no int constructor
  d1 = d2; // Operator= not inherited
  f(d1); // Type-conversion IS inherited
} ///:~

All the constructors and the operator= announce themselves so you can see when they’re
used by the compiler. In addition, the operator Other( ) performs automatic type conversion
from a Root object to an object of the nested class Other. The class Derived simply inherits
from Root and creates no functions (to see how the compiler responds). The function f( )
takes an Other object to test the automatic type conversion function.

In main( ), the default constructor and copy-constructor are created and the Root versions are
called as part of the constructor-call hierarchy. Even though it looks like inheritance, new
constructors are actually created. As you might expect, no constructors with arguments are
automatically created because that’s too much for the compiler to intuit.

The operator= is also synthesized as a new function in Derived using memberwise
assignment because that function was not explicitly written in the new class.

Because of all these rules about rewriting functions that handle object creation, it may seem a
little strange at first that the automatic type conversion operator is inherited. But it’s not too
unreasonable — if there are enough pieces in Root to make an Other object, those pieces are
still there in anything derived from Root and the type conversion operator is still valid (even
though you may in fact want to redefine it).

Choosing composition vs.
inheritance

Both composition and inheritance place subobjects inside your new class. Both use the
constructor initializer list to construct these subobjects. You may now be wondering what the
difference is between the two, and when to choose one over the other.

Composition is generally used when you want the features of an existing class inside your
new class, but not its interface. That is, you embed an object that you’re planning on using to
implement features of your new class, but the user of your new class sees the interface you’ve
defined rather than the interface from the original class. For this effect, you embed private
objects of existing classes inside your new class.



Chapter 12: Inheritance & Composition
413

Sometimes it makes sense to allow the class user to directly access the composition of your
new class, that is, to make the member objects public. The member objects use
implementation hiding themselves, so this is a safe thing to do and when the user knows
you’re assembling a bunch of parts, it makes the interface easier to understand. A car object
is a good example:

//: C14:Car.cpp
// Public composition

class Engine {
public:
  void start() const {}
  void rev() const {}
  void stop() const {}
};

class Wheel {
public:
  void inflate(int psi) const {}
};

class Window {
public:
  void rollup() const {}
  void rolldown() const {}
};

class Door {
public:
  Window window;
  void open() const {}
  void close() const {}
};

class Car {
public:
  Engine engine;
  Wheel wheel[4];
  Door left, right; // 2-door
};

int main() {
  Car car;
  car.left.window.rollup();



Chapter 12: Inheritance & Composition
414

  car.wheel[0].inflate(72);
} ///:~

Because the composition of a car is part of the analysis of the problem (and not simply part of
the underlying design), making the members public assists the client programmer’s
understanding of how to use the class and requires less code complexity for the creator of the
class.

With a little thought, you’ll also see that it would make no sense to compose a car using a
vehicle object — a car doesn’t contain a vehicle, it is a vehicle. The is-a relationship is
expressed with inheritance, and the has-a relationship is expressed with composition.

Subtyping
Now suppose you want to create a type of ifstream object that not only opens a file but also
keeps track of the name of the file. You can use composition and embed both an ifstream and
a strstream into the new class:

//: C14:FName1.cpp
// An fstream with a file name
#include <iostream>
#include <fstream>
#include <strstream>
#include "../require.h"
using namespace std;

class FName1 {
  ifstream File;
  enum { bsize = 100 };
  char buf[bsize];
  ostrstream Name;
  int nameset;
public:
  FName1() : Name(buf, bsize), nameset(0) {}
  FName1(const char* filename)
    : File(filename), Name(buf, bsize) {
      assure(File, filename);
      Name << filename << ends;
      nameset = 1;
  }
  const char* name() const { return buf; }
  void name(const char* newname) {
    if(nameset) return; // Don't overwrite
    Name << newname << ends;
    nameset = 1;



Chapter 12: Inheritance & Composition
415

  }
  operator ifstream&() { return File; }
};

int main() {
  FName1 file("FName1.cpp");
  cout << file.name() << endl;
  // Error: rdbuf() not a member:
//!  cout << file.rdbuf() << endl;
} ///:~

There’s a problem here, however. An attempt is made to allow the use of the FName1 object
anywhere an ifstream object is used, by including an automatic type conversion operator
from FName1 to an ifstream&. But in main, the line

cout << file.rdbuf() << endl;

will not compile because automatic type conversion happens only in function calls, not during
member selection. So this approach won’t work.

A second approach is to add the definition of rdbuf( ) to FName1:

filebuf* rdbuf() { return File.rdbuf(); }

This will work if there are only a few functions you want to bring through from the ifstream
class. In that case you’re only using part of the class, and composition is appropriate.

But what if you want everything in the class to come through? This is called subtyping
because you’re making a new type from an existing type, and you want your new type to have
exactly the same interface as the existing type (plus any other member functions you want to
add), so you can use it everywhere you’d use the existing type. This is where inheritance is
essential. You can see that subtyping solves the problem in the preceding example perfectly:

//: C14:FName2.cpp
// Subtyping solves the problem
#include <iostream>
#include <fstream>
#include <strstream>
#include "../require.h"
using namespace std;

class FName2 : public ifstream {
  enum { bsize = 100 };
  char buf[bsize];
  ostrstream fname;
  int nameset;
public:



Chapter 12: Inheritance & Composition
416

  FName2() : fname(buf, bsize), nameset(0) {}
  FName2(const char* filename)
    : ifstream(filename), fname(buf, bsize) {
      assure(*this, filename);
      fname << filename << ends;
      nameset = 1;
  }
  const char* name() const { return buf; }
  void name(const char* newname) {
    if(nameset) return; // Don't overwrite
    fname << newname << ends;
    nameset = 1;
  }
};

int main() {
  FName2 file("FName2.cpp");
  assure(file, "FName2.cpp");
  cout << "name: " << file.name() << endl;
  const bsize = 100;
  char buf[bsize];
  file.getline(buf, bsize); // This works too!
  file.seekg(-200, ios::end);
  cout << file.rdbuf() << endl;
} ///:~

Now any member function that works with an ofstream object also works with an FName2
object. That’s because an FName2 is a type of ofstream; it doesn’t simply contain one. This
is a very important issue that will be explored at the end of this chapter and in Chapter 13.

Specialization
When you inherit, you take an existing class and make a special version of it. Generally, this
means you’re taking a general-purpose class and specializing it for a particular need.

For example, consider the Stack class from the previous chapter. One of the problems with
that class is that you had to perform a cast every time you fetched a pointer from the
container. This is not only tedious, it’s unsafe — you could cast the pointer to anything you
want.

An approach that seems better at first glance is to specialize the general Stack class using
inheritance. Here’s an example that uses the class from the previous chapter:

//: C14:Inhstak.cpp
//{L} ../C14/Stack11



Chapter 12: Inheritance & Composition
417

// Specializing the Stack class
#include <iostream>
#include <fstream>
#include <string>
#include "../require.h"
#include "../C14/Stack11.h"
using namespace std;

class StringList : public Stack {
public:
  void push(string* str) {
    Stack::push(str);
  }
  string* peek() const {
    return (string*)Stack::peek();
  }
  string* pop() {
    return (string*)Stack::pop();
  }
};

int main() {
  ifstream file("Inhstak.cpp");
  assure(file, "Inhstak.cpp");
  string line;
  StringList textlines;
  while(getline(file,line))
    textlines.push(new string(line));
  string* s;
  while((s = textlines.pop()) != 0) // No cast!
    cout << *s << endl;
} ///:~

The Stack11.h header file is brought in from Chapter 11. (The Stack11 object file must be
linked in as well.)

Stringlist specializes Stack so that push( ) will accept only String pointers. Before, Stack
would accept void pointers, so the user had no type checking to make sure the proper pointers
were inserted. In addition, peek( ) and pop( ) now return String pointers rather than void
pointers, so no cast is necessary to use the pointer.

Amazingly enough, this extra type-checking safety is free! The compiler is being given extra
type information, that it uses at compile-time, but the functions are inline and no extra code is
generated.



Chapter 12: Inheritance & Composition
418

Unfortunately, inheritance doesn’t solve all the problems with this container class. The
destructor still causes trouble. You’ll remember from Chapter 11 that the Stack::~Stack( )
destructor moves through the list and calls delete for all the pointers. The problem is, delete is
called for void pointers, which only releases the memory and doesn’t call the destructors
(because void* has no type information). If a Stringlist::~Stringlist( ) destructor is created to
move through the list and call delete for all the String pointers in the list, the problem is
solved if

 1.  The Stack data members are made protected so the Stringlist destructor
can access them. (protected is described a bit later in the chapter.)

 2.  The Stack base class destructor is removed so the memory isn’t released
twice.

 3.  No more inheritance is performed, because you’d end up with the same
dilemma again: multiple destructor calls versus an incorrect destructor call
(to a String object rather than what the class derived from Stringlist might
contain).

This issue will be revisited in the next chapter, but will not be fully solved until templates are
introduced in Chapter 14.

A more important observation to make about this example is that it changes the interface of
the Stack in the process of inheritance. If the interface is different, then a Stringlist really
isn’t a Stack, and you will never be able to correctly use a Stringlist as a Stack. This
questions the use of inheritance here: if you’re not creating a Stringlist that is-a type of
Stack, then why are you inheriting? A more appropriate version of Stringlist will be shown
later in the chapter.

private inheritance
You can inherit a base class privately by leaving off the public in the base-class list, or by
explicitly saying private (probably a better policy because it is clear to the user that you mean
it). When you inherit privately, you’re «implementing in terms of»; that is, you’re creating a
new class that has all the data and functionality of the base class, but that functionality is
hidden, so it’s only part of the underlying implementation. The class user has no access to the
underlying functionality, and an object cannot be treated as a member of the base class (as it
was in FNAME2.CPP on page Erreur! Signet non défini.).

You may wonder what the purpose of private inheritance is, because the alternative of
creating a private object in the new class seems more appropriate. private inheritance is
included in the language for completeness, but if for no other reason than to reduce confusion,
you’ll usually want to use a private member rather than private inheritance. However, there
may occasionally be situations where you want to produce part of the same interface as the
base class and disallow the treatment of the object as if it were a base-class object. private
inheritance provides this ability.



Chapter 12: Inheritance & Composition
419

Publicizing privately inherited members
When you inherit privately, all the public members of the base class become private. If you
want any of them to be visible, just say their names (no arguments or return values) in the
public section of the derived class:

//: C14:Privinh.cpp
// Private inheritance

class Base1 {
public:
  char f() const { return 'a'; }
  int g() const { return 2; }
  float h() const { return 3.0; }
};

class Derived : Base1 { // Private inheritance
public:
  Base1::f; // Name publicizes member
  Base1::h;
};

int main() {
  Derived d;
  d.f();
  d.h();
//! d.g(); // Error -- private function
} ///:~

Thus, private inheritance is useful if you want to hide part of the functionality of the base
class.

You should think carefully before using private inheritance instead of member objects;
private inheritance has particular complications when combined with run-time type
identification (the subject of Chapter 17).

protected
Now that you’ve been introduced to inheritance, the keyword protected finally has meaning.
In an ideal world, private members would always be hard-and-fast private, but in real
projects there are times when you want to make something hidden from the world at large and
yet allow access for members of derived classes. The protected keyword is a nod to
pragmatism; it says, «This is private as far as the class user is concerned, but available to
anyone who inherits from this class.»



Chapter 12: Inheritance & Composition
420

The best tact to take is to leave the data members private — you should always preserve your
right to change the underlying implementation. You can then allow controlled access to
inheritors of your class through protected member functions:

//: C14:Protect.cpp {O}
// The protected keyword
#include <fstream>
using namespace std;

class Base {
  int i;
protected:
  int read() const { return i; }
  void set(int I) { i = I; }
public:
  Base(int I = 0) : i(I) {}
  int value(int m) const { return m*i; }
};

class Derived : public Base {
  int j;
public:
  Derived(int J = 0) : j(J) {}
  void change(int x) { set(x); }
}; ///:~

You can see an excellent example of the need for protected in the SSHAPE examples in
Appendix C.

protected inheritance
When you’re inheriting, the base class defaults to private, which means that all the public
member functions are private to the user of the new class. Normally, you’ll make the
inheritance public so the interface of the base class is also the interface of the derived class.
However, you can also use the protected keyword during inheritance.

Protected derivation means «implemented-in-terms-of» to other classes but «is-a» for derived
classes and friends. It’s something you don’t use very often, but it’s in the language for
completeness.

Multiple inheritance
You can inherit from one class, so it would seem to make sense to inherit from more than one
class at a time. Indeed you can, but whether it makes sense as part of a design is a subject of



Chapter 12: Inheritance & Composition
421

continuing debate. One thing is generally agreed upon: You shouldn’t try this until you’ve
been programming quite a while and understand the language thoroughly. By that time, you’ll
probably realize that no matter how much you think you absolutely must use multiple
inheritance, you can almost always get away with single inheritance.

Initially, multiple inheritance seems simple enough: You add more classes in the base-class
list during inheritance, separated by commas. However, multiple inheritance introduces a
number of possibilities for ambiguity, which is why Chapter 15 is devoted to the subject.

Incremental development
One of the advantages of inheritance is that it supports incremental development by allowing
you to introduce new code without causing bugs in existing code and isolating new bugs to
the new code. By inheriting from an existing, functional class and adding data members and
member functions (and redefining existing member functions) you leave the existing code —
that someone else may still be using — untouched and unbugged. If a bug happens, you know
it’s in your new code, which is much shorter and easier to read than if you had modified the
body of existing code.

It’s rather amazing how cleanly the classes are separated. You don’t even need the source
code for the member functions to reuse the code, just the header file describing the class and
the object file or library file with the compiled member functions. (This is true for both
inheritance and composition.)

It’s important to realize that program development is an incremental process, just like human
learning. You can do as much analysis as you want, but you still won’t know all the answers
when you set out on a project. You’ll have much more success — and more immediate
feedback — if you start out to «grow» your project as an organic, evolutionary creature, rather
than constructing it all at once like a glass-box skyscraper.

Although inheritance for experimentation is a useful technique, at some point after things
stabilize you need to take a new look at your class hierarchy with an eye to collapsing it into a
sensible structure. Remember that underneath it all, inheritance is meant to express a
relationship that says, «This new class is a type of that old class.» Your program should not be
concerned with pushing bits around, but instead with creating and manipulating objects of
various types to express a model in the terms given you by the problem’s space.

Upcasting
Earlier in the chapter, you saw how an object of a class derived from ofstream has all the
characteristics and behaviors of an ofstream object. In FName2.cpp, any ofstream member
function could be called for an FName2 object.



Chapter 12: Inheritance & Composition
422

The most important aspect of inheritance is not that it provides member functions for the new
class, however. It’s the relationship expressed between the new class and the base class. This
relationship can be summarized by saying, «The new class is a type of the existing class.»

This description is not just a fanciful way of explaining inheritance — it’s supported directly
by the compiler. As an example, consider a base class called Instrument that represents
musical instruments and a derived class called Wind. Because inheritance means that all the
functions in the base class are also available in the derived class, any message you can send to
the base class can also be sent to the derived class. So if the Instrument class has a play( )
member function, so will Wind instruments. This means we can accurately say that a Wind
object is also a type of Instrument. The following example shows how the compiler supports
this notion:

//: C14:Wind.cpp
// Inheritance & upcasting
enum note { middleC, Csharp, Cflat }; // Etc.

class Instrument {
public:
  void play(note) const {}
};

// Wind objects are Instruments
// because they have the same interface:
class Wind : public Instrument {};

void tune(Instrument& i) {
  // ...
  i.play(middleC);
}

int main() {
  Wind flute;
  tune(flute); // Upcasting
} ///:~

What’s interesting in this example is the tune( ) function, which accepts an Instrument
reference. However, in main( ) the tune( ) function is called by giving it a Wind object.
Given that C++ is very particular about type checking, it seems strange that a function that
accepts one type will readily accept another type, until you realize that a Wind object is also
an Instrument object, and there’s no function that tune( ) could call for an Instrument that
isn’t also in Wind. Inside tune( ), the code works for Instrument and anything derived from
Instrument, and the act of converting a Wind object, reference, or pointer into an
Instrument object, reference, or pointer is called upcasting.



Chapter 12: Inheritance & Composition
423

Why «upcasting»?
The reason for the term is historical and is based on the way class inheritance diagrams have
traditionally been drawn: with the root at the top of the page, growing downward. (Of course,
you can draw your diagrams any way you find helpful.) The inheritance diagram for
WIND.CPP is then:

 

in s t r u m e n t

w in d

Casting from derived to base moves up on the inheritance diagram, so it’s commonly referred
to as upcasting. Upcasting is always safe because you’re going from a more specific type to a
more general type — the only thing that can occur to the class interface is that it lose member
functions, not gain them. This is why the compiler allows upcasting without any explicit casts
or other special notation.

Downcasting
You can also perform the reverse of upcasting, called downcasting, but this involves a
dilemma that is the subject of Chapter 17.

Upcasting and the copy-constructor (not
indexed)

If you allow the compiler to synthesize a copy-constructor for a derived class, it will
automatically call the base-class copy-constructor, and then the copy-constructors for all the
member objects (or perform a bitcopy on built-in types) so you’ll get the right behavior:

//: C14:Ccright.cpp
// Correctly synthesizing the CC
#include <iostream>
using namespace std;

class Parent {
  int i;
public:



Chapter 12: Inheritance & Composition
424

  Parent(int I) : i(I) {
    cout << "Parent(int I)\n";
  }
  Parent(const Parent& b) : i(b.i) {
    cout << "Parent(Parent&)\n";
  }
  Parent() :i(0) { cout << "Parent()\n"; }
  friend ostream&
    operator<<(ostream& os, const Parent& b) {
    return os << "Parent: " << b.i << endl;
  }
};

class Member {
  int i;
public:
  Member(int I) : i(I) {
    cout << "Member(int I)\n";
  }
  Member(const Member& m) : i(m.i) {
    cout << "Member(Member&)\n";
  }
  friend ostream&
    operator<<(ostream& os, const Member& m) {
    return os << "Member: " << m.i << endl;
  }
};

class Child : public Parent {
  int i;
  Member m;
public:
  Child(int I) : Parent(I), i(I), m(I) {
    cout << "Child(int I)\n";
  }
  friend ostream&
    operator<<(ostream& os, const Child& d){
    return os << (Parent&)d << d.m
              << "Child: " << d.i << endl;
  }
};

int main() {



Chapter 12: Inheritance & Composition
425

  Child d(2);
  cout << "calling copy-constructor: " << endl;
  Child d2 = d; // Calls copy-constructor
  cout << "values in d2:\n" << d2;
} ///:~

The operator<< for Child is interesting because of the way that it calls the operator<< for
the Parent part within it: by casting the Child object to a Parent& (if you cast to a Parent
object instead of a reference you’ll end up creating a temporary):

return os << (Parent&)d << d.m

Since the compiler then sees it as a Parent, it calls the Parent version of operator<<.

You can see that Child has no explicitly-defined copy-constructor. The compiler then
synthesizes the copy-constructor (since that is one of the four functions it will synthesize,
along with the default constructor – if you don’t create any constructors – the operator= and
the destructor) by calling the Parent copy-constructor and the Member copy-constructor.
This is shown in the output

Parent(int I)
Member(int I)
Child(int I)
calling copy-constructor:
Parent(Parent&)
Member(Member&)
values in d2:
Parent: 2
Member: 2
Child: 2

However, if you try to write your own copy-constructor for Child and you make an innocent
mistake and do it badly:

Child(const Child& d) : i(d.i), m(d.m) {}

The default constructor will be automatically called, since that’s what the compiler falls back
on when it has no other choice of constructor to call (remember that some constructor must
always be called for every object, regardless of whether it’s a subobject of another class). The
output will then be:

Parent(int I)
Member(int I)
Child(int I)
calling copy-constructor:
Parent()
Member(Member&)
values in d2:
Parent: 0



Chapter 12: Inheritance & Composition
426

Member: 2
Child: 2

This is probably not what you expect, since generally you’ll want the base-class portion to be
copied from the existing object to the new object as part of copy-construction.

To repair the problem you must remember to properly call the base-class copy-constructor (as
the compiler does) whenever you write your own copy-constructor. This can seem a little
strange-looking at first but it’s another example of upcasting:

  Child(const Child& d)
    : Parent(d), i(d.i), m(d.m) {
    cout << "Child(Child&)\n";
  }

The strange part is where the Parent copy-constructor is called: Parent(d). What does it
mean to pass a Child object to a Parent constructor? Here’s the trick: Child is inherited from
Parent, so a Child reference is a Parent reference. So the base-class copy-constructor
upcasts a reference to Child to a reference to Parent and uses it to perform the copy-
construction. When you write your own copy constructors you’ll generally want to do this.

Composition vs. inheritance (revisited)
One of the clearest ways to determine whether you should be using composition or
inheritance is by asking whether you’ll ever need to upcast from your new class. Earlier in
this chapter, the Stack class was specialized using inheritance. However, chances are the
Stringlist objects will be used only as String containers, and never upcast, so a more
appropriate alternative is composition:

//: C14:Inhstak2.cpp
//{L} ../C14/Stack11
// Composition vs inheritance
#include <iostream>
#include <fstream>
#include <string>
#include "../require.h"
#include "../C14/Stack11.h"
using namespace std;

class StringList {
  Stack stack; // Embed instead of inherit
public:
  void push(string* str) {
    stack.push(str);
  }
  string* peek() const {



Chapter 12: Inheritance & Composition
427

    return (string*)stack.peek();
  }
  string* pop() {
    return (string*)stack.pop();
  }
};

int main() {
  ifstream file("inhlst2.cpp");
  assure(file, "inhlst2.cpp");
  string line;
  StringList textlines;
  while(getline(file,line))
    textlines.push(new string(line));
  string* s;
  while((s = textlines.pop()) != 0) // No cast!
    cout << *s << endl;
} ///:~

The file is identical to INHSTACK.CPP (page Erreur! Signet non défini.), except that a
Stack object is embedded in Stringlist, and member functions are called for the embedded
object. There’s still no time or space overhead because the subobject takes up the same
amount of space, and all the additional type checking happens at compile time.

You can also use private inheritance to express «implemented in terms of.» The method you
use to create the Stringlist class is not critical in this situation — they all solve the problem
adequately. One place it becomes important, however, is when multiple inheritance might be
warranted. In that case, if you can detect a class where composition can be used instead of
inheritance, you may be able to eliminate the need for multiple inheritance.

Pointer & reference upcasting
In WIND.CPP (page Erreur! Signet non défini.), the upcasting occurs during the function
call — a Wind object outside the function has its reference taken and becomes an Instrument
reference inside the function. Upcasting can also occur during a simple assignment to a
pointer or reference:

Wind w;
Instrument* ip = &w; // Upcast
Instrument& ir = w; // Upcast

Like the function call, neither of these cases require an explicit cast.



Chapter 12: Inheritance & Composition
428

A crisis
Of course, any upcast loses type information about an object. If you say

Wind w;
Instrument* ip = &w;

the compiler can deal with ip only as an Instrument pointer and nothing else. That is, it
cannot know that ip actually happens to point to a Wind object. So when you call the play( )
member function by saying

ip->play(middleC);

the compiler can know only that it’s calling play( ) for an Instrument pointer, and call the
base-class version of Instrument::play( ) instead of what it should do, which is call
Wind::play( ). Thus you won’t get the correct behavior.

This is a significant problem; it is solved in the next chapter by introducing the third
cornerstone of object-oriented programming: polymorphism (implemented in C++ with
virtual functions).

Summary
Both inheritance and composition allow you to create a new type from existing types, and
both embed subobjects of the existing types inside the new type. Typically, however, you use
composition to reuse existing types as part of the underlying implementation of the new type
and inheritance when you want to reuse the interface as well as the implementation. If the
derived class has the base-class interface, it can be upcast to the base, which is critical for
polymorphism as you’ll see in the next chapter.

Although code reuse through composition and inheritance is very helpful for rapid project
development, you’ll generally want to redesign your class hierarchy before allowing other
programmers to become dependent on it. Your goal is a hierarchy where each class has a
specific use and is neither too big (encompassing so much functionality that it’s unwieldy to
reuse) nor annoyingly small (you can’t use it by itself or without adding functionality). Your
finished classes should themselves be easily reused.

Exercises
 1.  Modify CAR.CPP so it also inherits from a class called vehicle, placing

appropriate member functions in vehicle (that is, make up some member
functions). Add a nondefault constructor to vehicle, which you must call,
inside car’s constructor.

 2.  Create two classes, A and B, with default constructors that announce
themselves. Inherit a new class called C from A, and create a member



Chapter 12: Inheritance & Composition
429

object of B in C, but do not create a constructor for C. Create an object of
class C and observe the results.

 3.  Use inheritance to specialize the PStash class in Chapter 11 (PSTASH.H &
PSTASH.CPP) so it accepts and returns String pointers. Also modify
PSTEST.CPP and test it. Change the class so PStash is a member object.

 4.  Use private and protected inheritance to create two new classes from a
base class. Then attempt to upcast objects of the derived class to the base
class. Explain what happens.

 5.  Take the example CCRIGHT.CPP in this chapter and modify it by adding
your own copy-constructor without calling the base-class copy-constructor
and see what happens. Fix the problem by making a proper explicit call to
the base-class copy constructor in the constructor-initializer list of the Child
copy-constructor.





431

15: Polymorphism
& virtual
functions

Polymorphism (implemented in C++ with virtual functions)
is the third essential feature of an object-oriented
programming language, after data abstraction and
inheritance.

It provides another dimension of separation of interface from implementation, to decouple
what from how. Polymorphism allows improved code organization and readability as well as
the creation of extensible programs that can be «grown» not only during the original creation
of the project, but also when new features are desired.

Encapsulation creates new data types by combining characteristics and behaviors.
Implementation hiding separates the interface from the implementation by making the details
private. This sort of mechanical organization makes ready sense to someone with a
procedural programming background. But virtual functions deal with decoupling in terms of
types. In the last chapter, you saw how inheritance allows the treatment of an object as its own
type or its base type. This ability is critical because it allows many types (derived from the
same base type) to be treated as if they were one type, and a single piece of code to work on
all those different types equally. The virtual function allows one type to express its distinction
from another, similar type, as long as they’re both derived from the same base type. This
distinction is expressed through differences in behavior of the functions you can call through
the base class.

In this chapter, you’ll learn about virtual functions starting from the very basics, with simple
examples that strip away everything but the «virtualness» of the program.



Chapter 13: Polymorphism & Virtual Functions
432

Evolution of C++ programmers
C programmers seem to acquire C++ in three steps. First, as simply a «better C,» because
C++ forces you to declare all functions before using them and is much pickier about how
variables are used. You can often find the errors in a C program simply by compiling it with a
C++ compiler.

The second step is «object-based» C++. This means that you easily see the code organization
benefits of grouping a data structure together with the functions that act upon it, the value of
constructors and destructors, and perhaps some simple inheritance. Most programmers who
have been working with C for a while quickly see the usefulness of this because, whenever
they create a library, this is exactly what they try to do. With C++, you have the aid of the
compiler.

You can get stuck at the object-based level because it’s very easy to get to and you get a lot of
benefit without much mental effort. It’s also easy to feel like you’re creating data types —
you make classes, and objects, and you send messages to those objects, and everything is nice
and neat.

But don’t be fooled. If you stop here, you’re missing out on the greatest part of the language,
which is the jump to true object-oriented programming. You can do this only with virtual
functions.

Virtual functions enhance the concept of type rather than just encapsulating code inside
structures and behind walls, so they are without a doubt the most difficult concept for the new
C++ programmer to fathom. However, they’re also the turning point in the understanding of
object-oriented programming. If you don’t use virtual functions, you don’t understand OOP
yet.

Because the virtual function is intimately bound with the concept of type, and type is at the
core of object-oriented programming, there is no analog to the virtual function in a traditional
procedural language. As a procedural programmer, you have no referent with which to think
about virtual functions, as you do with almost every other feature in the language. Features in
a procedural language can be understood on an algorithmic level, but virtual functions can be
understood only from a design viewpoint.

Upcasting
In the last chapter you saw how an object can be used as its own type or as an object of its
base type. In addition, it can be manipulated through an address of the base type. Taking the
address of an object (either a pointer or a reference) and treating it as the address of the base
type is called upcasting because of the way inheritance trees are drawn with the base class at
the top.

You also saw a problem arise, which is embodied in the following code:



Chapter 13: Polymorphism & Virtual Functions
433

//: C15:Wind2.cpp
// Inheritance & upcasting
#include <iostream>
using namespace std;
enum note { middleC, Csharp, Cflat }; // Etc.

class Instrument {
public:
  void play(note) const {
    cout << "Instrument::play" << endl;
  }
};

// Wind objects are Instruments
// because they have the same interface:
class Wind : public Instrument {
public:
  // Redefine interface function:
  void play(note) const {
    cout << "Wind::play" << endl;
  }
};

void tune(Instrument& i) {
  // ...
  i.play(middleC);
}

int main() {
  Wind flute;
  tune(flute); // Upcasting
} ///:~

The function tune( ) accepts (by reference) an Instrument, but also without complaint
anything derived from Instrument. In main( ), you can see this happening as a Wind object
is passed to tune( ), with no cast necessary. This is acceptable; the interface in Instrument
must exist in Wind, because Wind is publicly inherited from Instrument. Upcasting from
Wind to Instrument may «narrow» that interface, but it cannot make it any less than the full
interface to Instrument.

The same arguments are true when dealing with pointers; the only difference is that the user
must explicitly take the addresses of objects as they are passed into the function.



Chapter 13: Polymorphism & Virtual Functions
434

The problem
The problem with WIND2.CPP can be seen by running the program. The output is
Instrument::play. This is clearly not the desired output, because you happen to know that the
object is actually a Wind and not just an Instrument. The call should resolve to Wind::play.
For that matter, any object of a class derived from Instrument should have its version of play
used, regardless of the situation.

However, the behavior of WIND2.CPP is not surprising, given C’s approach to functions. To
understand the issues, you need to be aware of the concept of binding.

Function call binding
Connecting a function call to a function body is called binding. When binding is performed
before the program is run (by the compiler and linker), it’s called early binding. You may not
have heard the term before because it’s never been an option with procedural languages: C
compilers have only one kind of function call, and that’s early binding.

The problem in the above program is caused by early binding because the compiler cannot
know the correct function to call when it has only an Instrument address.

The solution is called late binding, which means the binding occurs at run-time, based on the
type of the object. Late binding is also called dynamic binding or run-time binding. When a
language implements late binding, there must be some mechanism to determine the type of
the object at run-time and call the appropriate member function. That is, the compiler still
doesn’t know the actual object type, but it inserts code that finds out and calls the correct
function body. The late-binding mechanism varies from language to language, but you can
imagine that some sort of type information must be installed in the objects themselves. You’ll
see how this works later.

virtual functions
To cause late binding to occur for a particular function, C++ requires that you use the virtual
keyword when declaring the function in the base class. Late binding occurs only with virtual
functions, and only when you’re using an address of the base class where those virtual
functions exist, although they may also be defined in an earlier base class.

To create a member function as virtual, you simply precede the declaration of the function
with the keyword virtual. You don’t repeat it for the function definition, and you don’t need
to repeat it in any of the derived-class function redefinitions (though it does no harm to do so).
If a function is declared as virtual in the base class, it is virtual in all the derived classes. The
redefinition of a virtual function in a derived class is often called overriding.



Chapter 13: Polymorphism & Virtual Functions
435

To get the desired behavior from WIND2.CPP, simply add the virtual keyword in the base
class before play( ):

//: C15:Wind3.cpp
// Late binding with virtual
#include <iostream>
using namespace std;
enum note { middleC, Csharp, Cflat }; // Etc.

class Instrument {
public:
  virtual void play(note) const {
    cout << "Instrument::play" << endl;
  }
};

// Wind objects are Instruments
// because they have the same interface:
class Wind : public Instrument {
public:
  // Redefine interface function:
  void play(note) const {
    cout << "Wind::play" << endl;
  }
};

void tune(Instrument& i) {
  // ...
  i.play(middleC);
}

int main() {
  Wind flute;
  tune(flute); // Upcasting
} ///:~

This file is identical to WIND2.CPP except for the addition of the virtual keyword, and yet
the behavior is significantly different: Now the output is Wind::play.

Extensibility
With play( ) defined as virtual in the base class, you can add as many new types as you want
to the system without changing the tune( ) function. In a well-designed OOP program, most
or all of your functions will follow the model of tune( ) and communicate only with the base-



Chapter 13: Polymorphism & Virtual Functions
436

class interface. Such a program is extensible because you can add new functionality by
inheriting new data types from the common base class. The functions that manipulate the
base-class interface will not need to be changed at all to accommodate the new classes.

Here’s the instrument example with more virtual functions and a number of new classes, all of
which work correctly with the old, unchanged tune( ) function:

//: C15:Wind4.cpp
// Extensibility in OOP
#include <iostream>
using namespace std;
enum note { middleC, Csharp, Cflat }; // Etc.

class Instrument {
public:
  virtual void play(note) const {
    cout << "Instrument::play" << endl;
  }
  virtual char* what() const {
    return "Instrument";
  }
  // Assume this will modify the object:
  virtual void adjust(int) {}
};

class Wind : public Instrument {
public:
  void play(note) const {
    cout << "Wind::play" << endl;
  }
  char* what() const { return "Wind"; }
  void adjust(int) {}
};

class Percussion : public Instrument {
public:
  void play(note) const {
    cout << "Percussion::play" << endl;
  }
  char* what() const { return "Percussion"; }
  void adjust(int) {}
};

class Stringed : public Instrument {



Chapter 13: Polymorphism & Virtual Functions
437

public:
  void play(note) const {
    cout << "Stringed::play" << endl;
  }
  char* what() const { return "Stringed"; }
  void adjust(int) {}
};

class Brass : public Wind {
public:
  void play(note) const {
    cout << "Brass::play" << endl;
  }
  char* what() const { return "Brass"; }
};

class Woodwind : public Wind {
public:
  void play(note) const {
    cout << "Woodwind::play" << endl;
  }
  char* what() const { return "Woodwind"; }
};

// Identical function from before:
void tune(Instrument& i) {
  // ...
  i.play(middleC);
}

// New function:
void f(Instrument& i) { i.adjust(1); }

// Upcasting during array initialization:
Instrument* A[] = {
  new Wind,
  new Percussion,
  new Stringed,
  new Brass
};

int main() {
  Wind flute;



Chapter 13: Polymorphism & Virtual Functions
438

  Percussion drum;
  Stringed violin;
  Brass flugelhorn;
  Woodwind recorder;
  tune(flute);
  tune(drum);
  tune(violin);
  tune(flugelhorn);
  tune(recorder);
  f(flugelhorn);
} ///:~

You can see that another inheritance level has been added beneath Wind, but the virtual
mechanism works correctly no matter how many levels there are. The adjust( ) function is not
redefined for Brass and Woodwind. When this happens, the previous definition is
automatically used — the compiler guarantees there’s always some definition for a virtual
function, so you’ll never end up with a call that doesn’t bind to a function body. (This would
spell disaster.)

The array A[ ] contains pointers to the base class Instrument, so upcasting occurs during the
process of array initialization. This array and the function f( ) will be used in later discussions.

In the call to tune( ), upcasting is performed on each different type of object, yet the desired
behavior always takes place. This can be described as «sending a message to an object and
letting the object worry about what to do with it.» The virtual function is the lens to use when
you’re trying to analyze a project: Where should the base classes occur, and how might you
want to extend the program? However, even if you don’t discover the proper base class
interfaces and virtual functions at the initial creation of the program, you’ll often discover
them later, even much later, when you set out to extend or otherwise maintain the program.
This is not an analysis or design error; it simply means you didn’t have all the information the
first time. Because of the tight class modularization in C++, it isn’t a large problem when this
occurs because changes you make in one part of a system tend not to propagate to other parts
of the system as they do in C.

How C++ implements late
binding

How can late binding happen? All the work goes on behind the scenes by the compiler, which
installs the necessary late-binding mechanism when you ask it to (you ask by creating virtual
functions). Because programmers often benefit from understanding the mechanism of virtual
functions in C++, this section will elaborate on the way the compiler implements this
mechanism.



Chapter 13: Polymorphism & Virtual Functions
439

The keyword virtual tells the compiler it should not perform early binding. Instead, it should
automatically install all the mechanisms necessary to perform late binding. This means that if
you call play( ) for a Brass object through an address for the base-class Instrument, you’ll
get the proper function.

To accomplish this, the compiler creates a single table (called the VTABLE) for each class
that contains virtual functions. The compiler places the addresses of the virtual functions for
that particular class in the VTABLE. In each class with virtual functions, it secretly places a
pointer, called the vpointer (abbreviated as VPTR), which points to the VTABLE for that
object. When you make a virtual function call through a base-class pointer (that is, when you
make a polymorphic call), the compiler quietly inserts code to fetch the VPTR and look up the
function address in the VTABLE, thus calling the right function and causing late binding to
take place.

All of this — setting up the VTABLE for each class, initializing the VPTR, inserting the code
for the virtual function call — happens automatically, so you don’t have to worry about it.
With virtual functions, the proper function gets called for an object, even if the compiler
cannot know the specific type of the object.

The following sections go into this process in more detail.

Storing type information
You can see that there is no explicit type information stored in any of the classes. But the
previous examples, and simple logic, tell you that there must be some sort of type information
stored in the objects; otherwise the type could not be established at run-time. This is true, but
the type information is hidden. To see it, here’s an example to examine the sizes of classes
that use virtual functions compared with those that don’t:

//: C15:Sizes.cpp
// Object sizes vs. virtual funcs
#include <iostream>
using namespace std;

class NoVirtual {
  int a;
public:
  void x() const {}
  int i() const { return 1; }
};

class OneVirtual {
  int a;
public:
  virtual void x() const {}
  int i() const { return 1; }



Chapter 13: Polymorphism & Virtual Functions
440

};

class TwoVirtuals {
  int a;
public:
  virtual void x() const {}
  virtual int i() const { return 1; }
};

int main() {
  cout << "int: " << sizeof(int) << endl;
  cout << "NoVirtual: "
       << sizeof(NoVirtual) << endl;
  cout << "void* : " << sizeof(void*) << endl;
  cout << "OneVirtual: "
       << sizeof(OneVirtual) << endl;
  cout << "TwoVirtuals: "
       << sizeof(TwoVirtuals) << endl;
} ///:~

With no virtual functions, the size of the object is exactly what you’d expect: the size of a
single int. With a single virtual function in OneVirtual, the size of the object is the size of
NoVirtual plus the size of a void pointer. It turns out that the compiler inserts a single pointer
(the VPTR) into the structure if you have one or more virtual functions. There is no size
difference between OneVirtual and TwoVirtuals. That’s because the VPTR points to a table
of function addresses. You need only one because all the virtual function addresses are
contained in that single table.

This example required at least one data member. If there had been no data members, the C++
compiler would have forced the objects to be a nonzero size because each object must have a
distinct address. If you imagine indexing into an array of zero-sized objects, you’ll
understand. A «dummy» member is inserted into objects that would otherwise be zero-sized.
When the type information is inserted because of the virtual keyword, this takes the place of
the «dummy» member. Try commenting out the int a in all the classes in the above example
to see this.

Picturing virtual functions
To understand exactly what’s going on when you use a virtual function, it’s helpful to
visualize the activities going on behind the curtain. Here’s a drawing of the array of pointers
A[ ] in WIND4.CPP (page Erreur! Signet non défini.):



Chapter 13: Polymorphism & Virtual Functions
441

A r r a y  o f
i n s t r u m e n tThe array of

Instrument pointers has no specific type information; they each point to an object of type
Instrument. Wind, Percussion, Stringed, and Brass all fit into this category because they
are derived from Instrument (and thus have the same interface as Instrument, and can
respond to the same messages), so their addresses can also be placed into the array. However,
the compiler doesn’t know they are anything more than Instrument objects, so left to its own
devices, it would normally call the base-class versions of all the functions. But in this case, all
those functions have been declared with the virtual keyword, so something different happens.

Each time you create a class that contains virtual functions, or you derive from a class that
contains virtual functions, the compiler creates a VTABLE for that class, seen on the right of
the diagram. In that table it places the addresses of all the functions that are declared virtual in
this class or in the base class. If you don’t redefine a function that was declared virtual in the
base class, the compiler uses the address of the base-class version in the derived class. (You
can see this in the adjust entry in the Brass VTABLE.) Then it places the VPTR (discovered
in SIZES.CPP) into the class. There is only one VPTR for each object when using simple
inheritance like this. The VPTR must be initialized to point to the starting address of the
appropriate VTABLE. (This happens in the constructor, which you’ll see later in more detail.)

Once the VPTR is initialized to the proper VTABLE, the object in effect «knows» what type
it is. But this self-knowledge is worthless unless it is used at the point a virtual function is
called.

When you call a virtual function through a base class address (the situation when the compiler
doesn’t have all the information necessary to perform early binding), something special
happens. Instead of performing a typical function call, which is simply an assembly-language
CALL to a particular address, the compiler generates different code to perform the function
call. Here’s what a call to adjust( ) for a Brass object it looks like, if made through an
Instrument pointer. An Instrument reference produces the same result:



Chapter 13: Polymorphism & Virtual Functions
442

i n s t r u m e n t
p o i n t e r

The compiler
starts with the Instrument pointer, which points to the starting address of the object. All
Instrument objects or objects derived from Instrument have their VPTR in the same place
(often at the beginning of the object), so the compiler can pick the VPTR out of the object.
The VPTR points to the starting address of the VTABLE. All the VTABLEs are laid out in
the same order, regardless of the specific type of the object. play( ) is first, what( ) is second,
and adjust( ) is third. The compiler knows that regardless of the specific object type, the
adjust( ) function is at the location VPTR+2. Thus instead of saying, «Call the function at the
absolute location Instrument::adjust» (early binding; the wrong action), it generates code
that says, in effect, «Call the function at VPTR+2.» Because the fetching of the VPTR and the
determination of the actual function address occur at run-time, you get the desired late
binding. You send a message to the object, and the object figures out what to do with it.

Under the hood
It can be helpful to see the assembly-language code generated by a virtual function call, so
you can see that late-binding is indeed taking place. Here’s the output from one compiler for
the call

i.adjust(1);

inside the function f(Instrument& i):

push 1

push si

mov bx,word ptr [si]

call word ptr [bx+4]

add sp,4

The arguments of a C++ function call, like a C function call, are pushed on the stack from
right to left (this order is required to support C’s variable argument lists), so the argument 1 is
pushed on the stack first. At this point in the function, the register si (part of the Intel X86
processor architecture) contains the address of i. This is also pushed on the stack because it is
the starting address of the object of interest. Remember that the starting address corresponds
to the value of this, and this is quietly pushed on the stack as an argument before every
member function call, so the member function knows which particular object it is working on.



Chapter 13: Polymorphism & Virtual Functions
443

Thus you’ll always see the number of arguments plus one pushed on the stack before a
member function call (except for static member functions, which have no this).

Now the actual virtual function call must be performed. First, the VPTR must be produced, so
the VTABLE can be found. For this compiler the VPTR is inserted at the beginning of the
object, so the contents of this correspond to the VPTR. The line

mov bx,word ptr [si]

fetches the word that si (that is, this) points to, which is the VPTR. It places the VPTR into
the register bx.

The VPTR contained in bx points to the starting address of the VTABLE, but the function
pointer to call isn’t at the zeroth location of the VTABLE, but instead the second location
(because it’s the third function in the list). For this memory model each function pointer is
two bytes long, so the compiler adds four to the VPTR to calculate where the address of the
proper function is. Note that this is a constant value, established at compile time, so the only
thing that matters is that the function pointer at location number two is the one for adjust( ).
Fortunately, the compiler takes care of all the bookkeeping for you and ensures that all the
function pointers in all the VTABLEs occur in the same order.

Once the address of the proper function pointer in the VTABLE is calculated, that function is
called. So the address is fetched and called all at once in the statement

call word ptr [bx+4]

Finally, the stack pointer is moved back up to clean off the arguments that were pushed before
the call. In C and C++ assembly code you’ll often see the caller clean off the arguments but
this may vary depending on processors and compiler implementations.

Installing the vpointer
Because the VPTR determines the virtual function behavior of the object, you can see how
it’s critical that the VPTR always be pointing to the proper VTABLE. You don’t ever want to
be able to make a call to a virtual function before the VPTR is properly initialized. Of course,
the place where initialization can be guaranteed is in the constructor, but none of the WIND
examples has a constructor.

This is where creation of the default constructor is essential. In the WIND examples, the
compiler creates a default constructor that does nothing except initialize the VPTR. This
constructor, of course, is automatically called for all Instrument objects before you can do
anything with them, so you know that it’s always safe to call virtual functions.

The implications of the automatic initialization of the VPTR inside the constructor are
discussed in a later section.



Chapter 13: Polymorphism & Virtual Functions
444

Objects are different
It’s important to realize that upcasting deals only with addresses. If the compiler has an
object, it knows the exact type and therefore (in C++) will not use late binding for any
function calls — or at least, the compiler doesn’t need to use late binding. For efficiency’s
sake, most compilers will perform early binding when they are making a call to a virtual
function for an object because they know the exact type. Here’s an example:

//: C15:Early.cpp
// Early binding & virtuals
#include <iostream>
using namespace std;

class Base {
public:
  virtual int f() const { return 1; }
};

class Derived : public Base {
public:
  int f() const { return 2; }
};

int main() {
  Derived d;
  Base* b1 = &d;
  Base& b2 = d;
  Base b3;
  // Late binding for both:
  cout << "b1->f() = " << b1->f() << endl;
  cout << "b2.f() = " << b2.f() << endl;
  // Early binding (probably):
  cout << "b3.f() = " << b3.f() << endl;
} ///:~

In b1–>f( ) and b2.f( ) addresses are used, which means the information is incomplete: b1 and
b2 can represent the address of a Base or something derived from Base, so the virtual
mechanism must be used. When calling b3.f( ) there’s no ambiguity. The compiler knows the
exact type and that it’s an object, so it can’t possibly be an object derived from Base — it’s
exactly a Base. Thus early binding is probably used. However, if the compiler doesn’t want to
work so hard, it can still use late binding and the same behavior will occur.



Chapter 13: Polymorphism & Virtual Functions
445

Why virtual functions?
At this point you may have a question: «If this technique is so important, and if it makes the
‘right’ function call all the time, why is it an option? Why do I even need to know about it?»

This is a good question, and the answer is part of the fundamental philosophy of C++:
«Because it’s not quite as efficient.» You can see from the previous assembly-language output
that instead of one simple CALL to an absolute address, there are two more sophisticated
assembly instructions required to set up the virtual function call. This requires both code
space and execution time.

Some object-oriented languages have taken the approach that late binding is so intrinsic to
object-oriented programming that it should always take place, that it should not be an option,
and the user shouldn’t have to know about it. This is a design decision when creating a
language, and that particular path is appropriate for many languages.40 However, C++ comes
from the C heritage, where efficiency is critical. After all, C was created to replace assembly
language for the implementation of an operating system (thereby rendering that operating
system — Unix — far more portable than its predecessors). One of the main reasons for the
invention of C++ was to make C programmers more efficient.41 And the first question asked
when C programmers encounter C++ is «What kind of size and speed impact will I get?» If
the answer were, «Everything’s great except for function calls when you’ll always have a
little extra overhead,» many people would stick with C rather than make the change to C++.
In addition, inline functions would not be possible, because virtual functions must have an
address to put into the VTABLE. So the virtual function is an option, and the language
defaults to nonvirtual, which is the fastest configuration. Stroustrup stated that his guideline
was «If you don’t use it, you don’t pay for it.»

Thus the virtual keyword is provided for efficiency tuning. When designing your classes,
however, you shouldn’t be worrying about efficiency tuning. If you’re going to use
polymorphism, use virtual functions everywhere. You only need to look for functions to make
non-virtual when looking for ways to speed up your code (and there are usually much bigger
gains to be had in other areas).

Anecdotal evidence suggests that the size and speed impacts of going to C++ are within 10%
of the size and speed of C, and often much closer to the same. The reason you might get better
size and speed efficiency is because you may design a C++ program in a smaller, faster way
than you would using C.

                                                       

40Smalltalk, for instance, uses this approach with great success.

41At Bell labs, where C++ was invented, there are a lot of C programmers. Making them all
more efficient, even just a bit, saves the company many millions.



Chapter 13: Polymorphism & Virtual Functions
446

Abstract base classes and pure
virtual functions

In all the instrument examples, the functions in the base class Instrument were always
«dummy» functions. If these functions are ever called, they indicate you’ve done something
wrong. That’s because the intent of Instrument is to create a common interface for all the
classes derived from it, as seen on the diagram on the following page.

The dashed lines indicate a class (a class is only a description and not a physical item — the
dashed lines suggest its «nonphysical» nature), and the arrows from the derived classes to the
base class indicate the inheritance relationship.

The only reason to establish the common interface is so it can be expressed differently for
each different subtype. It establishes a basic form, so you can say what’s in common with all
the derived classes. Nothing else. Another way of saying this is to call Instrument an
abstract base class (or simply an abstract class). You create an abstract class when you want
to manipulate a set of classes through this common interface.

Notice you are only required to declare a function as virtual in the base class. All derived-
class functions that match the signature of the base-class declaration will be called using the
virtual mechanism. You can use the virtual keyword in the derived-class declarations (and
some people do, for clarity), but it is redundant.



Chapter 13: Polymorphism & Virtual Functions
447

If you have a genuine abstract class (like Instrument), objects of that class almost always
have no meaning. That is, Instrument is meant to express only the interface, and not a
particular implementation, so creating an Instrument object makes no sense, and you’ll
probably want to prevent the user from doing it. This can be accomplished by making all the
virtual functions in Instrument print error messages, but this delays the information until run-
time and requires reliable exhaustive testing on the part of the user. It is much better to catch
the problem at compile time.

C++ provides a mechanism for doing this called the pure virtual function. Here is the syntax
used for a declaration:

virtual void X() = 0;

By doing this, you tell the compiler to reserve a slot for a function in the VTABLE, but not to
put an address in that particular slot. If only one function in a class is declared as pure virtual,
the VTABLE is incomplete. A class containing pure virtual functions is called a pure abstract
base class.



Chapter 13: Polymorphism & Virtual Functions
448

If the VTABLE for a class is incomplete, what is the compiler supposed to do when someone
tries to make an object of that class? It cannot safely create an object of a pure abstract class,
so you get an error message from the compiler if you try to make an object of a pure abstract
class. Thus, the compiler ensures the purity of the abstract class, and you don’t have to worry
about misusing it.

Here’s WIND4.CPP (page Erreur! Signet non défini.) modified to use pure virtual
functions:

//: C15:Wind5.cpp
// Pure abstract base classes
#include <iostream>
using namespace std;
enum note { middleC, Csharp, Cflat }; // Etc.

class Instrument {
public:
  // Pure virtual functions:
  virtual void play(note) const = 0;
  virtual char* what() const = 0;
  // Assume this will modify the object:
  virtual void adjust(int) = 0;
};
// Rest of the file is the same ...

class Wind : public Instrument {
public:
  void play(note) const {
    cout << "Wind::play" << endl;
  }
  char* what() const { return "Wind"; }
  void adjust(int) {}
};

class Percussion : public Instrument {
public:
  void play(note) const {
    cout << "Percussion::play" << endl;
  }
  char* what() const { return "Percussion"; }
  void adjust(int) {}
};

class Stringed : public Instrument {



Chapter 13: Polymorphism & Virtual Functions
449

public:
  void play(note) const {
    cout << "Stringed::play" << endl;
  }
  char* what() const { return "Stringed"; }
  void adjust(int) {}
};

class Brass : public Wind {
public:
  void play(note) const {
    cout << "Brass::play" << endl;
  }
  char* what() const { return "Brass"; }
};

class Woodwind : public Wind {
public:
  void play(note) const {
    cout << "Woodwind::play" << endl;
  }
  char* what() const { return "Woodwind"; }
};

// Identical function from before:
void tune(Instrument& i) {
  // ...
  i.play(middleC);
}

// New function:
void f(Instrument& i) { i.adjust(1); }

int main() {
  Wind flute;
  Percussion drum;
  Stringed violin;
  Brass flugelhorn;
  Woodwind recorder;
  tune(flute);
  tune(drum);
  tune(violin);
  tune(flugelhorn);



Chapter 13: Polymorphism & Virtual Functions
450

  tune(recorder);
  f(flugelhorn);
} ///:~

Pure virtual functions are very helpful because they make explicit the abstractness of a class
and tell both the user and the compiler how it was intended to be used.

Note that pure virtual functions prevent a function call with the pure abstract class being
passed in by value. Thus it is also a way to prevent object slicing from accidentally upcasting
by value. This way you can ensure that a pointer or reference is always used during upcasting.

Because one pure virtual function prevents the VTABLE from being generated doesn’t mean
you don’t want function bodies for some of the others. Often you will want to call a base-class
version of a function, even if it is virtual. It’s always a good idea to put common code as close
as possible to the root of your hierarchy. Not only does this save code space, it allows easy
propagation of changes.

Pure virtual definitions
It’s possible to provide a definition for a pure virtual function in the base class. You’re still
telling the compiler not to allow objects of that pure abstract base class, and the pure virtual
functions must be defined in derived classes in order to create objects. However, there may be
a piece of code you want some or all the derived class definitions to use in common, and you
don’t want to duplicate that code in every function. Here’s what it looks like:

//: C15:Pvdef.cpp
// Pure virtual base definition
#include <iostream>
using namespace std;

class Base {
public:
  virtual void v() const = 0;
  // In situ:
  virtual void f() const = 0 {
    cout << "Base::f()\n";
  }
};

void Base::v() const { cout << "Base::v()\n";}

class D : public Base {
public:
  // Use the common Base code:
  void v() const { Base::v(); }



Chapter 13: Polymorphism & Virtual Functions
451

  void f() const { Base::f(); }
};

int main() {
  D d;
  d.v();
  d.f();
} ///:~

The slot in the Base VTABLE is still empty, but there happens to be a function by that name
you can call in the derived class.

The other benefit to this feature is that it allows you to change to a pure virtual without
disturbing the existing code. (This is a way for you to locate classes that don’t redefine that
virtual function).

Inheritance and the VTABLE
You can imagine what happens when you perform inheritance and redefine some of the
virtual functions. The compiler creates a new VTABLE for your new class, and it inserts your
new function addresses, using the base-class function addresses for any virtual functions you
don’t redefine. One way or another, there’s always a full set of function addresses in the
VTABLE, so you’ll never be able to make a call to an address that isn’t there (which would
be disastrous).

But what happens when you inherit and add new virtual functions in the derived class? Here’s
a simple example:

//: C15:Addv.cpp
// Adding virtuals in derivation
#include <iostream>
using namespace std;

class Base {
  int i;
public:
  Base(int I) : i(I) {}
  virtual int value() const { return i; }
};

class Derived : public Base {
public:
  Derived(int I) : Base(I) {}
  int value() const {



Chapter 13: Polymorphism & Virtual Functions
452

    return Base::value() * 2;
  }
  // New virtual function in the Derived class:
  virtual int shift(int x) const {
    return Base::value() << x;
  }
};

int main() {
  Base* B[] = { new Base(7), new Derived(7) };
  cout << "B[0]->value() = "
       << B[0]->value() << endl;
  cout << "B[1]->value() = "
       << B[1]->value() << endl;
//! cout << "B[1]->shift(3) = "
//!      << B[1]->shift(3) << endl; // Illegal
} ///:~

The class Base contains a single virtual function value( ), and Derived adds a second one
called shift( ), as well as redefining the meaning of value( ). A diagram will help visualize
what’s happening. Here are the VTABLEs created by the compiler for Base and Derived:

& d e r i v e d : : s h i f t

& b a s e : : v a l u e & d e r i v e d : : v a l u e

b a s e  v t a b l e d e r i v e d

Notice the compiler maps the location of the value address into exactly the same spot in the
Derived VTABLE as it is in the Base VTABLE. Similarly, if a class is inherited from
Derived, its version of shift would be placed in its VTABLE in exactly the same spot as it is
in Derived. This is because (as you saw with the assembly-language example) the compiler
generates code that uses a simple numerical offset into the VTABLE to select the virtual
function. Regardless of what specific subtype the object belongs to, its VTABLE is laid out
the same way, so calls to the virtual functions will always be made the same way.

In this case, however, the compiler is working only with a pointer to a base-class object. The
base class has only the value( ) function, so that is the only function the compiler will allow
you to call. How could it possibly know that you are working with a Derived object, if it has
only a pointer to a base-class object? That pointer might point to some other type, which
doesn’t have a shift function. It may or may not have some other function address at that
point in the VTABLE, but in either case, making a virtual call to that VTABLE address is not
what you want to do. So it’s fortunate and logical that the compiler protects you from making
virtual calls to functions that exist only in derived classes.

There are some less-common cases where you may know that the pointer actually points to an
object of a specific subclass. If you want to call a function that only exists in that subclass,



Chapter 13: Polymorphism & Virtual Functions
453

then you must cast the pointer. You can remove the error message produced by the previous
program like this:

  ((Derived*)B[1])->shift(3)

Here, you happen to know that B[1] points to a Derived object, but generally you don’t know
that. If your problem is set up so that you must know the exact types of all objects, you should
rethink it, because you’re probably not using virtual functions properly. However, there are
some situations where the design works best (or you have no choice) if you know the exact
type of all objects kept in a generic container. This is the problem of run-time type
identification (RTTI).

Run-time type identification is all about casting base-class pointers down to derived-class
pointers («up» and «down» are relative to a typical class diagram, with the base class at the
top). Casting up happens automatically, with no coercion, because it’s completely safe.
Casting down is unsafe because there’s no compile time information about the actual types, so
you must know exactly what type the object really is. If you cast it into the wrong type, you’ll
be in trouble.

Chapter 17 describes the way C++ provides run-time type information.

Object slicing
There is a distinct difference between passing addresses and passing values when treating
objects polymorphically. All the examples you’ve seen here, and virtually all the examples
you should see, pass addresses and not values. This is because addresses all have the same
size,42 so passing the address of an object of a derived type (which is usually bigger) is the
same as passing the address of an object of the base type (which is usually smaller). As
explained before, this is the goal when using polymorphism — code that manipulates objects
of a base type can transparently manipulate derived-type objects as well.

If you use an object instead of a pointer or reference as the recipient of your upcast,
something will happen that may surprise you: the object is «sliced» until all that remains is
the subobject that corresponds to your destination. In the following example you can see
what’s left after slicing by examining the size of the objects:

//: C15:Slice.cpp
// Object slicing
#include <iostream>
using namespace std;

class Base {
  int i;

                                                       

42Actually, not all pointers are the same size on all machines. In the context of this discussion,
however, they can be considered to be the same.



Chapter 13: Polymorphism & Virtual Functions
454

public:
  Base(int I = 0) : i(I) {}
  virtual int sum() const { return i; }
};

class Derived : public Base {
  int j;
public:
  Derived(int I = 0, int J = 0)
    : Base(I), j(J) {}
  int sum() const { return Base::sum() + j; }
};

void call(Base b) {
  cout << "sum = " << b.sum() << endl;
}

int main() {
  Base b(10);
  Derived d(10, 47);
  call(b);
  call(d);
} ///:~

The function call( ) is passed an object of type Base by value. It then calls the virtual function
sum( ) for the Base object. In main( ), you might expect the first call to produce 10, and the
second to produce 57. In fact, both calls produce 10.

Two things are happening in this program. First, call( ) accepts only a Base object, so all the
code inside the function body will manipulate only members associated with Base. Any calls
to call( ) will cause an object the size of Base to be pushed on the stack and cleaned up after
the call. This means that if an object of a class inherited from Base is passed to call( ), the
compiler accepts it, but it copies only the Base portion of the object. It slices the derived
portion off of the object, like this:

d e r i v e d  V P TR

i

j

b a s e  V P TR

i

b e f o r e  s l i c e a f t e r  s l i c e



Chapter 13: Polymorphism & Virtual Functions
455

Now you may wonder about the virtual function call. Here, the virtual function makes use of
portions of both Base (which still exists) and Derived, which no longer exists because it was
sliced off! So what happens when the virtual function is called?

You’re saved from disaster precisely because the object is being passed by value. Because of
this, the compiler thinks it knows the precise type of the object (and it does, here, because any
information that contributed extra features to the objects has been lost). In addition, when
passing by value, it uses the copy-constructor for a Base object, which initializes the VPTR to
the Base VTABLE and copies only the Base parts of the object. There’s no explicit copy-
constructor here, so the compiler synthesizes one. Under all interpretations, the object truly
becomes a Base during slicing.

Object slicing actually removes part of the object rather than simply changing the meaning of
an address as when using a pointer or reference. Because of this, upcasting into an object is
not often done; in fact, it’s usually something to watch out for and prevent. You can explicitly
prevent object slicing by putting pure virtual functions in the base class; this will cause a
compile-time error message for an object slice.

virtual functions &
constructors

When an object containing virtual functions is created, its VPTR must be initialized to point
to the proper VTABLE. This must be done before there’s any possibility of calling a virtual
function. As you might guess, because the constructor has the job of bringing an object into
existence, it is also the constructor’s job to set up the VPTR. The compiler secretly inserts
code into the beginning of the constructor that initializes the VPTR. In fact, even if you don’t
explicitly create a constructor for a class, the compiler will create one for you with the proper
VPTR initialization code (if you have virtual functions). This has several implications.

The first concerns efficiency. The reason for inline functions is to reduce the calling overhead
for small functions. If C++ didn’t provide inline functions, the preprocessor might be used to
create these «macros.» However, the preprocessor has no concept of access or classes, and
therefore couldn’t be used to create member function macros. In addition, with constructors
that must have hidden code inserted by the compiler, a preprocessor macro wouldn’t work at
all.

You must be aware when hunting for efficiency holes that the compiler is inserting hidden
code into your constructor function. Not only must it initialize the VPTR, it must also check
the value of this (in case the operator new returns zero) and call base-class constructors.
Taken together, this code can impact what you thought was a tiny inline function call. In
particular, the size of the constructor can overwhelm the savings you get from reduced
function-call overhead. If you make a lot of inline constructor calls, your code size can grow
without any benefits in speed.



Chapter 13: Polymorphism & Virtual Functions
456

Of course, you probably won’t make all tiny constructors non-inline right away, because
they’re much easier to write as inlines. But when you’re tuning your code, remember to
remove inline constructors.

Order of constructor calls
The second interesting facet of constructors and virtual functions concerns the order of
constructor calls and the way virtual calls are made within constructors.

All base-class constructors are always called in the constructor for an inherited class. This
makes sense because the constructor has a special job: to see that the object is built properly.
A derived class has access only to its own members, and not those of the base class; only the
base-class constructor can properly initialize its own elements. Therefore it’s essential that all
constructors get called; otherwise the entire object wouldn’t be constructed properly. That’s
why the compiler enforces a constructor call for every portion of a derived class. It will call
the default constructor if you don’t explicitly call a base-class constructor in the constructor
initializer list. If there is no default constructor, the compiler will complain. (In this example,
class X has no constructors so the compiler can automatically make a default constructor.)

The order of the constructor calls is important. When you inherit, you know all about the base
class and can access any public and protected members of the base class. This means you
must be able to assume that all the members of the base class are valid when you’re in the
derived class. In a normal member function, construction has already taken place, so all the
members of all parts of the object have been built. Inside the constructor, however, you must
be able to assume that all members that you use have been built. The only way to guarantee
this is for the base-class constructor to be called first. Then when you’re in the derived-class
constructor, all the members you can access in the base class have been initialized. «Knowing
all members are valid» inside the constructor is also the reason that, whenever possible, you
should initialize all member objects (that is, objects placed in the class using composition) in
the constructor initializer list. If you follow this practice, you can assume that all base class
members and member objects of the current object have been initialized.

Behavior of virtual functions inside
constructors

The hierarchy of constructor calls brings up an interesting dilemma. What happens if you’re
inside a constructor and you call a virtual function? Inside an ordinary member function you
can imagine what will happen — the virtual call is resolved at run-time because the object
cannot know whether it belongs to the class the member function is in, or some class derived
from it. For consistency, you might think this is what should happen inside constructors.

This is not the case. If you call a virtual function inside a constructor, only the local version of
the function is used. That is, the virtual mechanism doesn’t work within the constructor.



Chapter 13: Polymorphism & Virtual Functions
457

This behavior makes sense for two reasons. Conceptually, the constructor’s job is to bring the
object into existence (which is hardly an ordinary feat). Inside any constructor, the object may
only be partially formed — you can only know that the base-class objects have been
initialized, but you cannot know which classes are inherited from you. A virtual function call,
however, reaches «forward» or «outward» into the inheritance hierarchy. It calls a function in
a derived class. If you could do this inside a constructor, you’d be calling a function that
might manipulate members that hadn’t been initialized yet, a sure recipe for disaster.

The second reason is a mechanical one. When a constructor is called, one of the first things it
does is initialize its VPTR. However, it can only know that it is of the «current» type. The
constructor code is completely ignorant of whether or not the object is in the base of another
class. When the compiler generates code for that constructor, it generates code for a
constructor of that class, not a base class and not a class derived from it (because a class can’t
know who inherits it). So the VPTR it uses must be for the VTABLE of that class. The VPTR
remains initialized to that VTABLE for the rest of the object’s lifetime unless this isn’t the
last constructor call. If a more-derived constructor is called afterwards, that constructor sets
the VPTR to its VTABLE, and so on, until the last constructor finishes. The state of the
VPTR is determined by the constructor that is called last. This is another reason why the
constructors are called in order from base to most-derived.

But while all this series of constructor calls is taking place, each constructor has set the VPTR
to its own VTABLE. If it uses the virtual mechanism for function calls, it will produce only a
call through its own VTABLE, not the most-derived VTABLE (as would be the case after all
the constructors were called). In addition, many compilers recognize that a virtual function
call is being made inside a constructor, and perform early binding because they know that
late-binding will produce a call only to the local function. In either event, you won’t get the
results you might expect from a virtual function call inside a constructor.

Destructors and virtual
destructors

Constructors cannot be made explicitly virtual (and the technique in Appendix B only
simulates virtual constructors), but destructors can and often must be virtual.

The constructor has the special job of putting an object together piece-by-piece, first by
calling the base constructor, then the more derived constructors in order of inheritance.
Similarly, the destructor also has a special job — it must disassemble an object that may
belong to a hierarchy of classes. To do this, the compiler generates code that calls all the
destructors, but in the reverse order that they are called by the constructor. That is, the
destructor starts at the most-derived class and works its way down to the base class. This is
the safe and desirable thing to do: The current destructor always knows that the base-class
members are alive and active because it knows what it is derived from. Thus, the destructor



Chapter 13: Polymorphism & Virtual Functions
458

can perform its own cleanup, then call the next-down destructor, which will perform its own
cleanup, knowing what it is derived from, but not what is derived from it.

You should keep in mind that constructors and destructors are the only places where this
hierarchy of calls must happen (and thus the proper hierarchy is automatically generated by
the compiler). In all other functions, only that function will be called, whether it’s virtual or
not. The only way for base-class versions of the same function to be called in ordinary
functions (virtual or not) is if you explicitly call that function.

Normally, the action of the destructor is quite adequate. But what happens if you want to
manipulate an object through a pointer to its base class (that is, manipulate the object through
its generic interface)? This is certainly a major objective in object-oriented programming. The
problem occurs when you want to delete a pointer of this type for an object that has been
created on the heap with new. If the pointer is to the base class, the compiler can only know to
call the base-class version of the destructor during delete. Sound familiar? This is the same
problem that virtual functions were created to solve for the general case. Fortunately virtual
functions work for destructors as they do for all other functions except constructors.

Even though the destructor, like the constructor, is an «exceptional» function, it is possible for
the destructor to be virtual because the object already knows what type it is (whereas it
doesn’t during construction). Once an object has been constructed, its VPTR is initialized, so
virtual function calls can take place.

For a time, pure virtual destructors were legal and worked if you combined them with a
function body, but in the final C++ standard function bodies combined with pure virtual
functions were outlawed. This means that a virtual destructor cannot be pure, and must have a
function body because (unlike ordinary functions) all destructors in a class hierarchy are
always called. Here’s an example:

//: C15:Pvdest.cpp
// Pure virtual destructors
// require a function body.
#include <iostream>
using namespace std;

class Base {
public:
  virtual ~Base() {
    cout << "~Base()" << endl;
  }
};

class Derived : public Base {
public:
  ~Derived() {
    cout << "~Derived()" << endl;



Chapter 13: Polymorphism & Virtual Functions
459

  }
};

int main() {
  Base* bp = new Derived; // Upcast
  delete bp; // Virtual destructor call
} ///:~

As a guideline, any time you have a virtual function in a class, you should immediately add a
virtual destructor (even if it does nothing). This way, you ensure against any surprises later.

Virtuals in destructors
There’s something that happens during destruction that you might not immediately expect. If
you’re inside an ordinary member function and you call a virtual function, that function is
called using the late-binding mechanism. This is not true with destructors, virtual or not.
Inside a destructor, only the «local» version of the member function is called; the virtual
mechanism is ignored.

Why is this? Suppose the virtual mechanism were used inside the destructor. Then it would be
possible for the virtual call to resolve to a function that was «further out» (more derived) on
the inheritance hierarchy than the current destructor. But destructors are called from the
«outside in» (from the most-derived destructor down to the base destructor), so the actual
function called would rely on portions of an object that has already been destroyed! Thus, the
compiler resolves the calls at compile-time and calls only the «local» version of the function.
Notice that the same is true for the constructor (as described earlier), but in the constructor’s
case the information wasn’t available, whereas in the destructor the information (that is, the
VPTR) is there, but is isn’t reliable.

Summary
Polymorphism — implemented in C++ with virtual functions — means «different forms.» In
object-oriented programming, you have the same face (the common interface in the base
class) and different forms using that face: the different versions of the virtual functions.

You’ve seen in this chapter that it’s impossible to understand, or even create, an example of
polymorphism without using data abstraction and inheritance. Polymorphism is a feature that
cannot be viewed in isolation (like const or a switch statement, for example), but instead
works only in concert, as part of a «big picture» of class relationships. People are often
confused by other, non-object-oriented features of C++, like overloading and default
arguments, which are sometimes presented as object-oriented. Don’t be fooled: If it isn’t late
binding, it isn’t polymorphism.

To use polymorphism, and thus object-oriented techniques, effectively in your programs you
must expand your view of programming to include not just members and messages of an



Chapter 13: Polymorphism & Virtual Functions
460

individual class, but also the commonality among classes and their relationships with each
other. Although this requires significant effort, it’s a worthy struggle, because the results are
faster program development, better code organization, extensible programs, and easier code
maintenance.

Polymorphism completes the object-oriented features of the language, but there are two more
major features in C++: templates (Chapter 14), and exception handling (Chapter 16). These
features provide you as much increase in programming power as each of the object-oriented
features: abstract data typing, inheritance, and polymorphism.

Exercises
 1.  Create a very simple «shape» hierarchy: a base class called shape and

derived classes called circle, square, and triangle. In the base class, make a
virtual function called draw( ), and redefine this in the derived classes.
Create an array of pointers to shape objects you create on the heap (and
thus perform upcasting of the pointers), and call draw( ) through the base-
class pointers, to verify the behavior of the virtual function. If your
debugger supports it, single-step through the example.

 2.  Modify Exercise 1 so draw( ) is a pure virtual function. Try creating an
object of type shape. Try to call the pure virtual function inside the
constructor and see what happens. Give draw( ) a definition.

 3.  Write a small program to show the difference between calling a virtual
function inside a normal member function and calling a virtual function
inside a constructor. The program should prove that the two calls produce
different results.

 4.  In EARLY.CPP, how can you tell whether the compiler makes the call
using early or late binding? Determine the case for your own compiler.

 5.  (Intermediate) Create a base class X with no members and no constructor,
but with a virtual function. Create a class Y that inherits from X, but
without an explicit constructor. Generate assembly code and examine it to
determine if a constructor is created and called for X, and if so, what the
code does. Explain what you discover. X has no default constructor, so why
doesn’t the compiler complain?

 6.  (Intermediate) Modify exercise 5 so each constructor calls a virtual
function. Generate assembly code. Determine where the VPTR is being
assigned inside each constructor. Is the virtual mechanism being used by
your compiler inside the constructor? Establish why the local version of the
function is still being called.

 7.  (Advanced) If function calls to an object passed by value weren’t early-
bound, a virtual call might access parts that didn’t exist. Is this possible?
Write some code to force a virtual call, and see if this causes a crash. To



Chapter 13: Polymorphism & Virtual Functions
461

explain the behavior, examine what happens when you pass an object by
value.

 8.   (Advanced) Find out exactly how much more time is required for a virtual
function call by going to your processor’s assembly-language information
or other technical manual and finding out the number of clock states
required for a simple call versus the number required for the virtual function
instructions.





463

16: Introduction to
templates

Inheritance and composition provide a way to reuse object
code. The template feature in C++ provides a way to reuse
source code.

Although C++ templates are a general-purpose programming tool, when they were introduced
in the language, they seemed to discourage the use of object-based container-class hierarchies.
Later versions of container-class libraries are built exclusively with templates and are much
easier for the programmer to use.

This chapter begins with an introduction to containers and the way they are implemented with
templates, followed by examples of container classes and how to use them.

Containers & iterators
Suppose you want to create a stack. In C, you would make a data structure and associated
functions, but of course in C++ you package the two together into an abstract data type. This
stack class will hold ints, to keep it simple:

//: C16:IStack.cpp
// Simple integer stack
#include <iostream>
#include "../require.h"
using namespace std;

class IStack {
  enum { ssize = 100 };
  int stack[ssize];
  int top;
public:
  IStack() : top(0) { stack[top] = 0; }
  void push(int i) {
    if(top < ssize) stack[top++] = i;



Chapter 14: Templates & Container Classes
464

  }
  int pop() {
    return stack[top > 0 ? --top : top];
  }
  friend class IStackIter;
};

// An iterator is a "super-pointer":
class IStackIter {
  IStack& S;
  int index;
public:
  IStackIter(IStack& is)
    : S(is), index(0) {}
  int operator++() { // Prefix form
    if (index < S.top - 1) index++;
    return S.stack[index];
  }
  int operator++(int) { // Postfix form
    int returnval = S.stack[index];
    if (index < S.top - 1) index++;
    return returnval;
  }
};
// For interest, generate Fibonacci numbers:
int fibonacci(int N) {
  const sz = 100;
  require(N < sz);
  static F[sz]; // Initialized to zero
  F[0] = F[1] = 1;
  // Scan for unfilled array elements:
  int i;
  for(i = 0; i < sz; i++)
    if(F[i] == 0) break;
  while(i <= N) {
    F[i] = F[i-1] + F[i-2];
    i++;
  }
  return F[N];
}

int main() {
  IStack is;



Chapter 14: Templates & Container Classes
465

  for(int i = 0; i < 20; i++)
    is.push(fibonacci(i));
  // Traverse with an iterator:
  IStackIter it(is);
  for(int j = 0; j < 20; j++)
    cout << it++ << endl;
  for(int k = 0; k < 20; k++)
    cout << is.pop() << endl;
} ///:~

The class iStack is an almost trivial example of a push-down stack. For simplicity it has been
created here with a fixed size, but you can also modify it to automatically expand by
allocating memory off the heap. (This will be demonstrated in later examples.)

The second class, iStackIter, is an example of an iterator, which you can think of as a
superpointer that has been customized to work only with an iStack. Notice that iStackIter is
a friend of iStack, which gives it access to all the private elements of iStack.

Like a pointer, iStackIter’s job is to move through an iStack and retrieve values. In this
simple example, the iStackIter can move only forward (using both the pre- and postfix forms
of the operator++) and it can fetch only values. However, there is no boundary to the way an
iterator can be defined. It is perfectly acceptable for an iterator to move around any way
within its associated container and to cause the contained values to be modified. However, it
is customary that an iterator is created with a constructor that attaches it to a single container
object and that it is not reattached during its lifetime. (Most iterators are small, so you can
easily make another one.)

To make the example more interesting, the fibonacci( ) function generates the traditional
rabbit-reproduction numbers. This is a fairly efficient implementation, because it never
generates the numbers more than once. (Although if you’ve been out of school awhile, you’ve
probably figured out that you don’t spend your days researching more efficient
implementations of algorithms, as textbooks might lead you to believe.)

In main( ) you can see the creation and use of the stack and its associated iterator. Once you
have the classes built, they’re quite simple to use.

The need for containers
Obviously an integer stack isn’t a crucial tool. The real need for containers comes when you
start making objects on the heap using new and destroying them with delete. In the general
programming problem, you don’t know how many objects you’re going to need while you’re
writing the program. For example, in an air-traffic control system you don’t want to limit the
number of planes your system can handle. You don’t want the program to abort just because
you exceed some number. In a computer-aided design system, you’re dealing with lots of
shapes, but only the user determines (at run-time) exactly how many shapes you’re going to



Chapter 14: Templates & Container Classes
466

need. Once you notice this tendency, you’ll discover lots of examples in your own
programming situations.

C programmers who rely on virtual memory to handle their «memory management» often
find the idea of new, delete, and container classes disturbing. Apparently, one practice in C is
to create a huge global array, larger than anything the program would appear to need. This
may not require much thought (or awareness of malloc( ) and free( )), but it produces
programs that don’t port well and can hide subtle bugs.

In addition, if you create a huge global array of objects in C++, the constructor and destructor
overhead can slow things down significantly. The C++ approach works much better: When
you need an object, create it with new, and put its pointer in a container. Later on, fish it out
and do something to it. This way, you create only the objects you absolutely need. And
generally you don’t have all the initialization conditions at the start-up of the program; you
have to wait until something happens in the environment before you can actually create the
object.

So in the most common situation, you’ll create a container that holds pointers to some objects
of interest. You will create those objects using new and put the resulting pointer in the
container (potentially upcasting it in the process), fishing it out later when you want to do
something with the object. This technique produces the most flexible, general sort of program.

Overview of templates
Now a problem arises. You have an iStack, which holds integers. But you want a stack that
holds shapes or airliners or plants or something else. Reinventing your source-code every time
doesn’t seem like a very intelligent approach with a language that touts reusability. There
must be a better way.

There are three techniques for source-code reuse: the C way, presented here for contrast; the
Smalltalk approach, which significantly affected C++; and the C++ approach: templates.

The C approach
Of course you’re trying to get away from the C approach because it’s messy and error prone
and completely inelegant. You copy the source code for a Stack and make modifications by
hand, introducing new errors in the process. This is certainly not a very productive technique.

The Smalltalk approach
Smalltalk took a simple and straightforward approach: You want to reuse code, so use
inheritance. To implement this, each container class holds items of the generic base class
object. But, as mentioned before, the library in Smalltalk is of fundamental importance, so
fundamental, in fact, that you don’t ever create a class from scratch. Instead, you must always
inherit it from an existing class. You find a class as close as possible to the one you want,



Chapter 14: Templates & Container Classes
467

inherit from it, and make a few changes. Obviously this is a benefit because it minimizes your
effort (and explains why you spend a lot of time learning the class library before becoming an
effective Smalltalk programmer).

But it also means that all classes in Smalltalk end up being part of a single inheritance tree.
You must inherit from a branch of this tree when creating a new class. Most of the tree is
already there (it’s the Smalltalk class library), and at the root of the tree is a class called
object — the same class that each Smalltalk container holds.

This is a neat trick because it means that every class in the Smalltalk class hierarchy is derived
from object, so every class can be held in every container, including that container itself. This
type of single-tree hierarchy based on a fundamental generic type (often named object) is
referred to as an «object-based hierarchy.» You may have heard this term before and assumed
it was some new fundamental concept in OOP, like polymorphism. It just means a class tree
with object (or some similar name) at its root and container classes that hold object.

Because the Smalltalk class library had a much longer history and experience behind it than
C++, and the original C++ compilers had no container class libraries, it seemed like a good
idea to duplicate the Smalltalk library in C++. This was done as an experiment with a very
early C++ implementation,43 and because it represented a significant body of code, many
people began using it. In the process of trying to use the container classes, they discovered a
problem.

The problem was that in Smalltalk, you could force people to derive everything from a single
hierarchy, but in C++ you can’t. You might have your nice object-based hierarchy with its
container classes, but then you might buy a set of shape classes or airline classes from another
vendor who didn’t use that hierarchy. (For one thing, the hierarchy imposes overhead, which
C programmers eschew.) How do you shoehorn a separate class tree into the container class in
your object-based hierarchy? Here’s what the problem looks like:

o b j e c t

o b j e c t

o b j e c t

o b j e c t

c o n t a in e r

s h a p e
( n o t  d e r i v e d

fr o m  o b j e c t )

( h o l d s  p o i n t e r s

t o  o b j e c t s )

Because C++ supports multiple independent hierarchies, Smalltalk’s object-based hierarchy
does not work so well.
                                                       

43 The OOPS library, by Keith Gorlen while he was at NIH. Generally available from public
sources.



Chapter 14: Templates & Container Classes
468

The solution seemed obvious. If you can have many inheritance hierarchies, then you should
be able to inherit from more than one class: Multiple inheritance will solve the problem. So
you do the following:

o b j e c t

o b j e c t

o b j e c t

o b j e c t

c o n t a in e r

s h a p e

o s h a p e

Now oshape has shape’s characteristics and behaviors, but because it is also derived from
object it can be placed in container.

But multiple inheritance wasn’t originally part of C++. Once the container problem was seen,
there came a great deal of pressure to add the feature. Other programmers felt (and still feel)
multiple inheritance wasn’t a good idea and that it adds unneeded complexity to the language.
An oft-repeated statement at that time was, «C++ is not Smalltalk,» which, if you knew
enough to translate it, meant «Don’t use object based hierarchies for container classes.» But in
the end44 the pressure persisted, and multiple inheritance was added to the language.
Compiler vendors followed suit by including object-based container-class hierarchies, most of
which have since been replaced by template versions. You can argue that multiple inheritance
is needed for solving general programming problems, but you’ll see in the next chapter that its
complexity is best avoided except in special cases.

The template approach
Although an object-based hierarchy with multiple inheritance is conceptually straightforward,
it turns out to be painful to use. In his original book45 Stroustrup demonstrated what he
considered a preferable alternative to the object-based hierarchy. Container classes were
created as large preprocessor macros with arguments that could be substituted for your desired
type. When you wanted to create a container to hold a particular type, you made a couple of
macro calls.

                                                       

44  We’ll probably never know the full story because control of the language was still within
AT&T at the time.

45 The C++ Programming Language by Bjarne Stroustrup (1st edition, Addison-Wesley,
1986).



Chapter 14: Templates & Container Classes
469

Unfortunately, this approach was confused by all the existing Smalltalk literature, and it was a
bit unwieldy. Basically, nobody got it.

In the meantime, Stroustrup and the C++ team at Bell Labs had modified his original macro
approach, simplifying it and moving it from the domain of the preprocessor into the compiler
itself. This new code-substitution device is called a template46, and it represents a completely
different way to reuse code: Instead of reusing object code, as with inheritance and
composition, a template reuses source code. The container no longer holds a generic base
class called object, but instead an unspecified parameter. When you use a template, the
parameter is substituted by the compiler, much like the old macro approach, but cleaner and
easier to use.

Now, instead of worrying about inheritance or composition when you want to use a container
class, you take the template version of the container and stamp out a specific version for your
particular problem, like this:

s h a p e
c o n t a in e r

o b j e c t

s h a p e

s h a p e

s h a p e

The compiler does the work for you, and you end up with exactly the container you need to do
your job, rather than an unwieldy inheritance hierarchy. In C++, the template implements the
concept of a parameterized type. Another benefit of the template approach is that the novice
programmer who may be unfamiliar or uncomfortable with inheritance can still use canned
container classes right away.

Template syntax
The template keyword tells the compiler that the following class definition will manipulate
one or more unspecified types. At the time the object is defined, those types must be specified
so the compiler can substitute them.

Here’s a small example to demonstrate the syntax:

//: C16:Stemp.cpp
// Simple template example
#include <iostream>
#include "../require.h"
using namespace std;

                                                       

46 The inspiration for templates appears to be ADA generics.



Chapter 14: Templates & Container Classes
470

template<class T>
class Array {
  enum { size = 100 };
  T A[size];
public:
  T& operator[](int index) {
    require(index >= 0 && index < size);
    return A[index];
  }
};

int main() {
  Array<int> ia;
  Array<float> fa;
  for(int i = 0; i < 20; i++) {
    ia[i] = i * i;
    fa[i] = float(i) * 1.414;
  }
  for(int j = 0; j < 20; j++)
    cout << j << ": " << ia[j]
         << ", " << fa[j] << endl;
} ///:~

You can see that it looks like a normal class except for the line

template<class T>

which says that T is the substitution parameter, and it represents a type name. Also, you see T
used everywhere in the class where you would normally see the specific type the container
holds.

In Array, elements are inserted and extracted with the same function, the overloaded
operator[ ]. It returns a reference, so it can be used on both sides of an equal sign. Notice that
if the index is out of bounds, the Standard C library macro assert( ) is used to print a message
(assert( ) is used instead of require( ) because you’ll probably want to completely remove the
test code once it’s debugged). This is actually a case where throwing an exception is more
appropriate, because then the class user can recover from the error, but that topic is not
covered until Chapter 16.

In main( ), you can see how easy it is to create Arrays that hold different types of objects.
When you say

Array<int> ia;
Array<float> fa;

the compiler expands the Array template (this is called instantiation) twice, to create two new
generated classes, which you can think of as Array_int and Array_float. (Different



Chapter 14: Templates & Container Classes
471

compilers may decorate the names in different ways.) These are classes just like the ones you
would have produced if you had performed the substitution by hand, except that the compiler
creates them for you as you define the objects ia and fa. Also note that duplicate class
definitions are either avoided by the compiler or merged by the linker.

Non-inline function definitions
Of course, there are times when you’ll want to have non-inline member function definitions.
In this case, the compiler needs to see the template declaration before the member function
definition. Here’s the above example, modified to show the non-inline member definition:

//: C16:Stemp2.cpp
// Non-inline template example
#include "../require.h"

template<class T>
class Array {
  enum { size = 100 };
  T A[size];
public:
  T& operator[](int index);
};

template<class T>
T& Array<T>::operator[](int index) {
  require(index >= 0 && index < size,
    "Index out of range");
  return A[index];
}

int main() {
  Array<float> fa;
  fa[0] = 1.414;
} ///:~

Notice that in the member function definition the class name is now qualified with the
template argument type: Array<T>. You can imagine that the compiler does indeed carry
both the name and the argument type(s) in some mangled form.

Header files
Even if you create non-inline function definitions, you’ll generally want to put all declarations
and definitions for a template in a header file. This may seem to violate the normal header file
rule of «Don’t put in anything that allocates storage» to prevent multiple definition errors at
link time, but template definitions are special. Anything preceded by template<...> means the



Chapter 14: Templates & Container Classes
472

compiler won’t allocate storage for it at that point, but will instead wait until it’s told to (by a
template instantiation), and that somewhere in the compiler and linker there’s a mechanism
for removing multiple definitions of an identical template. So you’ll almost always put the
entire template declaration and definition in the header file, for ease of use.

There are times when you may need to place the template definitions in a separate CPP file to
satisfy special needs (for example, forcing template instantiations to exist in only a single
Windows DLL file). Most compilers have some mechanism to allow this; you’ll have to
investigate your particular compiler’s documentation to use it.

The stack as a template
Here is the container and iterator from Istack.cpp, implemented as a generic container class
using templates:

//: C16:Stackt.h
// Simple stack template
#ifndef STACKT_H_
#define STACKT_H_
template<class T> class StacktIter; // Declare

template<class T>
class Stackt {
  static const int ssize = 100;
  T stack[ssize];
  int top;
public:
  Stackt() : top(0) { stack[top] = 0; }
  void push(const T& i) {
    if(top < ssize) stack[top++] = i;
  }
  T pop() {
    return stack[top > 0 ? --top : top];
  }
  friend class StacktIter<T>;
};

template<class T>
class StacktIter {
  Stackt<T>& s;
  int index;
public:
  StacktIter(Stackt<T>& is)
    : s(is), index(0) {}



Chapter 14: Templates & Container Classes
473

  T& operator++() { // Prefix form
    if (index < s.top - 1) index++;
    return s.stack[index];
  }
  T& operator++(int) { // Postfix form
    int returnIndex = index;
    if (index < s.top - 1) index++;
    return s.stack[returnIndex];
  }
};
#endif // STACKT_H_ ///:~

Notice that anywhere a template’s class name is referred to, it must be accompanied by its
template argument list, as in Stackt<T>& s. You can imagine that internally, the arguments
in the template argument list are also being mangled to produce a unique class name for each
template instantiation.

Also notice that a template makes certain assumptions about the objects it is holding. For
example, Stackt assumes there is some sort of assignment operation for T inside the push( )
function. You could say that a template «implies an interface» for the types it is capable of
holding.

Here’s the revised example to test the template:

//: C16:Stackt.cpp
// Test simple stack template
#include <iostream>
#include "../require.h"
#include "Stackt.h"
using namespace std;

// For interest, generate Fibonacci numbers:
int fibonacci(int N) {
  const sz = 100;
  require(N < sz);
  static F[sz]; // Initialized to zero
  F[0] = F[1] = 1;
  // Scan for unfilled array elements:
  int i;
  for(i = 0; i < sz; i++)
    if(F[i] == 0) break;
  while(i <= N) {
    F[i] = F[i-1] + F[i-2];
    i++;
  }



Chapter 14: Templates & Container Classes
474

  return F[N];
}

int main() {
  Stackt<int> is;
  for(int i = 0; i < 20; i++)
    is.push(fibonacci(i));
  // Traverse with an iterator:
  StacktIter<int> it(is);
  for(int j = 0; j < 20; j++)
    cout << it++ << endl;
  for(int k = 0; k < 20; k++)
    cout << is.pop() << endl;
} ///:~

The only difference is in the creation of is and it: You specify the type of object the stack and
iterator should hold inside the template argument list.

Constants in templates
Template arguments are not restricted to class types; you can also use built-in types. The
values of these arguments then become compile-time constants for that particular instantiation
of the template. You can even use default values for these arguments:

//: C16:Mblock.cpp
// Built-in types in templates
#include <iostream>
#include "../require.h"
using namespace std;

template<class T, int size = 100>
class Mblock {
  T array[size];
public:
  T& operator[](int index) {
    require(index >= 0 && index < size);
    return array[index];
  }
};

class Number {
  float f;
public:
  Number(float F = 0.0f) : f(F) {}



Chapter 14: Templates & Container Classes
475

  Number& operator=(const Number& n) {
    f = n.f;
    return *this;
  }
  operator float() const { return f; }
  friend ostream&
    operator<<(ostream& os, const Number& x) {
      return os << x.f;
  }
};

template<class T, int sz = 20>
class Holder {
  Mblock<T, sz>* np;
public:
  Holder() : np(0) {}
  T& operator[](int i) {
    require(i >= 0 && i < sz);
    if(!np) np = new Mblock<T, sz>;
    return np->operator[](i);
  }
};

int main() {
  Holder<Number, 20> H;
  for(int i = 0; i < 20; i++)
    H[i] = i;
  for(int j = 0; j < 20; j++)
    cout << H[j] << endl;
} ///:~

Class Mblock is a checked array of objects; you cannot index out of bounds. (Again, the
exception approach in Chapter 16 may be more appropriate than assert( ) in this situation.)

The class Holder is much like Mblock except that it has a pointer to an Mblock instead of an
embedded object of type Mblock. This pointer is not initialized in the constructor; the
initialization is delayed until the first access. You might use a technique like this if you are
creating a lot of objects, but not accessing them all, and want to save storage.



Chapter 14: Templates & Container Classes
476

Stash and stack
as templates

It turns out that the Stash and Stack classes that have been updated periodically throughout
this book are actually container classes, so it makes sense to convert them to templates. But
first, one other important issue arises with container classes: When a container releases a
pointer to an object, does it destroy that object? For example, when a container object goes
out of scope, does it destroy all the objects it points to?

The ownership problem
This issue is commonly referred to as ownership. Containers that hold entire objects don’t
usually worry about ownership because they clearly own the objects they contain. But if your
container holds pointers (which is more common with C++, especially with polymorphism),
then it’s very likely those pointers may also be used somewhere else in the program, and you
don’t necessarily want to delete the object because then the other pointers in the program
would be referencing a destroyed object. To prevent this from happening, you must consider
ownership when designing and using a container.

Many programs are very simple, and one container holds pointers to objects that are used only
by that container. In this case ownership is very straightforward: The container owns its
objects. Generally, you’ll want this to be the default case for a container because it’s the most
common situation.

The best approach to handling the ownership problem is to give the client programmer the
choice. This is often accomplished by a constructor argument that defaults to indicating
ownership (typically desired for simple programs). In addition there may be read and set
functions to view and modify the ownership of the container. If the container has functions to
remove an object, the ownership state usually affects that removal, so you may also find
options to control destruction in the removal function. You could conceivably also add
ownership data for every element in the container, so each position would know whether it
needed to be destroyed; this is a variant of reference counting where the container and not the
object knows the number of references pointing to an object.

Stash as a template
The «stash» class that has been evolving throughout the book (last seen in Chapter 11) is an
ideal candidate for a template. Now an iterator has been added along with ownership
operations:

//: C16:TStash.h
// PSTASH using templates



Chapter 14: Templates & Container Classes
477

#ifndef TSTASH_H_
#define TSTASH_H_
#include <cstdlib>
#include "../require.h"

// More convenient than nesting in TStash:
enum owns { no = 0, yes = 1, Default };
// Declaration required:
template<class Type, int sz> class TStashIter;

template<class Type, int chunksize = 20>
class TStash {
  int quantity;
  int next;
  owns own; // Flag
  void inflate(int increase = chunksize);
protected:
  Type** storage;
public:
  TStash(owns Owns = yes);
  ~TStash();
  int Owns() const { return own; }
  void Owns(owns newOwns) { own = newOwns; }
  int add(Type* element);
  int remove(int index, owns d = Default);
  Type* operator[](int index);
  int count() const { return next; }
  friend class TStashIter<Type, chunksize>;
};

template<class Type, int sz = 20>
class TStashIter {
  TStash<Type, sz>& ts;
  int index;
public:
  TStashIter(TStash<Type, sz>& TS)
    : ts(TS), index(0) {}
  TStashIter(const TStashIter& rv)
    : ts(rv.ts), index(rv.index) {}
  // Jump interator forward or backward:
  void forward(int amount) {
    index += amount;
    if(index >= ts.next) index = ts.next -1;



Chapter 14: Templates & Container Classes
478

  }
  void backward(int amount) {
    index -= amount;
    if(index < 0) index = 0;
  }
  // Return value of ++ and -- to be
  // used inside conditionals:
  int operator++() {
    if(++index >= ts.next) return 0;
    return 1;
  }
  int operator++(int) { return operator++(); }
  int operator--() {
    if(--index < 0) return 0;
    return 1;
  }
  int operator--(int) { return operator--(); }
  operator int() {
    return index >= 0 && index < ts.next;
  }
  Type* operator->() {
    Type* t = ts.storage[index];
    if(t) return t;
    require(0,"TStashIter::operator->return 0");
    return 0; // To allow inlining
  }
  // Remove the current element:
  int remove(owns d = Default){
    return ts.remove(index, d);
  }
};

template<class Type, int sz>
TStash<Type, sz>::TStash(owns Owns) : own(Owns) {
  quantity = 0;
  storage = 0;
  next = 0;
}

// Destruction of contained objects:
template<class Type, int sz>
TStash<Type, sz>::~TStash() {
  if(!storage) return;



Chapter 14: Templates & Container Classes
479

  if(own == yes)
    for(int i = 0; i < count(); i++)
      delete storage[i];
  free(storage);
}

template<class Type, int sz>
int TStash<Type, sz>::add(Type* element) {
  if(next >= quantity)
    inflate();
  storage[next++] = element;
  return(next - 1); // Index number
}

template<class Type, int sz>
int TStash<Type, sz>::remove(int index,owns d){
  if(index >= next || index < 0)
    return 0;
  switch(d) {
    case Default:
      if(own != yes) break;
    case yes:
      delete storage[index];
    case no:
      storage[index] = 0; // Position is empty
  }
  return 1;
}

template<class Type, int sz> inline
Type* TStash<Type, sz>::operator[](int index) {
  // Remove check for shipping application:
  require(index >= 0 && index < next);
  return storage[index];
}

template<class Type, int sz>
void TStash<Type, sz>::inflate(int increase) {
  void* v =
    realloc(storage, (quantity+increase)*sizeof(Type*));
  require(v != 0);  // Was it successful?
  storage = (Type**)v;
  quantity += increase;



Chapter 14: Templates & Container Classes
480

}
#endif // TSTASH_H_ ///:~

The enum owns is global, although you’d normally want to nest it inside the class. Here it’s
more convenient to use, but you can try moving it if you want to see the effect.

The storage pointer is made protected so inherited classes can directly access it. This means
that the inherited classes may become dependent on the specific implementation of TStash,
but as you’ll see in the SORTED.CPP example, it’s worth it.

The own flag indicates whether the container defaults to owning its objects. If so, in the
destructor each object whose pointer is in the container is destroyed. This is straightforward;
the container knows the type it contains. You can also change the default ownership in the
constructor or read and modify it with the overloaded Owns( ) function.

You should be aware that if the container holds pointers to a base-class type, that type should
have a virtual destructor to ensure proper cleanup of derived objects whose addresses have
been upcast when placing them in the container.

The TStashIter follows the iterator model of bonding to a single container object for its
lifetime. In addition, the copy-constructor allows you to make a new iterator pointing at the
same location as the existing iterator you create it from, effectively making a bookmark into
the container. The forward( ) and backward( ) member functions allow you to jump an
iterator by a number of spots, respecting the boundaries of the container. The overloaded
increment and decrement operators move the iterator by one place. The smart pointer is used
to operate on the element the iterator is referring to, and remove( ) destroys the current object
by calling the container’s remove( ).

The following example creates and tests two different kinds of Stash objects, one for a new
class called Int that announces its construction and destruction and one that holds objects of
the class String from Chapter 11.

//: C16:Tstest.cpp
// Test TStash
#include <fstream>
#include <vector>
#include <string>
#include "../require.h"
#include "TStash.h"
using namespace std;
ofstream out("tstest.out");

class Int {
  int i;
public:
  Int(int I = 0) : i(I) {
    out << ">" << i << endl;



Chapter 14: Templates & Container Classes
481

  }
  ~Int() { out << "~" << i << endl; }
  operator int() const { return i; }
  friend ostream&
    operator<<(ostream& os, const Int& x) {
      return os << x.i;
  }
};

int main() {
  TStash<Int> intStash; // Instantiate for int
  for(int i = 0; i < 30; i++)
    intStash.add(new Int(i));
  TStashIter<Int> Intit(intStash);
  Intit.forward(5);
  for(int j = 0; j < 20; j++, Intit++)
    Intit.remove(); // Default removal
  for(int k = 0; k < intStash.count(); k++)
    if(intStash[k]) // Remove() causes "holes"
      out << *intStash[k] << endl;

  ifstream file("tstest.cpp");
  assure(file, "tstest.cpp");
  // Instantiate for String:
  TStash<string> stringStash;
  string line;
  while(getline(file, line))
    stringStash.add(new string(line));
  for(int u = 0; u < stringStash.count(); u++)
    if(stringStash[u])
      out << *stringStash[u] << endl;
  TStashIter<string> it(stringStash);
  int j = 25;
  it.forward(j);
  while(it) {
    out << j++ << ": " << it->c_str() << endl;
    it++;
  }
} ///:~

In both cases an iterator is created and used to move through the container. Notice the
elegance produced by using these constructs: You aren’t assailed with the implementation
details of using an array. You tell the container and iterator objects what to do, not how. This
makes the solution easier to conceptualize, to build, and to modify.



Chapter 14: Templates & Container Classes
482

stack as a template
The Stack class, last seen in Chapter 12, is also a container and is also best expressed as a
template with an associated iterator. Here’s the new header file:

//: C16:TStack.h
// Stack using templates
#ifndef TSTACK_H_
#define TSTACK_H_

// Declaration required:
template<class T> class TStackIterator;

template<class T> class TStack {
public: //////////// BC++ 5.3 bug hack??
  struct link {
    T* data;
    link* next;
    link(T* Data, link* Next) {
      data = Data;
      next = Next;
    }
  } * head;
  int owns;
public:
  TStack(int Owns = 1) : head(0), owns(Owns) {}
  ~TStack();
  void push(T* Data) {
    head = new link(Data,head);
  }
  T* peek() const { return head->data; }
  T* pop();
  int Owns() const { return owns; }
  void Owns(int newownership) {
    owns = newownership;
  }
  friend class TStackIterator<T>;
};

template<class T> T* TStack<T>::pop() {
  if(head == 0) return 0;
  T* result = head->data;
  link* oldHead = head;



Chapter 14: Templates & Container Classes
483

  head = head->next;
  delete oldHead;
  return result;
}

template<class T> TStack<T>::~TStack() {
  link* cursor = head;
  while(head) {
    cursor = cursor->next;
    // Conditional cleanup of data:
    if(owns) delete head->data;
    delete head;
    head = cursor;
  }
}

template<class T> class TStackIterator {
  TStack<T>::link* p;
public:
  TStackIterator(const TStack<T>& tl)
    : p(tl.head) {}
  TStackIterator(const TStackIterator& tl)
    : p(tl.p) {}
  // operator++ returns boolean indicating end:
  int operator++() {
    if(p->next)
      p = p->next;
    else p = 0; // Indicates end of list
    return int(p);
  }
  int operator++(int) { return operator++(); }
  // Smart pointer:
  T* operator->() const {
    if(!p) return 0;
    return p->data;
  }
  T* current() const {
    if(!p) return 0;
    return p->data;
  }
  // int conversion for conditional test:
  operator int() const { return p ? 1 : 0; }
};



Chapter 14: Templates & Container Classes
484

#endif // TSTACK_H_ ///:~

You’ll also notice the class has been changed to support ownership, which works now
because the class knows the exact type (or at least the base type, which will work assuming
virtual destructors are used). As with TStash, the default is for the container to destroy its
objects but you can change this by either modifying the constructor argument or using the
Owns( ) read/write member functions.

The iterator is very simple and very small – the size of a single pointer. When you create a
TStackIterator, it’s initialized to the head of the linked list, and you can only increment it
forward through the list. If you want to start over at the beginning, you create a new iterator,
and if you want to remember a spot in the list, you create a new iterator from the existing
iterator pointing at that spot (using the copy-constructor).

To call functions for the object referred to by the iterator, you can use the smart pointer (a
very common sight in iterators) or a function called current( ) that looks identical to the smart
pointer because it returns a pointer to the current object, but is different because the smart
pointer performs the extra levels of dereferencing (see Chapter 10). Finally, the operator int
indicates whether or not you are at the end of the list and allows the iterator to be used in
conditional statements.

The entire implementation is contained in the header file, so there’s no separate CPP file.
Here’s a small test that also exercises the iterator:

//: C16:Tstktst.cpp
// Use template list & iterator
#include <iostream>
#include <fstream>
#include <string>
#include "../require.h"
#include "TStack.h"
using namespace std;

int main() {
  ifstream file("tstktst.cpp");
  assure(file, "tstktst.cpp");
  TStack<string> textlines;
  // Read file and store lines in the list:
  string line;
  while(getline(file, line))
    textlines.push(new string(line));
  int i = 0;
  // Use iterator to print lines from the list:
  TStackIterator<string> it(textlines);
  TStackIterator<string>* it2 = 0;
  while(it) {



Chapter 14: Templates & Container Classes
485

    cout << *it.current() << endl;
    it++;
    if(++i == 10) // Remember 10th line
      it2 = new TStackIterator<string>(it);
  }
  cout << *(it2->current()) << endl;
  delete it2;
} ///:~

A TStack is instantiated to hold String objects and filled with lines from a file. Then an
iterator is created and used to move through the linked list. The tenth line is remembered by
copy-constructing a second iterator from the first; later this line is printed and the iterator —
created dynamically — is destroyed. Here, dynamic object creation is used to control the
lifetime of the object.

This is very similar to earlier test examples for the Stack class, but now the contained objects
are properly destroyed when the TStack is destroyed.

Sstring & integer
To facilitate the examples in the rest of this chapter, a more powerful string class is necessary,
along with an integer object that guarantees its initialization

A string on the stack
This a more complete string class than has been used before in this book. In addition, this
class uses templates to add a special feature: you can decide, when you instantiate the
SString, whether it lives on the stack or the heap.

//: C16:Sstring.h
// Stack-based string
#ifndef SSTRING_H_
#define SSTRING_H_
#include <cstring>
#include <iostream>

template<int bsz = 0>
class SString {
  char buf[bsz + 1];
  char* s;
public:
  SString(const char* S = "") : s(buf) {
    if(!bsz) { // Make on heap



Chapter 14: Templates & Container Classes
486

      s = new char[strlen(S) + 1];
      std::strcpy(s, S);
    } else { // Make on stack
      buf[bsz] = 0; // Ensure 0 termination
      std::strncpy(s, S, bsz);
    }
  }
  SString(const SString& rv) : s(buf) {
    if(!bsz) { // Make on heap
      s = new char[strlen(rv.s) + 1];
      std::strcpy(s, rv.s);
    } else { // Make on stack
      buf[bsz] = 0;
      std::strncpy(s, rv.s, bsz);
    }
  }
  SString& operator=(const SString& rv) {
    // Check for self-assignment:
    if(&rv == this) return *this;
    if(!bsz) { // Manage heap:
      delete s;
      s = new char[strlen(rv.s) + 1];
    }
    // Constructor guarantees length < bsz:
    std::strcpy(s, rv.s);
    return *this;
  }
  ~SString() {
    if(!bsz) delete []s;
  }
  int operator==(const SString& rv) const {
    return ! stricmp(s, rv.s);  // nonstandard
  }
  int operator!=(const SString& rv) const {
    return stricmp(s, rv.s);
  }
  int operator>(const SString& rv) const {
    return stricmp(s, rv.s) > 0;
  }
  int operator<(const SString& rv) const {
    return stricmp(s, rv.s) < 0;
  }
  char* str() const { return s; }



Chapter 14: Templates & Container Classes
487

  friend std::ostream&
    operator<<(std::ostream& os,
               const SString<bsz>& S) {
      return os << S.s;
  }
};

typedef SString<> Hstring; // Heap string
#endif // SSTRING_H_ ///:~

By using the typedef Hstring, you get an ordinary heap-based string (a typedef was used
here instead of inheritance because inheritance requires the new creation of the constructors
and operator=). But if you’re concerned about the efficiency of creating and destroying a lot
of strings, you can take a chance and assume the largest word size possible for the solution of
your problem. When you give the template a size argument, it automatically creates the object
totally on the stack rather than on the heap, which means the overhead of one new and one
delete per object is eliminated. You can see that operator= is also speeded up.

The comparison operators for the string use a function called stricmp( ), which is not
Standard C but which nonetheless is available with most compiler libraries. It performs a
string compare while ignoring the case of the letters.

integer
The constructor for class integer zeroes the value, and it contains an automatic type
conversion operator to an int so you can easily extract the value:

//: C16:Integer.h
// An int wrapped in a class
#ifndef INTEGER_H_
#define INTEGER_H_
#include <iostream>

class Integer {
  int i;
public:
  // Guaranteed zeroing:
  Integer(int ii = 0) : i(ii) {}
  operator int() const { return i; }
  const Integer& operator++() {
    i++;
    return *this;
  }
  const Integer operator++(int) {
    Integer returnval(i);



Chapter 14: Templates & Container Classes
488

    i++;
    return returnval;
  }
  Integer& operator+=(const Integer& x) {
    i += x.i;
    return *this;
  }
  friend ostream&
  operator<<(ostream& os, const Integer& x) {
      return os << x.i;
  }
};
#endif // INTEGER_H_ ///:~

Although this class is quite minimal (it only satisfies the needs of this chapter), you can easily
add as many operations as you need by following the examples in Chapter 10.

Templates & inheritance
There’s nothing to prevent you from using a class template in any way you’d use an ordinary
class. For example, you can easily inherit from a template, and you can create a new template
that instantiates and inherits from an existing template. If the TStash class does everything
you want, but you’d also like it to sort itself, you can easily reuse the code and add value to it:

//: C16:Sorted.h
// Template inheritance
#ifndef SORTED_H_
#define SORTED_H_
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <vector>
#include "TStash.h"

template<class T>
class Sorted :  public TStash<T> {
  void bubblesort();
public:
  int add(T* element) {
    TStash<T>::add(element);
    bubblesort();
    return 0; // Sort moves the element
  }



Chapter 14: Templates & Container Classes
489

};

template<class T>
void Sorted<T>::bubblesort() {
  for(int i = count(); i > 0; i--)
    for(int j = 1; j < i; j++)
      if(*storage[j-1] > *storage[j]) {
        // Swap the two elements:
        T* t = storage[j-1];
        storage[j-1] = storage[j];
        storage[j] = t;
      }
}

// Unique random number generator:
template<int upper_bound>
class Urand {
  int map[upper_bound];
  int recycle;
public:
  Urand(int Recycle = 0);
  int operator()();
};

template<int upper_bound>
Urand<upper_bound>::Urand(int Recycle = 0)
  : recycle(Recycle) {
  memset(map, 0, upper_bound * sizeof(int));
  srand(time(0)); // Seed random number generator
}

template<int upper_bound>
int Urand<upper_bound>::operator()() {
  if(!memchr(map, 0, upper_bound)) {
    if(recycle)
      memset(map, 0,
        sizeof(map) * sizeof(int));
    else
      return -1; // No more spaces left
  }
  int newval;
  while(map[newval = rand() % upper_bound])
    ; // Until unique value is found



Chapter 14: Templates & Container Classes
490

  map[newval]++; // Set flag
  return newval;
}
#endif // SORTED_H_ ///:~

This example also contains a random number generator class that always produces a unique
number and overloads operator( ) to produce a familiar function-call syntax. The uniqueness
of Urand is produced by keeping a map of all the numbers possible in the random space (the
upper bound is set with the template argument) and marking each one off as it’s used. The
optional second constructor argument allows you to reuse the numbers once they’re all used
up. Notice that this implementation is optimized for speed by allocating the entire map,
regardless of how many numbers you’re going to need. If you want to optimize for size, you
can change the underlying implementation so it allocates storage for the map dynamically and
puts the random numbers themselves in the map rather than flags. Notice that this change in
implementation will not affect any client code.

The Sorted template imposes a restriction on all classes it is instantiated for: They must
contain a > operator. In SString this is added explicitly, but in Integer the automatic type
conversion operator int provides a path to the built-in > operator. When a template provides
more functionality for you, the trade-off is usually that it puts more requirements on your
class. Sometimes you’ll have to inherit the contained class to add the required functionality.
Notice the value of using an overloaded operator here — the Integer class can rely on its
underlying implementation to provide the functionality.

In this example you can see the usefulness of making the underlying storage in TStash
protected rather than private. It is an important thing for the Sorted class to know, a true
dependency: If you were to change the underlying implementation of TStash to be something
other than an array, like a linked list, the «swapping» of elements would be completely
different, so the dependent class Sorted would need to be changed. However, a preferable
alternative (if possible) to making the implementation of TStash protected is to provide
enough protected interface functions so that access and swapping can take place in a derived
class without directly manipulating the underlying implementation. That way you can still
change the underlying implementation without propagating modifications.

Here’s a test for SORTED.H:

//: C16:Sorted.cpp
// Testing template inheritance
#include <iostream>
#include <string>
#include "Sorted.h"
#include "Integer.h"

char* words[] = {
  "is", "running", "big", "dog", "a",
};
const wordsz = sizeof words / sizeof *words;



Chapter 14: Templates & Container Classes
491

int main() {
  Sorted<string> ss;
  for(int i = 0; i < wordsz; i++)
    ss.add(new string(words[i]));
  for(int j = 0; j < ss.count(); j++)
    std::cout << ss[j]->c_str() << endl;
  Sorted<Integer> is;
  Urand<47> rand1;
  for(int k = 0; k < 15; k++)
    is.add(new Integer(rand1()));
  for(int l = 0; l < is.count(); l++)
    std::cout << *is[l] << endl;
} ///:~

This tests both the SString and Integer classes by created a Sorted array for each.

Design & efficiency
In Sorted, every time you call add( ) the element is inserted and the array is resorted. Here,
the horribly inefficient and greatly deprecated (but easy to understand and code) bubble sort is
used. This is perfectly appropriate, because it’s part of the private implementation. During
program development, your priorities are to

 1.  Get the class interfaces correct.
 2.  Create an accurate implementation as rapidly as possible so you can.

 3.  Prove your design.

Very often, you will discover problems with the class interface only when you assemble your
initial «rough draft» of the working system. You may also discover the need for «helper»
classes like containers and iterators during system assembly and during your first-pass
implementation. Sometimes it’s very difficult to discover these kinds of issues during analysis
— your goal in analysis should be to get a big-picture design that can be rapidly implemented
and tested. Only after the design has been proven should you spend the time to flesh it out
completely and worry about performance issues. If the design fails, or if performance is not a
problem, the bubble sort is good enough, and you haven’t wasted any time. (Of course, the
ideal solution is to use someone else’s sorted container; the Standard C++ template library is
the first place to look.)

Preventing template bloat
Each time you instantiate a template, the code in the template is generated anew (except for
inline functions). If some of the functionality of a template does not depend on type, it can be



Chapter 14: Templates & Container Classes
492

put in a common base class to prevent needless reproduction of that code. For example, in
Chapter 12 in INHSTAK.CPP (page Erreur! Signet non défini.) inheritance was used to
specify the types that a Stack could accept and produce. Here’s the templatized version of
that code:

//: C16:Nobloat.h
// Templatized INHSTAK.CPP
#ifndef NOBLOAT_H_
#define NOBLOAT_H_
#include "Stack11.h"

template<class T>
class NBStack : public Stack {
public:
  void push(T* str) {
    Stack::push(str);
  }
  T* peek() const {
    return (T*)Stack::peek();
  }
  T* pop() {
    return (T*)Stack::pop();
  }
  ~NBStack();
};

// Defaults to heap objects & ownership:
template<class T>
NBStack<T>::~NBStack() {
  T* top = pop();
  while(top) {
    delete top;
    top = pop();
  }
}
#endif // NOBLOAT_H_ ///:~

As before, the inline functions generate no code and are thus «free.» The functionality is
provided by creating the base-class code only once. However, the ownership problem has
been solved here by adding a destructor (which is type-dependent, and thus must be created
by the template). Here, it defaults to ownership. Notice that when the base-class destructor is
called, the stack will be empty so no duplicate releases will occur.



Chapter 14: Templates & Container Classes
493

Polymorphism & containers
It’s common to see polymorphism, dynamic object creation and containers used together in a
true object-oriented program. Containers and dynamic object creation solve the problem of
not knowing how many or what type of objects you’ll need, and because the container is
configured to hold pointers to base-class objects, an upcast occurs every time you put a
derived-class pointer into the container (with the associated code organization and
extensibility benefits). The following example is a little simulation of trash recycling. All the
trash is put into a single bin, then later it’s sorted out into separate bins. There’s a function
that goes through any trash bin and figures out what the resource value is. Notice this is not
the most elegant way to implement this simulation; the example will be revisited in Chapter
17 when Run-Time Type Identification (RTTI) is explained:

//: C16:Recycle.cpp
// Containers & polymorphism
#include <fstream>
#include <cstdlib>
#include <ctime>
#include "TStack.h"
using namespace std;
ofstream out("recycle.out");

enum TrashType { AluminumT, PaperT, GlassT };

class Trash {
  float Weight;
public:
  Trash(float Wt) : Weight(Wt) {}
  virtual TrashType trashType() const = 0;
  virtual const char* name() const = 0;
  virtual float value() const = 0;
  float weight() const { return Weight; }
  virtual ~Trash() {}
};

class Aluminum : public Trash {
  static float val;
public:
  Aluminum(float Wt) : Trash(Wt) {}
  TrashType trashType() const { return AluminumT; }
  virtual const char* name() const {
    return "Aluminum";
  }



Chapter 14: Templates & Container Classes
494

  float value() const { return val; }
  static void value(int newval) {
    val = newval;
  }
};

float Aluminum::val = 1.67;

class Paper : public Trash {
  static float val;
public:
  Paper(float Wt) : Trash(Wt) {}
  TrashType trashType() const { return PaperT; }
  virtual const char* name() const {
    return "Paper";
  }
  float value() const { return val; }
  static void value(int newval) {
    val = newval;
  }
};

float Paper::val = 0.10;

class Glass : public Trash {
  static float val;
public:
  Glass(float Wt) : Trash(Wt) {}
  TrashType trashType() const { return GlassT; }
  virtual const char* name() const {
    return "Glass";
  }
  float value() const { return val; }
  static void value(int newval) {
    val = newval;
  }
};

float Glass::val = 0.23;

// Sums up the value of the Trash in a bin:
void SumValue(const TStack<Trash>& bin,ostream& os){
  TStackIterator<Trash> tally(bin);



Chapter 14: Templates & Container Classes
495

  float val = 0;
  while(tally) {
    val += tally->weight() * tally->value();
    os << "weight of " << tally->name()
        << " = " << tally->weight() << endl;
    tally++;
  }
  os << "Total value = " << val << endl;
}

int main() {
  srand(time(0)); // Seed random number generator
  TStack<Trash> bin; // Default to ownership
  // Fill up the Trash bin:
  for(int i = 0; i < 30; i++)
    switch(rand() % 3) {
      case 0 :
        bin.push(new Aluminum(rand() % 100));
        break;
      case 1 :
        bin.push(new Paper(rand() % 100));
        break;
      case 2 :
        bin.push(new Glass(rand() % 100));
        break;
    }
  // Bins to sort into:
  TStack<Trash> glassBin(0); // No ownership
  TStack<Trash> paperBin(0);
  TStack<Trash> alBin(0);
  TStackIterator<Trash> sorter(bin);
  // Sort the Trash:
  // (RTTI offers a nicer solution)
  while(sorter) {
    // Smart pointer call:
    switch(sorter->trashType()) {
      case AluminumT:
        alBin.push(sorter.current());
        break;
      case PaperT:
        paperBin.push(sorter.current());
        break;
      case GlassT:



Chapter 14: Templates & Container Classes
496

        glassBin.push(sorter.current());
        break;
    }
    sorter++;
  }
  SumValue(alBin, out);
  SumValue(paperBin, out);
  SumValue(glassBin, out);
  SumValue(bin, out);
} ///:~

This uses the classic structure of virtual functions in the base class that are redefined in the
derived class. The container TStack is instantiated for Trash, so it holds Trash pointers,
which are pointers to the base class. However, it will also hold pointers to objects of classes
derived from Trash, as you can see in the call to push( ). When these pointers are added, they
lose their specific identities and become simply Trash pointers (they are upcast). However,
because of polymorphism the proper behavior still occurs when the virtual function is called
through the tally and sorter iterators. (Notice the use of the iterator’s smart pointer, which
causes the virtual function call.)

The Trash class also includes a virtual destructor, something you should automatically add
to any class with virtual functions. When the bin container goes out of scope, the container’s
destructor calls all the virtual destructors for the objects it contains, and thus properly cleans
everything up.

Because container class templates are rarely subject to the inheritance and upcasting you see
with «ordinary» classes, you’ll almost never see virtual functions in these types of classes.
Their reuse is implemented with templates, not with inheritance.

Function templates
A class template describes an infinite set of classes, and the most common place you’ll see
templates is with classes. However, C++ also supports the concept of an infinite set of
functions, which is sometimes useful. The syntax is virtually identical, except that you create
a function instead of a class.

The clue that you should create a function template is, as you might suspect, if you find
you’re creating a number of functions that look identical except that they are dealing with
different types. The classic example of a function template is a sorting function.47 However, a
function template is useful in all sorts of places, as demonstrated in the first example that
follows. The second example shows a function template used with containers and iterators.

                                                       

47 See C++ Inside & Out (Osborne/McGraw-Hill, 1993) by the author, Chapter 10.



Chapter 14: Templates & Container Classes
497

A memory allocation system
There’s a few things you can do to make the raw memory allocation routines malloc( ),
calloc( ) and realloc( ) safer. The following function template produces one function
getmem( ) that either allocates a new piece of memory or resizes an existing piece (like
realloc( )). In addition, it zeroes only the new memory, and it checks to see that the memory is
successfully allocated. Also, you only tell it the number of elements of the type you want, not
the number of bytes, so the possibility of a programmer error is reduced. Here’s the header
file:

//: C16:Getmem.h
// Function template for memory
#ifndef GETMEM_H_
#define GETMEM_H_
#include <cstdlib>
#include <cstring>
#include "../require.h"

template<class T>
void getmem(T*& oldmem, int elems) {
  typedef int cntr; // Type of element counter
  const int csz = sizeof(cntr); // And size
  const int Tsz = sizeof(T);
  if(elems == 0) {
    free(&(((cntr*)oldmem)[-1]));
    return;
  }
  T* p = oldmem;
  cntr oldcount = 0;
  if(p) { // Previously allocated memory
    ((cntr*)p)--; // Back up by one cntr
    oldcount = *(cntr*)p; // Previous # elems
  }
  T* m = (T*)realloc(p, elems * Tsz + csz);
  require(m != 0);
  *((cntr*)m) = elems; // Keep track of count
  const cntr increment = elems - oldcount;
  if(increment > 0) {
    // Starting address of data:
    long startadr = (long)&(m[oldcount]);
    startadr += csz;
    // Zero the additional new memory:
    memset((void*)startadr, 0, increment * Tsz);



Chapter 14: Templates & Container Classes
498

  }
  // Return the address beyond the count:
  oldmem = (T*)&(((cntr*)m)[1]);
}

template<class T>
inline void freemem(T * m) { getmem(m, 0); }

#endif // GETMEM_H_ ///:~

To be able to zero only the new memory, a counter indicating the number of elements
allocated is attached to the beginning of each block of memory. The typedef cntr is the type
of this counter; it allows you to change from int to long if you need to handle larger chunks
(other issues come up when using long, however — these are seen in compiler warnings).

A pointer reference is used for the argument oldmem because the outside variable (a pointer)
must be changed to point to the new block of memory. oldmem must point to zero (to allocate
new memory) or to an existing block of memory that was created with getmem( ). This
function assumes you’re using it properly, but for debugging you could add an additional tag
next to the counter containing an identifier, and check that identifier in getmem( ) to help
discover incorrect calls.

If the number of elements requested is zero, the storage is freed. There’s an additional
function template freemem( ) that aliases this behavior.

You’ll notice that getmem( ) is very low-level — there are lots of casts and byte
manipulations. For example, the oldmem pointer doesn’t point to the true beginning of the
memory block, but just past the beginning to allow for the counter. So to free( ) the memory
block, getmem( ) must back up the pointer by the amount of space occupied by cntr. Because
oldmem is a T*, it must first be cast to a cntr*, then indexed backwards one place. Finally
the address of that location is produced for free( ) in the expression:

free(&(((cntr*)oldmem)[-1]));

Similarly, if this is previously allocated memory, getmem( ) must back up by one cntr size to
get the true starting address of the memory, and then extract the previous number of elements.
The true starting address is required inside realloc( ). If the storage size is being increased,
then the difference between the new number of elements and the old number is used to
calculate the starting address and the amount of memory to zero in memset( ). Finally, the
address beyond the count is produced to assign to oldmem in the statement:

oldmem = (T*)&(((cntr*)m)[1]);

Again, because oldmem is a reference to a pointer, this has the effect of changing the outside
argument passed to getmem( ).

Here’s a program to test getmem( ). It allocates storage and fills it up with values, then
increases that amount of storage:



Chapter 14: Templates & Container Classes
499

//: C16:Getmem.cpp
// Test memory function template
#include <iostream>
#include "Getmem.h"
using namespace std;

int main() {
  int* p = 0;
  getmem(p, 10);
  for(int i = 0; i < 10; i++) {
    cout << p[i] << ' ';
    p[i] = i;
  }
  cout << '\n';
  getmem(p, 20);
  for(int j = 0; j < 20; j++) {
    cout << p[j] << ' ';
    p[j] = j;
  }
  cout << '\n';
  getmem(p, 25);
  for(int k = 0; k < 25; k++)
    cout << p[k] << ' ';
  freemem(p);
  cout << '\n';

  float* f = 0;
  getmem(f, 3);
  for(int u = 0; u < 3; u++) {
    cout << f[u] << ' ';
    f[u] = u + 3.14159;
  }
  cout << '\n';
  getmem(f, 6);
  for(int v = 0; v < 6; v++)
    cout << f[v] << ' ';
  freemem(f);
} ///:~

After each getmem( ), the values in memory are printed out to show that the new ones have
been zeroed.

Notice that a different version of getmem( ) is instantiated for the int and float pointers. You
might think that because all the manipulations are so low-level you could get away with a



Chapter 14: Templates & Container Classes
500

single non-template function and pass a void*& as oldmem. This doesn’t work because then
the compiler must do a conversion from your type to a void*. To take the reference, it makes
a temporary. This produces an error because then you’re modifying the temporary pointer, not
the pointer you want to change. So the function template is necessary to produce the exact
type for the argument.

Applying a function to a TStack
Suppose you want to take a TStack and apply a function to all the objects it contains. Because
a TStack can contain any type of object, you need a function that works with any type of
TStack and any type of object it contains:

//: C16:Applist.cpp
// Apply a function to a TStack
#include <iostream>
#include "TStack.h"
using namespace std;

// 0 arguments, any type of return value:
template<class T, class R>
void applist(TStack<T>& tl, R(T::*f)()) {
  TStackIterator<T> it(tl);
  while(it) {
    (it.current()->*f)();
    it++;
  }
}

// 1 argument, any type of return value:
template<class T, class R, class A>
void applist(TStack<T>& tl, R(T::*f)(A), A a) {
  TStackIterator<T> it(tl);
  while(it) {
    (it.current()->*f)(a);
    it++;
  }
}

// 2 arguments, any type of return value:
template<class T, class R, class A1, class A2>
void applist(TStack<T>& tl, R(T::*f)(A1, A2),
    A1 a1, A2 a2) {
  TStackIterator<T> it(tl);
  while(it) {



Chapter 14: Templates & Container Classes
501

    (it.current()->*f)(a1, a2);
    it++;
  }
}

// Etc., to handle maximum probable arguments

class Gromit { // The techno-dog
  int arf;
public:
  Gromit(int Arf = 1) : arf(Arf + 1) {}
  void speak(int) {
    for(int i = 0; i < arf; i++)
      cout << "arf! ";
    cout << endl;
  }
  char eat(float) {
    cout << "chomp!" << endl;
    return 'z';
  }
  int sleep(char, double) {
    cout << "zzz..." << endl;
    return 0;
  }
  void sit(void) {}
};

int main() {
  TStack<Gromit> dogs;
  for(int i = 0; i < 5; i++)
    dogs.push(new Gromit(i));
  applist(dogs, &Gromit::speak, 1);
  applist(dogs, &Gromit::eat, 2.0f);
  applist(dogs, &Gromit::sleep, 'z', 3.0);
  applist(dogs, &Gromit::sit);
} ///:~

The applist( )function template takes a reference to the container class and a pointer-to-
member for a function contained in the class. It uses an iterator to move through the Stack
and apply the function to every object. If you’ve (understandably) forgotten the pointer-to-
member syntax, you can refresh your memory at the end of Chapter 9.

You can see there is more than one version of applist( ), so it’s possible to overload function
templates. Although they all take any type of return value (which is ignored, but the type



Chapter 14: Templates & Container Classes
502

information is required to match the pointer-to-member), each version takes a different
number of arguments, and because it’s a template, those arguments can be of any type. (You
can see different sets of functions in class Gromit.)48 The only limitation here is that there’s
no «super template» to create templates for you; thus you must decide how many arguments
will ever be required.

Although the definition of applist( ) is fairly complex and not something you’d ever expect a
novice to understand, its use is remarkably clean and simple, and a novice could easily use it
knowing only what it is intended to accomplish, not how. This is the type of division you
should strive for in all of your program components: The tough details are all isolated on the
designer’s side of the wall, and users are concerned only with accomplishing their goals, and
don’t see, know about, or depend on details of the underlying implementation

Of course, this type of functionality is strongly tied to the TStack class, so you’d normally
find these function templates in the header file along with TStack.

Member function templates
It’s also possible to make applist( ) a member function template of the class. That is, a
separate template definition from the class’ template, and yet a member of the class. Thus,
you can end up with the cleaner syntax:

dogs.applist(&Gromit::sit);

This is analogous to the act (in Chapter 1) of bringing ordinary functions inside a class.49

Controlling instantiation
At times it is useful to explicitly instantiate a template; that is, to tell the compiler to lay down
the code for a specific version of that template even though you’re not creating an object at
that point. To do this, you reuse the template keyword as follows:

template class Bobbin<thread>;
template void sort<char>(char*[]);

Here’s a version of the SORTED.CPP example that explicitly instantiates a template before
using it:

//: C16:Generate.cpp
// Explicit instantiation
#include <iostream>

                                                       

48 A reference to the British animated short The Wrong Trousers by Nick Park.

49 Check your compiler version information to see if it supports member function templates.



Chapter 14: Templates & Container Classes
503

#include "Sorted.h"
#include "Integer.h"
using namespace std;

// Explicit instantiation:
template class Sorted<Integer>;

int main() {
  Sorted<Integer> is;
  Urand<47> rand1;
  for(int k = 0; k < 15; k++)
    is.add(new Integer(rand1()));
  for(int l = 0; l < is.count(); l++)
    cout << *is[l] << endl;
} ///:~

In this example, the explicit instantiation doesn’t really accomplish anything; the program
would work the same without it. Explicit instantiation is only for special cases where extra
control is needed.

Template specialization
The Sorted vector only works with objects of user-defined types. It won’t instantiate properly
to sort an array of char*, for example. To create a special version you write the instantiation
yourself as if the compiler had gone through and substituted your type(s) for the template
argument(s). But you put your own code in the function bodies of the specialization. Here’s
an example that shows a char* for the Sorted vector:

//: C16:Special.cpp
// Template specialization
// A special sort for char*
#include <iostream>
#include "Sorted.h"
using namespace std;

class Sorted<char> :  public TStash<char> {
  void bubblesort();
public:
  int add(char* element) {
    TStash<char>::add(element);
    bubblesort();
    return 0; // Sort moves the element
  }
};



Chapter 14: Templates & Container Classes
504

void Sorted<char>::bubblesort() {
  for(int i = count(); i > 0; i--)
    for(int j = 1; j < i; j++)
      if(strcmp(storage[j], storage[j-1]) < 0) {
        // Swap the two elements:
        char* t = storage[j-1];
        storage[j-1] = storage[j];
        storage[j] = t;
      }
}

char* words[] = {
  "is", "running", "big", "dog", "a",
};
const wsz = sizeof words/sizeof *words;

int main() {
  Sorted<char> sc;
  for(int k = 0; k < wsz; k++)
    sc.add(words[k]);
  for(int l = 0; l < sc.count(); l++)
    cout << sc[l] << endl;
} ///:~

In the bubblesort( ) you can see that strcmp( ) is used instead of >.

The export keyword

Summary
Container classes are an essential part of object-oriented programming; they are another way
to simplify and hide the details of a program and to speed the process of program
development. In addition, they provide a great deal of safety and flexibility by replacing the
primitive arrays and relatively crude data structure techniques found in C.

Because the client programmer needs containers, it’s essential that they be easy to use. This is
where the template comes in. With templates the syntax for source-code reuse (as opposed to
object-code reuse provided by inheritance and composition) becomes trivial enough for the
novice user. In fact, reusing code with templates is notably easier than inheritance and
composition.



Chapter 14: Templates & Container Classes
505

Although you’ve learned about creating container and iterator classes in this book, in practice
it’s much more expedient to learn the containers and iterators that come with your compiler
or, failing that, to buy a library from a third-party vendor.50 The standard C++ library
includes a very complete but nonexhaustive set of containers and iterators.

The issues involved with container-class design have been touched upon in this chapter, but
you may have gathered that they can go much further. A complicated container-class library
may cover all sorts of additional issues, including persistence (introduced in Chapter 15) and
garbage collection (introduced in Chapter 11), as well as additional ways to handle the
ownership problem.

Exercises
 1.  Modify the result of Exercise 1 from Chapter 13 to use a TStack and

TStackIterator instead of an array of shape pointers. Add destructors to
the class hierarchy so you can see that the shape objects are destroyed when
the TStack goes out of scope.

 2.  Modify the SSHAPE2.CPP example from Chapter 13 to use TStack instead
of an array.

 3.  Modify RECYCLE.CPP to use a TStash instead of a TStack.
 4.  Change SETTEST.CPP to use a SortedSet instead of a set.
 5.  Duplicate the functionality of APPLIST.CPP for the TStash class.
 6.  You can do this exercise only if your compiler supports member function

templates. Copy TSTACK.H to a new header file and add the function
templates in APPLIST.CPP as member function templates of TStack.

 7.  (Advanced) Modify the TStack class to further increase the granularity of
ownership: add a flag to each link indicating whether that link owns the
object it points to, and support this information in the add( ) function and
destructor. Add member functions to read and change the ownership for
each link, and decide what the owns flag means in this new context.

 8.  (Advanced) Modify the TStack class so each entry contains reference-
counting information (not the objects they contain), and add member
functions to support the reference counting behavior.

 9.  (Advanced) Change the underlying implementation of Urand in
SORTED.CPP so it is space-efficient (as described in the paragraph
following SORTED.CPP) rather than time-efficient.

                                                       

50 See, for example, Rogue Wave, which has a well-designed set of C++ tools for all
platforms.



Chapter 14: Templates & Container Classes
506

 10.  (Advanced) Change the typedef cntr from an int to a long in GETMEM.H
and modify the code to eliminate the resulting warning messages about the
loss of precision. This is a pointer arithmetic problem.

 11.  (Advanced) Devise a test to compare the execution speed of an SString
created on the stack versus one created on the heap.



507

Part 2: The
Standard C++
Library





509

17: Library
Overview

Standard C++ not only incorporates all the Standard C
libraries, with small additions and changes to support type
safety, it also adds libraries of its own. These libraries are far
more powerful than those in Standard C; the leverage you
get from them is analogous to the leverage you get from
changing from C to C++.

The most complete and also the most obscure reference to the full libraries is the Standard
itself,51 which you should be able to find in electronic form by hunting around on the Internet
or on BBSs. Somewhat more readable (and yet still a self-described «expert’s guide») is
Stroustrup’s 3rd Edition of «The C++ Programming Language.» (Addison-Wesley, 1998 ??).
The goal of the chapters in this book that cover the libraries is to provide you with an
encyclopedia of descriptions and examples so you’ll have a good starting point for solving
any problem that requires the use of the Standard libraries. However, there are some
techniques and topics that are used rarely enough that they are not covered here, so if you
can’t find it in these chapters you should reach for Stroustrup.

The iostream library was introduced earlier in this book (see Chapter 5). Other useful libraries
in Standard C++ include the following:

Language Support. Elements inherent to the language itself, like implementation limits in
<climits> and <cfloat>; dynamic memory declarations in <new> like bad_alloc (the
exception thrown when you’re out of memory) and set_new_handler; the <typeinfo> header
for RTTI and the <exception> header that declares the terminate( ) and unexpected( )
functions.

Diagnostics Library. Components C++ programs can use to detect and report errors. The
<stdexcept> header declares the standard exception classes and <cassert> declares the same
thing as C’s ASSERT.H.

                                                       

51 Available at this writing in draft form only.



Chapter 14: Templates & Container Classes
510

General Utilities Library. These components are used by other parts of the Standard C++
library, but you can also use them in your own programs. Included are templatized versions of
operators !=, >, <=, and >= (to prevent redundant definitions), a pair template class with a
tuple-making template function, a set of function objects for support of the STL (described in
the next section of this appendix), and storage allocation functions for use with the STL so
you can easily modify the storage allocation mechanism.

Strings Library. The string class may be the most thorough string manipulation tool you’ve
ever seen. Chances are, anything you’ve done to character strings with lines of code in C can
be done with a member function call in the string class, including append( ), assign( ),
insert( ), remove( ), replace( ), resize( ), copy( ), find( ), rfind( ), find_first_of( ),
find_last_of( ), find_first_not_of( ), find_last_not_of( ), substr( ), and compare( ). The
operators =, +=, and [ ] are also overloaded to perform the intuitive operations. In addition,
there’s a «wide» wstring class designed to support international character sets. Both string
and wstring (declared in <string>, not to be confused with C’s <string.h>, which is, in strict
C++, <cstring>) are created from a common template class called basic_string. Note that the
string classes are seamlessly integrated with iostreams, virtually eliminating the need for you
to ever use strstream (or worry about the associated memory-management gotchas described
in Chapter 5). The string class will be covered in detail in Chapter XX.

Localization Library. This allows you to localize strings in your program to adapt to usage
in different countries, including money, numbers, date, time, and so on.

Containers Library. This includes the Standard Template Library (described in the next
section of this appendix) and also the bits and bit_string classes in <bits> and <bitstring>,
respectively. Both bits and bit_string are more complete implementations of the bitvector
concept introduced in Chapter 4 (see page Erreur! Signet non défini.). The bits template
creates a fixed-sized array of bits that can be manipulated with all the bitwise operators, as
well as member functions like set( ), reset( ), count( ), length( ), test( ), any( ), and none( ).
There are also conversion operators to_ushort( ), to_ulong( ), and to_string( ).

The bit_string class is, by contrast, a dynamically sized array of bits, with similar operations
to bits, but also with additional operations that make it act somewhat like a string. There’s a
fundamental difference in bit weighting: With bits, the right-most bit (bit zero) is the least
significant bit, but with bit_string, the right-most bit is the most significant bit. There are no
conversions between bits and bit_string. You’ll use bits for a space-efficient set of on-off
flags and bit_string for manipulating arrays of binary values (like pixels).

Iterators Library. Includes iterators that are tools for the STL (described in the next section
of this appendix), streams, and stream buffers.

Algorithms Library. These are the template functions that perform operations on the STL
containers using iterators. The algorithms include: adjacent_find, prev_permutation,
binary_search, push_heap, copy, random_shuffle, copy_backward, remove, count,
remove_copy, count_if, remove_copy_if, equal, remove_if, equal_range, replace, fill,
replace_copy, fill_n, replace_copy_if, find, replace_if, find_if, reverse, for_each,
reverse_copy, generate, rotate, generate_n, rotate_copy, includes, search,
inplace_merge, set_difference, lexicographical_compare, set_intersection, lower_bound,



Chapter 14: Templates & Container Classes
511

set_symmetric_difference, make_heap, set_union, max, sort, max_element, sort_heap,
merge, stable_partition, min, stable_sort, min_element, swap, mismatch, swap_ranges,
next_permutation, transform, nth_element, unique, partial_sort, unique_copy,
partial_sort_copy, upper_bound, and partition.

Numerics Library. The goal of this library is to allow the compiler implementor to take
advantage of the architecture of the underlying machine when used for numerical operations.
This way, creators of higher level numerical libraries can write to the numerics library and
produce efficient algorithms without having to customize to every possible machine. The
numerics library also includes the complex number class (which appeared in the first version
of C++ as an example, and has become an expected part of the library) in float, double, and
long double forms.

Summary





513

18: Strings
52This chapter examines C++ Standard string class,
beginning with a look at what constitutes a C++ string and
how the C++ version differs from a traditional C string.
You’ll learn about operations and manipulations using string
objects, and see how C++ strings accommodate variation in
character sets and string data conversion.

Handling text is perhaps one of the oldest of all programming applications, so it’s not
surprising that the C++ string draws heavily on the ideas and terminology that have long been
used for this purpose in C and other languages. As you begin to acquaint yourself with C++
strings this fact should be reassuring, in the respect that no matter what programming idiom
you choose, there are really only about three things you can do with a string: create or modify
the sequence of characters stored in the string, detect the presence or absence of elements
within the string, and translate between various schemes for representing string characters.

You’ll see how each of these jobs is accomplished using C++ string objects.

What’s in a string
In C, a string is simply an array of characters that always includes a binary zero (often called
the null terminator) as its final array element. There are two significant differences between
C++ strings and their C progenitors. First, C++ string objects associate the array of
characters which constitute the string with methods useful for managing and operating on it.
A string also contains certain «housekeeping» information about the size and storage location
of its data. Specifically, a C++ string object knows its starting location in memory, its
content, its length in characters, and the length in characters to which it can grow before the
string object must resize its internal data buffer. This gives rise to the second big difference
between C char arrays and C++ strings. C++ strings do not include a null terminator, nor do
the C++ string handling member functions rely on the existence of a null terminator to
perform their jobs. C++ strings greatly reduce the likelihood of making three of the most
common and destructive C programming errors: overwriting string bounds, trying to access

                                                       

52 The material in this chapter was originally created by Nancy Nicolaisen



Chapter 14: Templates & Container Classes
514

strings through uninitialized or incorrectly valued pointers, and leaving pointers «dangling»
after a string ceases to occupy the storage that was once allocated to it.

The exact implementation of memory layout for the string class is not defined by the C++
Standard. This architecture is intended to be flexible enough to allow differing
implementations by compiler vendors, yet guarantee predictable behavior for users. In
particular, the exact conditions under which storage is allocated to hold data for a string object
are not defined in the C++ Standard. String allocation rules were formulated to allow but not
require a reference-counted implementation, but whether or not the implementation uses
reference counting, the semantics must be the same. To put this a bit differently, in C, every
char array occupies a unique physical region of memory. In C++, individual string objects
may or may not occupy unique physical regions of memory, but if reference counting is used
to avoid storing duplicate copies of data, the individual objects must look and act as though
they exclusively own unique regions of storage. For example:

//: C18:StringStorage.cpp
#include <string>
#include <iostream>
using namespace std;

int main() {
  string s1("12345");
  // Set the iterator indicate the first element
  string::iterator it = s1.begin();
  // This may copy the first to the second or
  // use reference counting to simulate a copy
  string s2 = s1;
  // Either way, this statement may ONLY modify first
  *it = '0';
  cout << "s1 = " << s1 << endl;
  cout << "s2 = " << s2 << endl;
} ///:~

Reference counting may serve to make an implementation more memory efficient, but it is
transparent to users of the string class.

Creating and initializing C++ strings
Creating and initializing strings is a straightforward proposition, and fairly flexible as well. In
the example shown below, the first string, imBlank, is declared but contains no initial value.
Unlike a C char array, which would contain a random and meaningless bit pattern until
initialization, imBlank does contain meaningful information. This string object has been
initialized to hold «no characters,» and can properly report its 0 length and absence of data
elements through the use of class member functions.



Chapter 14: Templates & Container Classes
515

The next string, heyMom, is initialized by the literal argument "Where are my socks?". This
form of initialization uses a quoted character array as a parameter to the string constructor.
By contrast, standardReply is simply initialized with an assignment. The last string of the
group, useThisOneAgain, is initialized using an existing C++ string object. Put another way,
this example illustrates that string objects let you:

• Create an empty string and defer initializing it with character data

• Initialize a string by passing a literal, quoted character array as an argument to the
constructor

• Initialize a string using ‘=’

• Use one string to initialize another

//: C18:SmallString.cpp
#include <string>
using namespace std;

int main() {
  string imBlank;
  string heyMom("Where are my socks?");
  string standardReply = "Beamed into deep "
    "space on wide angle dispersion?";
  string useThisOneAgain(standardReply);
} ///:~

These are the simplest forms of string initialization, but there are other variations which offer
more flexibility and control. You can :

• Use a portion of either a C char array or a C++ string

• Combine different sources of initialization data using operator+

• Use the string object’s substr( ) member function to create a substring

//: C18:SmallString2.cpp
#include <string>
using namespace std;
int main() {
  string s1
    ("What is the sound of one clam napping?");
  string s2
    ("Anything worth doing is worth overdoing.");
  string s3("I saw Elvis in a UFO.");
  // Copy the first 8 chars
  string s4(s1, 0, 8);
  // Copy 6 chars from the middle of the source



Chapter 14: Templates & Container Classes
516

  string s5(s2, 15, 6);
  // Copy from middle to end
  string s6(s3, 6, 15);
  // Copy all sorts of stuff
  string quoteMe = s4 + "that" +
  // substr() copies 10 chars at element 20
  s1.substr(20, 10) + s5 +
  // substr() copies up to either 100 char
  // or eos starting at element 5
  "with" + s3.substr(5, 100) +
  // OK to copy a single char this way
  s1.substr(37, 1);
} ///:~

The string member function substr( ) takes a starting position as its first argument and the
number of characters to select as the second argument. Both of these arguments have default
values and if you say substr( ) with an empty argument list you produce a copy of the entire
string, so this is a convenient way to duplicate a string.

Here’s what the string quoteMe contains after the initialization shown above :

"What is that one clam doing with Elvis in a UFO?"

Notice the final line of example above. C++ allows string initialization techniques to be
mixed in a single statement, a flexible and convenient feature. Also note that the last
initializer copies just one character from the source string.

Another slightly more subtle initialization technique involves the use of the string iterators
string.begin( ) and string.end( ). This treats a string like a container object (which you’ve
seen primarily in the form of vector so far in this book – you’ll see many more containers
soon) which has iterators indicating the start and end of the «container.» This way you can
hand a string constructor two iterators and it will copy from one to the other into the new
string:

//: C18:StringIterators.cpp
#include <string>
#include <iostream>
using namespace std;

int main() {
  string source("xxx");
  string s(source.begin(), source.end());
  cout << s << endl;
} ///:~

The iterators are not restricted to begin( ) and end( ), so you can choose a subset of characters
from the source string.



Chapter 14: Templates & Container Classes
517

Initialization limitations
C++ strings may not be initialized with single characters or with ASCII or other integer
values.

//: C18:UhOh.cpp
#include <string>
using namespace std;

int main() {
  // Error: no single char inits
  //! string nothingDoing1('a');
  // Error: no integer inits
  //! string nothingDoing2(0x37);
} ///:~

This is true both for initialization by assignment and by copy constructor.

Operating on strings
If you’ve programmed in C, you are accustomed to the convenience of a large family of
functions for writing, searching, rearranging, and copying char arrays. However, there are
two unfortunate aspects of the Standard C library functions for handling char arrays. First,
there are three loosely organized families of them: the «plain» group, the group that
manipulates the characters without respect to case, and the ones which require you to supply a
count of the number of characters to be considered in the operation at hand. The roster of
function names in the C char array handling library literally runs to several pages, and though
the kind and number of arguments to the functions are somewhat consistent within each of the
three groups, to use them properly you must be very attentive to details of function naming
and parameter passing.

The second inherent trap of the standard C char array tools is that they all rely explicitly on
the assumption that the character array includes a null terminator. If by oversight or error the
null is omitted or overwritten, there’s very little to keep the C char array handling functions
from manipulating the memory beyond the limits of the allocated space, sometimes with
disastrous results.

C++ provides a vast improvement in the convenience and safety of string objects. For
purposes of actual string handling operations, there are a modest two or three dozen member
function names. It’s worth your while to become acquainted with these. Each function is
overloaded, so you don’t have to learn a new string member function name simply because of
small differences in their parameters.



Chapter 14: Templates & Container Classes
518

Appending, inserting and concatenating
strings

One of the most valuable and convenient aspects of C++ strings is that they grow as needed,
without intervention on the part of the programmer. Not only does this make string handling
code inherently more trustworthy, it also almost entirely eliminates a tedious «housekeeping»
chore – keeping track of the bounds of the storage in which your strings live. For example, if
you create a string object and initialize it with a string of 50 copies of ‘X’, and later store in it
50 copies of «Zowie», the object itself will reallocate sufficient storage to accommodate the
growth of the data. Perhaps nowhere is this property more appreciated than when the strings
manipulated in your code will change in size, but when you don’t know big the change is.
Appending, concatenating, and inserting strings often give rise to this circumstance, but the
string member functions append( ) and insert( ) transparently reallocate storage when a string
grows.

//: C18:StrSize.cpp
#include <string>
#include <iostream>
using namespace std;

int main() {
  string bigNews("I saw Elvis in a UFO. ");
  cout << bigNews << endl;
  // How much data have we actually got?
  cout << "Size = " << bigNews.size() << endl;
  // How much can we store without reallocating
  cout << "Capacity = "
    << bigNews.capacity() << endl;
  // Insert this string in bigNews immediately
  // following bigNews[1]
  bigNews.insert(1, " thought I ");
  cout << bigNews << endl;
  cout << "Size = " << bigNews.size() << endl;
  cout << "Capacity = "
    << bigNews.capacity() << endl;
  // Make sure that there will be this much space
  bigNews.reserve(500);
  // Add this to the end of the string
  bigNews.append("I've been working too hard.");
  cout << bigNews << endl;
  cout << "Size = " << bigNews.size() << endl;
  cout << "Capacity = "
    << bigNews.capacity() << endl;



Chapter 14: Templates & Container Classes
519

} ///:~

Here is the output:

I saw Elvis in a UFO.
Size = 21
Capacity = 31
I thought I saw Elvis in a UFO.
Size = 32
Capacity = 63
I thought I saw Elvis in a UFO. I have been
working too hard.
Size = 66
Capacity = 511

This example demonstrates that even though you can safely relinquish much of the
responsibility for allocating and managing the memory your strings occupy, C++ strings
provide you with several tools to monitor and manage their size. The size( ), resize( ),
capacity( ), and reserve( ) member functions can be very useful when its necessary to work
back and forth between data contained in C++ style strings and traditional null terminated C
char arrays. Note the ease with which we changed the size of the storage allocated to the
string.

The exact fashion in which the string member functions will allocate space for your data is
dependent on the implementation of the library. When one implementation was tested with
the example above, it appeared that reallocations occurred on even word boundaries, with one
byte held back. The architects of the string class have endeavored to make it possible to mix
the use of C char arrays and C++ string objects, so it is likely that figures reported by
StrSize.cpp for capacity reflect that in this particular implementation, a byte is set aside to
easily accommodate the insertion of a null terminator.

Replacing string characters
insert( ) is particularly nice because it absolves you of making sure the insertion of characters
in a string won’t overrun the storage space or overwrite the characters immediately following
the insertion point. Space grows and existing characters politely move over to accommodate
the new elements. Sometimes, however, this might not be what you want to happen. If the
data in string needs to retain the ordering of the original characters relative to one another or
must be a specific constant size, use the replace( ) function to overwrite a particular sequence
of characters with another group of characters. If we add the following fragment of code to
StrSize.cpp, we can test replace( ).

//: C18:Replace.cpp
#include <string>
#include <iostream>
using namespace std;



Chapter 14: Templates & Container Classes
520

void replaceChars(string& modifyMe,
  string findMe, string newChars){
  // Look in modifyMe for the "find string"
  // starting at position 0
  int i = modifyMe.find(findMe, 0);
  // Did we find the string to replace?
  if(i != string::npos)
    // Replace the find string with newChars
    modifyMe.replace(i,newChars.size(),newChars);
}

int main() {
  string bigNews =
   "I thought I saw Elvis in a UFO. "
   "I have been working too hard.";
  string replacement("wig");
  string findMe("UFO");
  // Find "UFO" in bigNews and overwrite it:
  replaceChars(bigNews, findMe,  replacement);
  cout << bigNews << endl;
} ///:~

Now the last line of output from replace.cpp looks like this:

I thought I saw Elvis in a wig. I have been
working too hard.

If replace doesn’t find the search string, it returns npos. npos is a static constant member of
the basic_string class.

Unlike insert( ), replace( ) won’t grow the string’s storage space if you copy new characters
into the middle of an existing series of array elements. However, it will grow the storage
space if you make a «replacement» that writes beyond the end of an existing array. Here’s an
example:

//: C18:ReplaceAndGrow.cpp
#include <string>
#include <iostream>
using namespace std;

int main() {
  string bigNews("I saw Elvis in a UFO. "
    "I have been working too hard.");
  string replacement("wig");
  // The first arg says "replace chars



Chapter 14: Templates & Container Classes
521

  // beyond the end of the existing string":
  bigNews.replace(bigNews.size(),
    replacement.size(), replacement);
  cout << bigNews << endl;
} ///:~

The call to replace( ) begins «replacing» beyond the end of the existing array. The output
looks like this:

I saw Elvis in a wig. I have
been working too hard.wig

Notice that replace( ) expands the array to accommodate the growth of the string due to
«replacement» beyond the bounds of the existing array.

Concatenation using non-member
overloaded operators

One of the most delightful discoveries awaiting a C programmer learning about C++ string
handling is how simply strings can be combined and appended using operator+ and
operator+=. These operators make combining strings syntactically equivalent to adding
numeric data.

//: C18:AddStrings.cpp
#include <string>
#include <iostream>
using namespace std;

int main() {
  string s1("This ");
  string s2("That ");
  string s3("The other ");
  // operator+ concatenates strings
  s1 = s1 + s2;
  cout << s1 << endl;
  // Another way to concatenates strings
  s1 += s3;
  cout << s1 << endl;
  // You can index the string on the right
  s1 += s3 + s3[4] + "oh lala";
  cout << s1 << endl;
} ///:~

The output looks like this:



Chapter 14: Templates & Container Classes
522

This
This That
This That The other
This That The other ooh lala

operator+ and operator+= are a very flexible and convenient means of combining string
data. On the right hand side of the statement, you can use almost any type that evaluates to a
group of one or more characters.

Searching in strings
The find family of string member functions allows you to locate a character or group of
characters within a given string. Here are the members of the find family and their general
usage:

string find member function What/how it finds
 find( ) Searches a string for a specified character or

group of characters and returns the starting
position of the first occurrence found or npos
(this member datum holds the current actual
length of the string which is being searched)
if no match is found.

 find_first_of( ) Searches a target string and returns the
position of the first match of any character in
a specified group. If no match is found, it
returns npos.

 find_last_of( ) Searches a target string and returns the
position of the last match of any character in
a specified group. If no match is found, it
returns npos.

 find_first_not_of( ) Searches a target string and returns the
position of the first element that doesn’t
match of any character in a specified group.
If no such element is found, it returns npos.

 find_last_not_of( ) Searches a target string and returns the
position of the element with the largest
subscript that doesn’t match of any character
in a specified group. If no such element is
found, it returns npos.

 rfind( ) Searches a string from end to beginning for a
specified character or group of characters and



Chapter 14: Templates & Container Classes
523

returns the starting position of the match if
one is found. If no match is found, it returns
npos.

String searching member functions and their general uses
The simplest use of find( ) searches for one or more characters in a string. This overloaded
version of find( ) takes a parameter that specifies the character(s) for which to search, and
optionally one that tells it where in the string to begin searching for the occurrence of a
substring. (The default position at which to begin searching is 0.) By setting the call to find
inside a loop, you can easily move through a string, repeating a search in order to find all of
the occurrences of a given character or group of characters within the string.

Notice that we define the string object sieveChars using a constructor idiom which sets the
initial size of the character array and writes the value ‘P’ to each of its member.

//: C18:Sieve.cpp
#include <string>
#include <iostream>
using namespace std;

int main() {
  // Create a 50 char string and set each
  // element to 'P' for Prime
  string sieveChars(50, 'P');
  // By definition neither 0 nor 1 is prime.
  // Change these elements to "N" for Not Prime
  sieveChars.replace(0, 2, "NN");
  // Walk through the array:
  for(int i = 2;
    i <= (sieveChars.size() / 2) - 1; i++)
    // Find all the factors:
    for(int factor = 2;
      factor * i < sieveChars.size();factor++)
      sieveChars[factor * i] = 'N';

  cout << "Prime:" << endl;
  // Return the index of the first 'P' element:
  int i = sieveChars.find('P');
  // While not at the end of the string:
  while(i != sieveChars.npos) {
    // If the element is P, the index is a prime
    cout << i << " ";
    // Move past the last prime
    i++;



Chapter 14: Templates & Container Classes
524

    // Find the next prime
    i = sieveChars.find('P', i);
  }
  cout << endl << "Not prime:" << endl;
  // Find the first element value not equal P:
  i = sieveChars.find_first_not_of('P');
  while(i != sieveChars.npos) {
    cout << i << " ";
    i++;
    i = sieveChars.find_first_not_of('P', i);
  }
} ///:~

The output from Sieve.cpp looks like this:

Prime:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Not prime:
0 1 4 6 8 9 10 12 14 15 16 18 20 21 22
24 25 26 27 28 30 32 33 34 35 36 38 39
40 42 44 45 46 48 49

find( ) allows you to walk forward through a string, detecting multiple occurrences of a
character or group of characters, while find_first_not_of( ) allows you to test for the absence
of a character or group.

The find member is also useful for detecting the occurrence of a sequence of characters in a
string:

//: C18:Find.cpp
// Find a group of characters in a string
#include <string>
#include <iostream>
using namespace std;

int main() {
  string chooseOne("Eenie, meenie, miney, mo");
  int i = chooseOne.find("een");
  while(i != string::npos) {
    cout << i << endl;
    i++;
    i = chooseOne.find("een", i);
  }
} ///:~

Find.cpp produces a single line of output :



Chapter 14: Templates & Container Classes
525

8

This tells us that the first ‘e’ of the search group «een» was found in the word «meenie,» and
is the eighth element in the string. Notice that find passed over the «Een» group of characters
in the word «Eenie». The find member function performs a case sensitive search.

There are no functions in the string class to change the case of a string, but these functions
can be easily created using the Standard C library functions toupper( ) and tolower( ), which
change the case of one character at a time. A few small changes will make Find.cpp perform
a case insensitive search:

//: C18:NewFind.cpp
#include <string>
#include <iostream>
#include <stdio.h>
using namespace std;

// Make an uppercase copy of s:
string upperCase(string& s) {
  char* buf = new char[s.length()];
  s.copy(buf, s.length());
  for(int i = 0; i < s.length(); i++)
    buf[i] = toupper(buf[i]);
  string r(buf, s.length());
  delete buf;
  return r;
}

// Make a lowercase copy of s:
string lowerCase(string& s) {
  char* buf = new char[s.length()];
  s.copy(buf, s.length());
  for(int i = 0; i < s.length(); i++)
    buf[i] = tolower(buf[i]);
  string r(buf, s.length());
  delete buf;
  return r;
}

int main() {
  string chooseOne("Eenie, meenie, miney, mo");
  cout << chooseOne << endl;
  cout << upperCase(chooseOne) << endl;
  cout << lowerCase(chooseOne) << endl;
  // Case sensitive search



Chapter 14: Templates & Container Classes
526

  int i = chooseOne.find("een");
  while(i != string::npos) {
    cout << i << endl;
    i++;
    i = chooseOne.find("een", i);
  }
  // Search lowercase:
  string lcase = lowerCase(chooseOne);
  cout << lcase << endl;
  i = lcase.find("een");
  while(i != lcase.npos) {
    cout << i << endl;
    i++;
    i = lcase.find("een", i);
  }
  // Search uppercase:
  string ucase = upperCase(chooseOne);
  cout << ucase << endl;
  i = ucase.find("EEN");
  while(i != ucase.npos) {
    cout << i << endl;
    i++;
    i = ucase.find("EEN", i);
  }
} ///:~

Both the upperCase( ) and lowerCase( ) functions follow the same form: they allocate
storage to hold the data in the argument string, copy the data and change the case. Then they
create a new string with the new data, release the buffer and return the result string. The
c_str( ) function cannot be used to produce a pointer to directly manipulate the data in the
string because c_str( ) returns a pointer to const. That is, you’re not allowed to manipulate
string data with a pointer, only with member functions. If you need to use the more primitive
char array manipulation, you should use the technique shown above.

The output looks like this:

Eenie, meenie, miney, mo
eenie, meenie, miney, mo
EENIE, MEENIE, MINEY, MO
8
eenie, meenie, miney, mo
0
8
EENIE, MEENIE, MINEY, MO
0



Chapter 14: Templates & Container Classes
527

8

The case insensitive searches found both occurrences on the «een» group.

NewFind.cpp isn’t the best solution to the case sensitivity problem, so we’ll revisit it when
we examine string comparisons.

Finding in reverse
Sometimes it’s necessary to search through a string from end to beginning, if you need to find
the data in «last in / first out « order. The string member function rfind( ) handles this job.

//: C18:Rparse.cpp
// Reverse the order of words in a string
#include <string>
#include <iostream>
#include <vector>
using namespace std;

int main() {
  // The ';' characters will be delimiters
  string s("now.;sense;make;to;going;is;This");
  cout << s << endl;
  // To store the words:
  vector<string> strings;
  // The last element of the string:
  int last = s.size();
  // The beginning of the the current word:
  int current = s.rfind(';');
  // Walk backward through the string:
  while(current != string::npos){
    // Push each word into the vector.
    // Current is incremented before copying to
    // avoid copying the delimiter.
    strings.push_back(
      s.substr(++current,last - current));
    // Back over the delimiter we just found,
    // and set last to the end of the next word
    current -= 2;
    last = current;
    // Find the next delimiter
    current = s.rfind(';', current);
  }
  // Pick up the first word - it's not



Chapter 14: Templates & Container Classes
528

  // preceded by a delimiter
  strings.push_back(s.substr(0, last - current));
  // Print them in the new order:
  for(int j = 0; j < strings.size(); j++)
    cout << strings[j] << " ";
} ///:~

Here’s how the output from Rparse.cpp looks:

now.;sense;make;to;going;is;This
This is going to make sense now.

rfind( ) backs through the string looking for tokens, reporting the array index of matching
characters or string::npos if it is unsuccessful.

Removing characters from strings
My word processor/page layout program (Microsoft Word) will save a document in HTML,
but it doesn’t recognize that the code listings in this book should be tagged with the HTML
«preformatted» tag (<PRE>), and it puts paragraph marks (<P> and </P>) around every
listing line. This means that all the indentation in the code listings is lost. In addition, Word
saves HTML with reduced font sizes for body text, which makes it hard to read.

To convert the book to HTML form, then, the original output must be reprocessed, watching
for the tags that mark the start and end of code listings, inserting the <PRE> and </PRE> tags
at the appropriate places, removing all the <P> and </P> tags within the listings, and adjusting
the font sizes. Removal is accomplished with the erase( ) member function, but you must
correctly determine the starting and ending points of the substring you wish to erase. Here’s
the program that reprocesses the generated HTML file:

//: C18:ReprocessHTML.cpp
// Take Word's html output and fix up
// the code listings and html tags
#include <iostream>
#include <fstream>
#include <string>
#include <cassert>
using namespace std;

// Produce a new string which is the original
// string with the html paragraph break marks
// stripped off:
string stripPBreaks(string s) {
  int br;
  while((br = s.find("<P>")) != string::npos)
    s.erase(br, strlen("<P>"));



Chapter 14: Templates & Container Classes
529

  while((br = s.find("</P>")) != string::npos)
    s.erase(br, strlen("</P>"));
  return s;
}

// After the beginning of a code listing is
// detected, this function cleans up the listing
// until the end marker is found. The first line
// of the listing is passed in by the caller,
// which detects the start marker in the line.
void fixupCodeListing(istream& in,
  ostream& out, string& line, int tag) {
  out << line.substr(0, tag)
    << "<PRE>" // Means "preformatted" in html
    << stripPBreaks(line.substr(tag)) << endl;
  string s;
  while(getline(in, s)) {
    int endtag = s.find("/""/""/"":~");
    if(endtag != string::npos) {
      endtag += strlen("/""/""/"":~");
      string before = s.substr(0, endtag);
      string after = s.substr(endtag);
      out << stripPBreaks(before) << "</PRE>"
        << after << endl;
      return;
    }
    out << stripPBreaks(s) << endl;
  }
}

string removals[] = {
  "<FONT SIZE=2>",
  "<FONT SIZE=1>",
  "<FONT FACE=\"Times\" SIZE=1>",
  "<FONT FACE=\"Times\" SIZE=2>",
  "<FONT FACE=\"Courier\" SIZE=1>",
  "SIZE=1", // Eliminate all other '1' & '2' size
  "SIZE=2",
};
const rmsz = sizeof(removals)/sizeof(*removals);

int main(int argc, char* argv[]) {
  assert(argc == 3);



Chapter 14: Templates & Container Classes
530

  ifstream in(argv[1]);
  assert(in);
  ofstream out(argv[2]);
  string line;
  while(getline(in, line)) {
    // The "Body" tag only appears once:
    if(line.find("<BODY") != string::npos) {
      out << "<BODY BGCOLOR=\"#FFFFFF\" "
      "TEXT=\"#000000\">" << endl;
      continue; // Get next line
    }
    // Eliminate each of the removals strings:
    for(int i = 0; i < rmsz; i++) {
      int find = line.find(removals[i]);
      if(find != string::npos)
        line.erase(find, removals[i].size());
    }
    int tag1 = line.find("/""/"":");
    int tag2 = line.find("/""*"":");
    if(tag1 != string::npos)
      fixupCodeListing(in, out, line, tag1);
    else if(tag2 != string::npos)
      fixupCodeListing(in, out, line, tag2);
    else
      out << line << endl;
  }
} ///:~

Notice the lines that detect the start and end listing tags by indicating them with each
character in quotes. These tags are treated in a special way by the logic in the
Extractcode.cpp tool for extracting code listings. To allow us to present the code for the tool
in the text of the book, we had to make sure that the tag sequence itself didn’t occur in the
listing. To do so , we took advantage of a C++ preprocessor feature that causes text strings
delimited by adjacent pairs of double quotes to be merged into a single string during the
preprocessor pass of the build.

int tag1 = line.find("/""/"":");

The effect of the sequence of char arrays is to produce the starting tag for code listings.

Comparing strings
Comparing strings is inherently different than comparing numbers. Numbers have constant,
universally meaningful values. To evaluate the relationship between the magnitude of two
strings, you must make a lexical comparison. Lexical comparison means that when you test a



Chapter 14: Templates & Container Classes
531

character to see if it is «greater than» or «less than» another character, you are actually
comparing the numeric representation of those characters as specified in the collating
sequence of the character set being used. Most often, this will be the ASCII collating
sequence, which assigns the printable characters for the English language numbers in the
range from 32 to 127 decimal. In the ASCII collating sequence, the first «character» in the list
is the space, followed by several common punctuation marks, and then uppercase and
lowercase letters. With respect to the alphabet, this means that the letters nearer the front have
lower ASCII values than those nearer the end. With these details in mind, it becomes easier to
remember that when a lexical comparison that reports s1 is «greater than» s2, it simply means
that when the two were compared, the first differing character in s1 came later in the alphabet
than the character in that same position in s2.

C++ provides several ways to compare strings, and each has their advantages. The simplest to
use are the non member overloaded operator functions operator ==, operator != operator >,
operator <, operator >=, and operator <=.

//: C18:CompStr.cpp
#include <string>
#include <iostream>
using namespace std;

int main() {
  // Strings to compare
  string s1("This ");
  string s2("That ");
  for(int i = 0; i< s1.size() &&
    i < s2.size(); i++)
    // See if the string elements are the same:
    if(s1[i] == s2[i])
      cout << s1[i] << "  " << i << endl;
  // Use the string inequality operators
  if(s1 != s2) {
    cout << "Strings aren't the same:" << " ";
    if(s1 > s2)
      cout << "s1 is > s2" << endl;
    else
      cout << "s2 is > s1" << endl;
  }
} ///:~

Here’s the output from CompStr.cpp:

T 0
h 1
  4
Strings aren’t the same: s1 is > s2



Chapter 14: Templates & Container Classes
532

The overloaded comparison operators are useful for comparing both full strings and
individual string elements.

Notice in the code fragment below the flexibility of argument types on both the left and right
hand side of the comparison operators. The overloaded operator set allows the direct
comparison of string objects, quoted literals, and pointers to C style strings.

// The lvalue is a quoted literal and
// the rvalue is a string
if("That " == s2)
  cout << "A match" << endl;
// The lvalue is a string and the rvalue is a
// pointer to a c style null terminated string
if(s1 != s2.c_str())
  cout << "No match" << endl;

You won’t find the logical not (!) or the logical comparison operators (&& and ||) among
operators for string. (Neither will you find overloaded versions of the bitwise C operators &, |,
^, or ~.) The overloaded non member comparison operators for the string class are limited to
the subset which has clear, unambiguous application to single characters or groups of
characters.

The compare( ) member function offers you a great deal more sophisticated and precise
comparison than the non member operator set, because it returns a lexical comparison value,
and provides for comparisons that consider subsets of the string data. It provides overloaded
versions that allow you to compare two complete strings, part of either string to a complete
string, and subsets of two strings. This example compares complete strings:

//: C18:Compare.cpp
// Demonstrates compare(), swap()
#include <string>
#include <iostream>
using namespace std;

int main() {
  string first("This");
  string second("That");
  // Which is lexically greater?
  switch(first.compare(second)) {
    case 0: // The same
      cout << first << " and " << second <<
        " are lexically equal" << endl;
      break;
    case -1: // Less than
      first.swap(second);
      // Fall through this case...



Chapter 14: Templates & Container Classes
533

    case 1: // Greater than
      cout << first <<
        " is lexically greater than " <<
        second << endl;
  }
} ///:~

The output from Compare.cpp looks like this:

This is lexically greater than That

To compare a subset of the characters in one or both strings, you add arguments that define
where to start the comparison and how many characters to consider. For example, we can use
the overloaded version of compare( ):

s1.compare(s1artPos, s1NumberChars, s2, s2StartPos, s2NumberChars);

If we substitute the above version of compare( ) in the previous program so that it only looks
at the first two characters of each string, the program becomes:

//: C18:Compare2.cpp
// Overloaded compare()
#include <string>
#include <iostream>
using namespace std;

int main() {
  string first("This");
  string second("That");
  // Compare first two characters of each string:
  switch(first.compare(0, 2, second, 0, 2)) {
    case 0: // The same
      cout << first << " and " << second <<
        " are lexically equal" << endl;
      break;
    case -1: // Less than
      first.swap(second);
      // Fall through this case...
    case 1: // Greater than
      cout << first <<
        " is lexically greater than " <<
        second << endl;
  }
} ///:~

The output is:



Chapter 14: Templates & Container Classes
534

This and That are lexically equal

which is true, for the first two characters of «This» and «That.»

Indexing with [ ] vs. at( )
In the examples so far, we have used C style array indexing syntax to refer to an individual
character in a string. C++ strings provide an alternative to the s[n] notation: the at( ) member.
These two idioms produce the same result in C++ if all goes well:

//: C18:StringIndexing.cpp
#include <string>
#include <iostream>
using namespace std;
int main(){
  string s("1234");
  cout << s[1] << " ";
  cout << s.at(1) << endl;
} ///:~

The output from this code looks like this:

2 2

However, there is one important difference between [ ] and at( ). When you try to reference
an array element that is out of bounds, at( ) will do you the kindness of throwing an
exception, while ordinary [ ] subscripting syntax will leave you to your own devices:

//: C18:BadStringIndexing.cpp
#include <string>
#include <iostream>
using namespace std;

int main(){
  string s("1234");
  // Run-time problem: goes beyond array bounds:
  cout << s[5] << endl;
  // Saves you by throwing an exception:
  cout << s.at(5) << endl;
} ///:~

Using at( ) in place of [ ] will give you a chance to gracefully recover from references to array
elements that don’t exist. at( ) throws an object of class out_of_range. By catching this object
in an exception handler, you can take appropriate remedial actions such as recalculating the
offending subscript or growing the array. (You can read more about Exception Handling in
Chapter XX)



Chapter 14: Templates & Container Classes
535

Using iterators
In the example program NewFind.cpp, we used a lot of messy and rather tedious C char
array handling code to change the case of the characters in a string and then search for the
occurrence of matches to a substring. Sometimes the «quick and dirty» method is justifiable,
but in general, you won’t want to sacrifice the advantages of having your string data safely
and securely encapsulated in the C++ object where it lives.

Here is a better, safer way to handle case insensitive comparison of two C++ string objects.
Because no data is copied out of the objects and into C style strings, you don’t have to use
pointers and you don’t have to risk overwriting the bounds of an ordinary character array. In
this example, we use the string iterator. Iterators are themselves objects which move through
a collection or container of other objects, selecting them one at a time, but never providing
direct access to the implementation of the container. Iterators are not pointers, but they are
useful for many of the same jobs.

//: C18:CmpIter.cpp
// Find a group of characters in a string
#include <string>
#include <iostream>
using namespace std;

// Case insensitive compare function:
int
stringCmpi(const string& s1, const string& s2) {
  // Select the first element of each string:
  string::const_iterator
    p1 = s1.begin(), p2 = s2.begin();
  // Don’t run past the end:
  while(p1 != s1.end() && p2 != s2.end()) {
    // Compare upper-cased chars:
    if(toupper(*p1) != toupper(*p2))
      // Report which was lexically  greater:
      return (toupper(*p1)<toupper(*p2))? -1 : 1;
    p1++;
    p2++;
  }
  // If they match up to the detected eos, say
  // which was longer. Return 0 if the same.
  return(s2.size() - s1.size());
}

int main() {
  string s1("Mozart");



Chapter 14: Templates & Container Classes
536

  string s2("Modigliani");
  cout << stringCmpi(s1, s2) << endl;
} ///:~

Notice that the iterators p1 and p2 use the same syntax as C pointers – the ‘*’ operator makes
the value of element at the location given by the iterators available to the toupper( ) function.
toupper( ) doesn’t actually change the content of the element in the string. In fact, it can’t.
This definition of p1 tells us that we can only use the elements p1 points to as constants.

string::const_iterator p1 = s1.begin();

The way toupper( ) and the iterators are used in this example is called a case preserving case
insensitive comparison. This means that the string didn’t have to be copied or rewritten to
accommodate case insensitive comparison. Both of the strings retain their original data,
unmodified.

Iterating in reverse
Just as the standard C pointer gives us the increment (++) and decrement (--) operators to
make pointer arithmetic a bit more convenient, C++ string iterators come in two basic
varieties. You’ve seen end( ) and begin( ), which are the tools for moving forward through a
string one element at a time. The reverse iterators rend( ) and rbegin( ) allow you to step
backwards through a string. Here’s how they work:

//: C18:RevStr.cpp
// Print a string in reverse
#include <string>
#include <iostream>
using namespace std;
int main() {
  string s("987654321");
  // Use this iterator to walk backwards:
  string::reverse_iterator rev;
  // "Incrementing" the reverse iterator moves
  // it to successively lower string elements:
  for(rev = s.rbegin(); rev != s.rend(); rev++)
    cout << *rev << " ";
} ///:~

The output from RevStr.cpp looks like this:

1 2 3 4 5 6 7 8 9

Reverse iterators act like pointers to elements of the string’s character array, except that when
you apply the increment operator to them, they move backward rather than forward. rbegin( )
and rend( ) supply string locations that are consistent with this behavior, to wit, rbegin( )
locates the position just beyond the end of the string, and rend( ) locates the beginning. Aside
from this, the main thing to remember about reverse iterators is that they aren’t type



Chapter 14: Templates & Container Classes
537

equivalent to ordinary iterators. For example, if a member function parameter list includes an
iterator as an argument, you can’t substitute a reverse iterator to get the function to perform
it’s job walking backward through the string. Here’s an illustration:

// The compiler won’t accept this
string sBackwards(s.rbegin(), s.rend());

The string constructor won’t accept reverse iterators in place of forward iterators in its
parameter list. This is also true of string members such as copy( ), insert( ), and assign( ).

Strings and character traits
We seem to have worked our way around the margins of case insensitive string comparisons
using C++ string objects, so maybe it’s time to ask the obvious question: «Why isn’t case-
insensitive comparison part of the standard string class ?» The answer provides interesting
background on the true nature of C++ string objects.

Consider what it means for a character to have «case.» Written Hebrew, Farsi, and Kanji
don’t use the concept of upper and lower case, so for those languages this idea has no
meaning at all. This the first impediment to built-in C++ support for case-insensitive character
search and comparison: the idea of case sensitivity is not universal, and therefore not portable.

It would seem that if there were a way of designating that some languages were «all
uppercase» or «all lowercase» we could design a generalized solution. However, some
languages which employ the concept of «case» also change the meaning of particular
characters with diacritical marks: the cedilla in Spanish, the circumflex in French, and the
umlaut in German. For this reason, any case-sensitive collating scheme that attempts to be
comprehensive will be nightmarishly complex to use.

Although we usually treat the C++ string as a class, this is really not the case. string is a
typedef of a more general constituent, the basic_string< > template. Observe how string is
declared in the standard C++ header file:

typedef basic_string<char> string;

To really understand the nature of strings, it’s helpful to delve a bit deeper and look at the
template on which it is based. Here’s the declaration of the basic_string< > template:

template<class charT,
  class traits = char_traits<charT>,
  class allocator = allocator<charT> >
  class basic_string;

Earlier in this book, templates were examined in a great deal of detail. The main thing to
notice about the two declarations above are that the string type is created when the
basic_string template is instantiated with char. Inside the basic_string< > template
declaration, the line

class traits = char_traits<charT>,



Chapter 14: Templates & Container Classes
538

tells us that the behavior of the class made from the basic_string< > template is specified by
a class based on the template char_traits< >. Thus, the basic_string< > template provides for
cases where you need string oriented classes that manipulate types other than char (wide
characters or unicode, for example). To do this, the char_traits< > template controls the
content and collating behaviors of a variety of character sets using the character comparison
functions eq( ) (equal), ne( ) (not equal), and lt( ) (less than) upon which the basic_string< >
string comparison functions rely.

This is why the string class doesn’t include case insensitive member functions: That’s not in
its job description. To change the way the string class treats character comparison, you must
supply a different of char_traits< > template, because that defines the behavior of the
individual character comparison member functions.

This information can be used to make a new type of string class that ignores case. First, we’ll
define a new case insensitive char_traits< > template that inherits the existing one. Next,
we’ll override only the members we need to change in order to make character-by-character
comparison case insensitive. (In addition to the three lexical character comparison members
mentioned above, we’ll also have to supply new implementation of find( ) and compare( ).)
Finally, we’ll typedef a new class based on basic_string, but using the case insensitive
ichar_traits template for its second argument.

//: C18:ichar_traits.h
// Creating your own character traits
#ifndef ICHAR_TRAITS_H_
#define ICHAR_TRAITS_H_
#include <string>

struct ichar_traits : std::char_traits<char> {
  // We'll only change character by
  // character comparison functions
  static bool eq(char c1st, char c2nd) {
    return toupper(c1st) == toupper(c2nd);
  }
  static bool ne(char c1st, char c2nd) {
    return toupper(c1st) != toupper(c2nd);
  }
  static bool lt(char c1st, char c2nd) {
    return toupper(c1st) <  toupper(c2nd);
  }
  static int compare(const char* str1,
    const char* str2, size_t n) {
    for(int i = 0; i < n; i++) {
      if(tolower(*str1) > tolower(*str2))
        return 1;
      if(tolower(*str1) < tolower(*str2))



Chapter 14: Templates & Container Classes
539

        return -1;
      if(*str1 == 0 || *str2 == 0)
        return 0;
    }
    return 0;
  }
  static const char* find(const char* s1,
    int  n, char c) {
    while(n-- > 0 &&
      toupper(*s1) != toupper(c))
      s1++;
    return s1;
  }
};
#endif // ICHAR_TRAITS_H_  ///:~

If we typedef an istring class like this:

typedef basic_string<char, ichar_traits,
  allocator<char> > istring;

Then this istring will act like an ordinary string in every way, except that it will make all
comparisons without respect to case. Here’s an example:

//: C18:ICompare.cpp
#include <string>
#include <iostream>
#include "ichar_traits.h"
using namespace std;

typedef basic_string<char, ichar_traits,
  allocator<char> > istring;

int main() {
  // The same letters except for case:
  istring first = "tHis";
  istring second = "ThIS";
  cout << first.compare(second) << endl;
} ///:~

The output from the program is «0», indicating that the strings compare as equal. This is just a
simple example – in order to make istring fully equivalent to string, we’d have to create the
other functions necessary to support the new istring type.



Chapter 14: Templates & Container Classes
540

Summary
C++ string objects provide developers with a number of great advantages over their C
counterparts. For the most part, the string class makes referring to strings through the use of
character pointers unnecessary. This eliminates an entire class of software defects that arise
from the use of uninitialized and incorrectly valued pointers. C++ strings dynamically and
transparently grow their internal data storage space to accommodate increases in the size of
the string data. This means that when the data in a string grows beyond the limits of the
memory initially allocated to it, the string object will make the memory management calls that
take space from and return space to the heap. Consistent allocation schemes prevent memory
leaks and have the potential to be much more efficient than «roll your own» memory
management.

The string class member functions provide a fairly comprehensive set of tools for creating,
modifying, and searching in strings. string comparisons are always case sensitive, but you
can work around this by copying string data to C style null terminated strings and using case
insensitive string comparison functions, temporarily converting the data held in sting objects
to a single case, or by creating a case insensitive string class which overrides the character
traits used to create the basic_string object.

Exercises
 1.  A palindrome is a word or group of words that read the same forward and

backward. For example «madam» or «wow». Write a program that takes a
string argument and and returns TRUE if the string was a palindrome.

 2.  Some times the input from a file stream contains a two character sequence
to represent a newline. These two characters (0x0a 0x0d) produce extra
blank lines when the stream is printed to standard out. Write a program that
finds the character 0x0d (ASCII carraige return) and deletes it from the
string.

 3.  Write a program that reverses the order of the characters in a string.



541

19: Iostreams
So far in this book we’ve used the old reliable C standard
I/O library, a perfect example of a library that begs to be
turned into a class.

In fact, there’s much more you can do with the general I/O problem than just take standard
I/O and turn it into a class. Wouldn’t it be nice if you could make all the usual «receptacles»
— standard I/O, files and even blocks of memory — look the same, so you need to remember
only one interface? That’s the idea behind iostreams. They’re much easier, safer, and often
more efficient than the assorted functions from the Standard C stdio library.

Iostream is usually the first class library that new C++ programmers learn to use. This chapter
explores the use of iostreams, so they can replace the C I/O functions through the rest of the
book. In future chapters, you’ll see how to set up your own classes so they’re compatible with
iostreams.

Why iostreams?
You may wonder what’s wrong with the good old C library. And why not «wrap» the C
library in a class and be done with it? Indeed, there are situations when this is the perfect thing
to do, when you want to make a C library a bit safer and easier to use. For example, suppose
you want to make sure a stdio file is always safely opened and properly closed, without
relying on the user to remember to call the close( ) function:

//: C19:FileClass.h
// Stdio files wrapped
#ifndef FILECLAS_H_
#define FILECLAS_H_
#include <cstdio>

class FileClass {
  std::FILE* f;
public:
  FileClass(const char* fname, const char* mode="r");
  ~FileClass();
  std::FILE* fp();
};



Chapter 14: Templates & Container Classes
542

#endif // FILECLAS_H_ ///:~

In C when you perform file I/O, you work with a naked pointer to a FILE struct, but this class
wraps around the pointer and guarantees it is properly initialized and cleaned up using the
constructor and destructor. The second constructor argument is the file mode, which defaults
to «r» for «read.»

To fetch the value of the pointer to use in the file I/O functions, you use the fp( ) access
function. Here are the member function definitions:

//: C19:FileClass.cpp {O}
// Implementation
#include <cstdlib>
#include "FileClass.h"
using namespace std;

FileClass::FileClass(const char* fname, const char* mode){
  f = fopen(fname, mode);
  if(f == NULL) {
    printf("%s: file not found\n", fname);
    exit(1);
  }
}

FileClass::~FileClass() { fclose(f); }

FILE* FileClass::fp() { return f; } ///:~

The constructor calls fopen( ),as you would normally do, but it also checks to ensure the
result isn’t zero, which indicates a failure upon opening the file. If there’s a failure, the name
of the file is printed and exit( ) is called.

The destructor closes the file, and the access function fp( )returns f. Here’s a simple example
using class FileClass:

//: C19:Fctest.cpp
//{L} Fileclass
// Testing class File
#include "../require.h"
#include "FileClass.h"
using namespace std;

int main(int argc, char* argv[]) {
  requireArgs(argc,  2);
  FileClass f(argv[1]); // Opens and tests
  #define BSIZE 100



Chapter 14: Templates & Container Classes
543

  char buf[BSIZE];
  while(fgets(buf, BSIZE, f.fp()))
    puts(buf);
} // File automatically closed by destructor
///:~

You create the FileClass object and use it in normal C file I/O function calls by calling fp( ).
When you’re done with it, just forget about it, and the file is closed by the destructor at the
end of the scope.

True wrapping
Even though the FILE pointer is private, it isn’t particularly safe because fp( ) retrieves it. The
only effect seems to be guaranteed initialization and cleanup, so why not make it public, or
use a struct instead? Notice that while you can get a copy of f using fp( ), you cannot assign
to f — that’s completely under the control of the class. Of course, after capturing the pointer
returned by fp( ), the client programmer can still assign to the structure elements, so the safety
is in guaranteeing a valid FILE pointer rather than proper contents of the structure.

If you want complete safety, you have to prevent the user from direct access to the FILE
pointer. This means some version of all the normal file I/O functions will have to show up as
class members, so everything you can do with the C approach is available in the C++ class:

//: C19:Fullwrap.h
// Completely hidden file IO
#ifndef FULLWRAP_H_
#define FULLWRAP_H_

class File {
  std::FILE* f;
  std::FILE* F(); // Produces checked pointer to f
public:
  File(); // Create object but don't open file
  File(const char* path,
       const char* mode = "r");
  ~File();
  int open(const char* path,
           const char* mode = "r");
  int reopen(const char* path,
             const char* mode);
  int Getc();
  int Ungetc(int c);
  int Putc(int c);
  int puts(const char* s);
  char* gets(char* s, int n);



Chapter 14: Templates & Container Classes
544

  int printf(const char* format, ...);
  size_t read(void* ptr, size_t size,
              size_t n);
  size_t write(const void* ptr,
                size_t size, size_t n);
  int eof();
  int close();
  int flush();
  int seek(long offset, int whence);
  int getpos(fpos_t* pos);
  int setpos(const fpos_t* pos);
  long tell();
  void rewind();
  void setbuf(char* buf);
  int setvbuf(char* buf, int type, size_t sz);
  int error();
  void Clearerr();
};
#endif // FULLWRAP_H_ ///:~

This class contains almost all the file I/O functions from STDIO.H. vfprintf( ) is missing; it is
used to implement the printf( ) member function.

File has the same constructor as in the previous example, and it also has a default constructor.
The default constructor is important if you want to create an array of File objects or use a File
object as a member of another class where the initialization doesn’t happen in the constructor
(but sometime after the enclosing object is created).

The default constructor sets the private FILE pointer f to zero. But now, before any reference
to f, its value must be checked to ensure it isn’t zero. This is accomplished with the last
member function in the class, F( ), which is private because it is intended to be used only by
other member functions. (We don’t want to give the user direct access to the FILE structure
in this class.)53

This is not a terrible solution by any means. It’s quite functional, and you could imagine
making similar classes for standard (console) I/O and for in-core formatting (reading/writing a
piece of memory rather than a file or the console).

The big stumbling block is the run-time interpreter used for the variable-argument list
functions. This is the code that parses through your format string at run-time and grabs and
interprets arguments from the variable argument list. It’s a problem for four reasons.

                                                       

53 The implementation and test files for FULLWRAP are available in the freely distributed
source code for this book. See preface for details.



Chapter 14: Templates & Container Classes
545

 1.  Even if you use only a fraction of the functionality of the interpreter, the
whole thing gets loaded. So if you say:
printf("%c", 'x');
you’ll get the whole package, including the parts that print out floating-
point numbers and strings. There’s no option for reducing the amount of
space used by the program.

 2.  Because the interpretation happens at run-time there’s a performance
overhead you can’t get rid of. It’s frustrating because all the information is
there in the format string at compile time, but it’s not evaluated until run-
time. However, if you could parse the arguments in the format string at
compile time you could make hard function calls that have the potential to
be much faster than a run-time interpreter (although the printf( ) family of
functions is usually quite well optimized).

 3.  A worse problem occurs because the evaluation of the format string doesn’t
happen until run-time: there can be no compile-time error checking. You’re
probably very familiar with this problem if you’ve tried to find bugs that
came from using the wrong number or type of arguments in a printf( )
statement. C++ makes a big deal out of compile-time error checking to find
errors early and make your life easier. It seems a shame to throw it away for
an I/O library, especially because I/O is used a lot.

 4.  For C++, the most important problem is that the printf( ) family of
functions is not particularly extensible. They’re really designed to handle
the four basic data types in C (char, int, float, double and their variations).
You might think that every time you add a new class, you could add an
overloaded printf( ) and scanf( ) function (and their variants for files and
strings) but remember, overloaded functions must have different types in
their argument lists and the printf( ) family hides its type information in the
format string and in the variable argument list. For a language like C++,
whose goal is to be able to easily add new data types, this is an ungainly
restriction.

Iostreams to the rescue
All these issues make it clear that one of the first standard class libraries for C++ should
handle I/O. Because «hello, world» is the first program just about everyone writes in a new
language, and because I/O is part of virtually every program, the I/O library in C++ must be
particularly easy to use. It also has the much greater challenge that it can never know all the
classes it must accommodate, but it must nevertheless be adaptable to use any new class. Thus
its constraints required that this first class be a truly inspired design.



Chapter 14: Templates & Container Classes
546

This chapter won’t look at the details of the design and how to add iostream functionality to
your own classes (you’ll learn that in a later chapter). First, you need to learn to use iostreams.
In addition to gaining a great deal of leverage and clarity in your dealings with I/O and
formatting, you’ll also see how a really powerful C++ library can work.

Sneak preview of operator overloading
Before you can use the iostreams library, you must understand one new feature of the
language that won’t be covered in detail until a later chapter. To use iostreams, you need to
know that in C++ all the operators can take on different meanings. In this chapter, we’re
particularly interested in << and >>. The statement «operators can take on different
meanings» deserves some extra insight.

In Chapter 4, you learned how function overloading allows you to use the same function name
with different argument lists. Now imagine that when the compiler sees an expression
consisting of an argument followed by an operator followed by an argument, it simply calls a
function. That is, an operator is simply a function call with a different syntax.

Of course, this is C++, which is very particular about data types. So there must be a
previously declared function to match that operator and those particular argument types, or
the compiler will not accept the expression.

What most people find immediately disturbing about operator overloading is the thought that
maybe everything they know about operators in C is suddenly wrong. This is absolutely false.
Here are two of the sacred design goals of C++:

 1.  A program that compiles in C will compile in C++. The only compilation
errors and warnings from the C++ compiler will result from the «holes» in
the C language, and fixing these will require only local editing. (Indeed, the
complaints by the C++ compiler usually lead you directly to undiscovered
bugs in the C program.)

 2.  The C++ compiler will not secretly change the behavior of a C program by
recompiling it under C++.

Keeping these goals in mind will help answer a lot of questions; knowing there are no
capricious changes to C when moving to C++ helps make the transition easy. In particular,
operators for built-in types won’t suddenly start working differently — you cannot change
their meaning. Overloaded operators can be created only where new data types are involved.
So you can create a new overloaded operator for a new class, but the expression

1 << 4;

won’t suddenly change its meaning, and the illegal code

1.414 << 1;

won’t suddenly start working.



Chapter 14: Templates & Container Classes
547

Inserters and extractors
In the iostreams library, two operators have been overloaded to make the use of iostreams
easy. The operator << is often referred to as an inserter for iostreams, and the operator >> is
often referred to as an extractor.

A stream is an object that formats and holds bytes. You can have an input stream (istream) or
an output stream (ostream). There are different types of istreams and ostreams: ifstreams and
ofstreams for files, istrstreams , and ostrstreams for char* memory (in-core formatting), and
istringstreams & ostringstreams for interfacing with the Standard C++ string class. All these
stream objects have the same interface, regardless of whether you’re working with a file,
standard I/O, a piece of memory or a string object. The single interface you learn also works
for extensions added to support new classes.

If a stream is capable of producing bytes (an istream), you can get information from the
stream using an extractor. The extractor produces and formats the type of information that’s
expected by the destination object. To see an example of this, you can use the cin object,
which is the iostream equivalent of stdin in C, that is, redirectable standard input. This object
is pre-defined whenever you include the IOSTREAM.H header file. (Thus, the iostream
library is automatically linked with most compilers.)

  int i;
  cin >> i;

  float f;
  cin >> f;

  char c;
  cin >> c;

  char buf[100];
  cin >> buf;

There’s an overloaded operator >> for every data type you can use as the right-hand
argument of >> in an iostream statement. (You can also overload your own, which you’ll see
in a later chapter.)

To find out what you have in the various variables, you can use the cout object
(corresponding to standard output; there’s also a cerr object corresponding to standard error)
with the inserter <<:

  cout << "i = ";
  cout << i;
  cout << "\n";
  cout << "f = ";
  cout << f;
  cout << "\n";



Chapter 14: Templates & Container Classes
548

  cout << "c = ";
  cout << c;
  cout << "\n";
  cout << "buf = ";
  cout << buf;
  cout << "\n";

This is notably tedious, and doesn’t seem like much of an improvement over printf( ), type
checking or no. Fortunately, the overloaded inserters and extractors in iostreams are designed
to be chained together into a complex expression that is much easier to write:

  cout << "i = " << i << endl;
  cout << "f = " << f << endl;
  cout << "c = " << c << endl;
  cout << "buf = " << buf << endl;

You’ll understand how this can happen in a later chapter, but for now it’s sufficient to take the
attitude of a class user and just know it works that way.

Manipulators
One new element has been added here: a manipulator called endl. A manipulator acts on the
stream itself; in this case it inserts a newline and flushes the stream (puts out all pending
characters that have been stored in the internal stream buffer but not yet output). You can also
just flush the stream:

 cout << flush;

There are additional basic manipulators that will change the number base to oct (octal), dec
(decimal) or hex (hexadecimal):

 cout << hex << "0x" << i << endl;

There’s a manipulator for extraction that «eats» white space:

cin >> ws;

and a manipulator called ends, which is like endl, only for strstreams (covered in a while).
These are all the manipulators in IOSTREAM.H, but there are more in IOMANIP.H you’ll
see later in the chapter.

Common usage
Although cin and the extractor >> provide a nice balance to cout and the inserter <<, in
practice using formatted input routines, especially with standard input, has the same problems
you run into with scanf( ). If the input produces an unexpected value, the process is skewed,
and it’s very difficult to recover. In addition, formatted input defaults to whitespace
delimiters. So if you collect the above code fragments into a program



Chapter 14: Templates & Container Classes
549

//: C19:Iosexamp.cpp
// Iostream examples
#include <iostream>
using namespace std;

int main() {
  int i;
  cin >> i;

  float f;
  cin >> f;

  char c;
  cin >> c;

  char buf[100];
  cin >> buf;

  cout << "i = " << i << endl;
  cout << "f = " << f << endl;
  cout << "c = " << c << endl;
  cout << "buf = " << buf << endl;

  cout << flush;
  cout << hex << "0x" << i << endl;
} ///:~

and give it the following input,

12 1.4 c this is a test

you’ll get the same output as if you give it

12
1.4
c
this is a test

and the output is, somewhat unexpectedly,

i = 12
f = 1.4
c = c
buf = this
0xc



Chapter 14: Templates & Container Classes
550

Notice that buf got only the first word because the input routine looked for a space to delimit
the input, which it saw after «this.» In addition, if the continuous input string is longer than
the storage allocated for buf, you’ll overrun the buffer.

It seems cin and the extractor are provided only for completeness, and this is probably a good
way to look at it. In practice, you’ll usually want to get your input a line at a time as a
sequence of characters and then scan them and perform conversions once they’re safely in a
buffer. This way you don’t have to worry about the input routine choking on unexpected data.

Another thing to consider is the whole concept of a command-line interface. This has made
sense in the past when the console was little more than a glass typewriter, but the world is
rapidly changing to one where the graphical user interface (GUI) dominates. What is the
meaning of console I/O in such a world? It makes much more sense to ignore cin altogether
other than for very simple examples or tests, and take the following approaches:

 1.  If your program requires input, read that input from a file — you’ll soon see
it’s remarkably easy to use files with iostreams. Iostreams for files still
works fine with a GUI.

 2.  Read the input without attempting to convert it. Once you’ve got it
someplace where it can’t foul things up during conversion, then you can
safely scan it.

 3.  Output is different. If you’re using a GUI, cout doesn’t work and you must
send it to a file (which is identical to sending it to cout) or use the GUI
facilities for data display. Otherwise it often makes sense to send it to cout.
In both cases, the output formatting functions of iostreams are highly useful.

Line-oriented input
To grab input a line at a time, you have two choices: the member functions get( ) and
getline( ). Both functions take three arguments: a pointer to a character buffer in which to
store the result, the size of that buffer (so they don’t overrun it), and the terminating character,
to know when to stop reading input. The terminating character has a default value of ‘\n’,
which is what you’ll usually use. Both functions store a zero in the result buffer when they
encounter the terminating character in the input.

So what’s the difference? Subtle, but important: get( ) stops when it sees the delimiter in the
input stream, but it doesn’t extract it from the input stream. Thus, if you did another get( )
using the same delimiter it would immediately return with no fetched input. (Presumably, you
either use a different delimiter in the next get( ) statement or a different input function.)
getline( ), on the other hand, extracts the delimiter from the input stream, but still doesn’t
store it in the result buffer.

Generally, when you’re processing a text file that you read a line at a time, you’ll want to use
getline( ).



Chapter 14: Templates & Container Classes
551

Overloaded versions of get( )
get( ) also comes in three other overloaded versions: one with no arguments that returns the
next character, using an int return value; one that stuffs a character into its char argument,
using a reference (You’ll have to jump forward to Chapter 9 if you want to understand it right
this minute . . . .); and one that stores directly into the underlying buffer structure of another
iostream object. That is explored later in the chapter.

Reading raw bytes
If you know exactly what you’re dealing with and want to move the bytes directly into a
variable, array, or structure in memory, you can use read( ). The first argument is a pointer to
the destination memory, and the second is the number of bytes to read. This is especially
useful if you’ve previously stored the information to a file, for example, in binary form using
the complementary write( ) member function for an output stream. You’ll see examples of all
these functions later.

Error handling
All the versions of get( ) and getline( ) return the input stream from which the characters
came except for get( ) with no arguments, which returns the next character or EOF. If you get
the input stream object back, you can ask it if it’s still OK. In fact, you can ask any iostream
object if it’s OK using the member functions good( ), eof( ), fail( ), and bad( ). These return
state information based on the eofbit (indicates the buffer is at the end of sequence), the
failbit (indicates some operation has failed because of formatting issues or some other
problem that does not affect the buffer) and the badbit (indicates something has gone wrong
with the buffer).

However, as mentioned earlier, the state of an input stream generally gets corrupted in weird
ways only when you’re trying to do input to specific types and the type read from the input is
inconsistent with what is expected. Then of course you have the problem of what to do with
the input stream to correct the problem. If you follow my advice and read input a line at a
time or as a big glob of characters (with read( )) and don’t attempt to use the input formatting
functions except in simple cases, then all you’re concerned with is whether you’re at the end
of the input (EOF). Fortunately, testing for this turns out to be simple and can be done inside
of conditionals, such as while(cin) or if(cin). For now you’ll have to accept that when you use
an input stream object in this context, the right value is safely, correctly and magically
produced to indicate whether the object has reached the end of the input. You can also use the
Boolean NOT operator !, as in if(!cin), to indicate the stream is not OK; that is, you’ve
probably reached the end of input and should quit trying to read the stream.

There are times when the stream becomes not-OK, but you understand this condition and
want to go on using it. For example, if you reach the end of an input file, the eofbit and failbit
are set, so a conditional on that stream object will indicate the stream is no longer good.



Chapter 14: Templates & Container Classes
552

However, you may want to continue using the file, by seeking to an earlier position and
reading more data. To correct the condition, simply call the clear( ) member function.54

File iostreams
Manipulating files with iostreams is much easier and safer than using STDIO.H in C. All you
do to open a file is create an object; the constructor does the work. You don’t have to
explicitly close a file (although you can, using the close( ) member function) because the
destructor will close it when the object goes out of scope.

To create a file that defaults to input, make an ifstream object. To create one that defaults to
output, make an ofstream object.

Here’s an example that shows many of the features discussed so far. Note the inclusion of
FSTREAM.H to declare the file I/O classes; this also includes IOSTREAM.H.

//: C19:Strfile.cpp
// Stream I/O with files
// The difference between get() & getline()
#include <fstream>
#include <iostream>
#include "../require.h"
using namespace std;
#define SZ 100  // Buffer size

int main() {
  char buf[SZ];
  {
    ifstream in("strfile.cpp"); // Read
    assure(in, "strfile.cpp"); // Verify open
    ofstream out("strfile.out"); // Write
    assure(out, "strfile.out");
    int i = 1; // Line counter

    // A less-convenient approach for line input:
    while(in.get(buf, SZ)) { // Leaves \n in input
      in.get(); // Throw away next character (\n)
      cout << buf << endl; // Must add \n
      // File output just like standard I/O:

                                                       

54 Newer implementations of iostreams will still support this style of handling errors, but in
some cases will also throw exceptions.



Chapter 14: Templates & Container Classes
553

      out << i++ << ": " << buf << endl;
    }
  } // Destructors close in & out

  ifstream in("strfile.out");
  assure(in, "strfile.out");
  // More convenient line input:
  while(in.getline(buf, SZ)) { // Removes \n
    char* cp = buf;
    while(*cp != ':')
      cp++;
    cp += 2; // Past ": "
    cout << cp << endl; // Must still add \n
  }
} ///:~

The creation of both the ifstream and ofstream are followed by an assert( ) to guarantee the
file has been successfully opened. Here again the object, used in a situation where the
compiler expects an integral result, produces a value that indicates success or failure. (To do
this, an automatic type conversion member function is called. These are discussed in Chapter
10.)

The first while loop demonstrates the use of two forms of the get( ) function. The first gets
characters into a buffer and puts a zero terminator in the buffer when either SZ – 1 characters
have been read or the third argument (defaulted to ‘\n’) is encountered. get( ) leaves the
terminator character in the input stream, so this terminator must be thrown away via in.get( )
using the form of get( ) with no argument, which fetches a single byte and returns it as an int.
You can also use the ignore( ) member function, which has two defaulted arguments. The
first is the number of characters to throw away, and defaults to one. The second is the
character at which the ignore( ) function quits (after extracting it) and defaults to EOF.

Next you see two output statements that look very similar: one to cout and one to the file out.
Notice the convenience here; you don’t need to worry about what kind of object you’re
dealing with because the formatting statements work the same with all ostream objects. The
first one echoes the line to standard output, and the second writes the line out to the new file
and includes a line number.

To demonstrate getline( ), it’s interesting to open the file we just created and strip off the line
numbers. To ensure the file is properly closed before opening it to read, you have two choices.
You can surround the first part of the program in braces to force the out object out of scope,
thus calling the destructor and closing the file, which is done here. You can also call close( )
for both files; if you want, you can even reuse the in object by calling the open( ) member
function (you can also create and destroy the object dynamically on the heap as is in Chapter
11).



Chapter 14: Templates & Container Classes
554

The second while loop shows how getline( ) removes the terminator character (its third
argument, which defaults to ‘\n’) from the input stream when it’s encountered. Although
getline( ), like get( ), puts a zero in the buffer, it still doesn’t insert the terminating character.

Open modes
You can control the way a file is opened by changing a default argument. The following table
shows the flags that control the mode of the file:

Flag Function
ios::in Opens an input file. Use this as an open

mode for an ofstream to prevent
truncating an existing file.

ios::out Opens an output file. When used for an
ofstream without ios::app, ios::ate or
ios::in, ios::trunc is implied.

ios::app Opens an output file for appending.

ios::ate Opens an existing file (either input or
output) and seeks the end.

ios::nocreate Opens a file only if it already exists.
(Otherwise it fails.)

ios::noreplace Opens a file only if it does not exist.
(Otherwise it fails.)

ios::trunc Opens a file and deletes the old file, if
it already exists.

ios::binary Opens a file in binary mode. Default is
text mode.

These flags can be combined using a bitwise OR.

Iostream buffering
Whenever you create a new class, you should endeavor to hide the details of the underlying
implementation as possible from the user of the class. Try to show them only what they need
to know and make the rest private to avoid confusion. Normally when using iostreams you
don’t know or care where the bytes are being produced or consumed; indeed, this is different



Chapter 14: Templates & Container Classes
555

depending on whether you’re dealing with standard I/O, files, memory, or some newly created
class or device.

There comes a time, however, when it becomes important to be able to send messages to the
part of the iostream that produces and consumes bytes. To provide this part with a common
interface and still hide its underlying implementation, it is abstracted into its own class, called
streambuf. Each iostream object contains a pointer to some kind of streambuf. (The kind
depends on whether it deals with standard I/O, files, memory, etc.) You can access the
streambuf directly; for example, you can move raw bytes into and out of the streambuf,
without formatting them through the enclosing iostream. This is accomplished, of course, by
calling member functions for the streambuf object.

Currently, the most important thing for you to know is that every iostream object contains a
pointer to a streambuf object, and the streambuf has some member functions you can call if
you need to.

To allow you to access the streambuf, every iostream object has a member function called
rdbuf( ) that returns the pointer to the object’s streambuf. This way you can call any member
function for the underlying streambuf. However, one of the most interesting things you can
do with the streambuf pointer is to connect it to another iostream object using the <<
operator. This drains all the bytes from your object into the one on the left-hand side of the
<<. This means if you want to move all the bytes from one iostream to another, you don’t
have to go through the tedium (and potential coding errors) of reading them one byte or one
line at a time. It’s a much more elegant approach.

For example, here’s a very simple program that opens a file and sends the contents out to
standard output (similar to the previous example):

//: C19:Stype.cpp
// Type a file to standard output
#include <fstream>
#include <iostream>
#include "../require.h"
using namespace std;

int main(int argc, char* argv[]) {
  requireArgs(argc,  2); // Must have a command line
  ifstream in(argv[1]);
  assure(in, argv[1]); // Ensure file exists
  cout << in.rdbuf(); // Outputs entire file
} ///:~

After making sure there is an argument on the command line, an ifstream is created using this
argument. The open will fail if the file doesn’t exist, and this failure is caught by the
assert(in).

All the work really happens in the statement



Chapter 14: Templates & Container Classes
556

cout << in.rdbuf();

which causes the entire contents of the file to be sent to cout. This is not only more succinct
to code, it is often more efficient than moving the bytes one at a time.

Using get( ) with a streambuf
There is a form of get( ) that allows you to write directly into the streambuf of another
object. The first argument is the destination streambuf (whose address is mysteriously taken
using a reference, discussed in Chapter 9), and the second is the terminating character, which
stops the get( ) function. So yet another way to print a file to standard output is

//: C19:Sbufget.cpp
// Get directly into a streambuf
#include <fstream>
#include <iostream>
#include "../require.h"
using namespace std;

int main() {
  ifstream in("sbufget.cpp");
  assure(in, "sbufget.cpp");
  while(in.get(*cout.rdbuf()))
    in.ignore();
} ///:~

rdbuf( ) returns a pointer, so it must be dereferenced to satisfy the function’s need to see an
object. The get( ) function, remember, doesn’t pull the terminating character from the input
stream, so it must be removed using ignore( ) so get( ) doesn’t just bonk up against the
newline forever (which it will, otherwise).

You probably won’t need to use a technique like this very often, but it may be useful to know
it exists.

Seeking in iostreams
Each type of iostream has a concept of where its «next» character will come from (if it’s an
istream) or go (if it’s an ostream). In some situations you may want to move this stream
position. You can do it using two models: One uses an absolute location in the stream called
the streampos; the second works like the Standard C library functions fseek( ) for a file and
moves a given number of bytes from the beginning, end, or current position in the file.

The streampos approach requires that you first call a «tell» function: tellp( ) for an ostream
or tellg( ) for an istream. (The «p» refers to the «put pointer» and the «g» refers to the «get
pointer.») This function returns a streampos you can later use in the single-argument version



Chapter 14: Templates & Container Classes
557

of seekp( ) for an ostream or seekg( ) for an istream, when you want to return to that
position in the stream.

The second approach is a relative seek and uses overloaded versions of seekp( ) and seekg( ).
The first argument is the number of bytes to move: it may be positive or negative. The second
argument is the seek direction:

ios::beg From beginning of stream

ios::cur Current position in stream

ios::end From end of stream

Here’s an example that shows the movement through a file, but remember, you’re not limited
to seeking within files, as you are with C and STDIO.H. With C++, you can seek in any type
of iostream (although the behavior of cin & cout when seeking is undefined):

//: C19:Seeking.cpp
// Seeking in iostreams
#include <iostream>
#include <fstream>
#include "../require.h"
using namespace std;

int main(int argc, char* argv[]) {
  requireArgs(argc,  2);
  ifstream in(argv[1]);
  assure(in, argv[1]); // File must already exist
  in.seekg(0, ios::end); // End of file
  streampos sp = in.tellg(); // Size of file
  cout << "file size = " << sp << endl;
  in.seekg(-sp/10, ios::end);
  streampos sp2 = in.tellg();
  in.seekg(0, ios::beg); // Start of file
  cout << in.rdbuf(); // Print whole file
  in.seekg(sp2); // Move to streampos
  // Prints the last 1/10th of the file:
  cout << endl << endl << in.rdbuf() << endl;
} ///:~

This program picks a file name off the command line and opens it as an ifstream. assert( )
detects an open failure. Because this is a type of istream, seekg( ) is used to position the «get
pointer.» The first call seeks zero bytes off the end of the file, that is, to the end. Because a
streampos is a typedef for a long, calling tellg( ) at that point also returns the size of the file,
which is printed out. Then a seek is performed moving the get pointer 1/10 the size of the file
— notice it’s a negative seek from the end of the file, so it backs up from the end. If you try to
seek positively from the end of the file, the get pointer will just stay at the end. The



Chapter 14: Templates & Container Classes
558

streampos at that point is captured into sp2, then a seekg( ) is performed back to the
beginning of the file so the whole thing can be printed out using the streambuf pointer
produced with rdbuf( ). Finally, the overloaded version of seekg( ) is used with the
streampos sp2 to move to the previous position, and the last portion of the file is printed out.

Creating read/write files
Now that you know about the streambuf and how to seek, you can understand how to create
a stream object that will both read and write a file. The following code first creates an
ifstream with flags that say it’s both an input and an output file. The compiler won’t let you
write to an ifstream, however, so you need to create an ostream with the underlying stream
buffer:

      ifstream in("filename", ios::in|ios::out);
      ostream out(in.rdbuf());

You may wonder what happens when you write to one of these objects. Here’s an example:

//: C19:Iofile.cpp
// Reading & writing one file
#include <iostream>
#include <fstream>
#include "../require.h"
using namespace std;

int main() {
  ifstream in("iofile.cpp");
  assure(in, "iofile.cpp");
  ofstream out("iofile.out");
  assure(out, "iofile.out");
  out << in.rdbuf(); // Copy file
  in.close();
  out.close();
  // Open for reading and writing:
  ifstream in2("iofile.out", ios::in | ios::out);
  assure(in2, "iofile.out");
  ostream out2(in2.rdbuf());
  cout << in2.rdbuf();  // Print whole file
  out2 << "Where does this end up?";
  out2.seekp(0, ios::beg);
  out2 << "And what about this?";
  in2.seekg(0, ios::beg);
  cout << in2.rdbuf();
} ///:~



Chapter 14: Templates & Container Classes
559

The first five lines copy the source code for this program into a file called iofile.out, and then
close the files. This gives us a safe text file to play around with. Then the aforementioned
technique is used to create two objects that read and write to the same file. In cout <<
in2.rdbuf( ), you can see the «get» pointer is initialized to the beginning of the file. The «put»
pointer, however, is set to the end of the file because «Where does this end up?» appears
appended to the file. However, if the put pointer is moved to the beginning with a seekp( ), all
the inserted text overwrites the existing text. Both writes are seen when the get pointer is
moved back to the beginning with a seekg( ), and the file is printed out. Of course, the file is
automatically saved and closed when out2 goes out of scope and its destructor is called.

stringstreams

strstreams
Before there were stringstreams, there were the more primitive strstreams. Although these
are not an official part of Standard C++, they have been around a long time so compilers will
no doubt leave in the strstream support in perpetuity, to compile legacy code. You should
always use stringstreams, but it’s certainly likely that you’ll come across code that uses
strstreams and at that point this section should come in handy. In addtion, this section should
make it fairly clear why stringstreams have replace strstreams.

A strstream works directly with memory instead of a file or standard output. It allows you to
use the same reading and formatting functions to manipulate bytes in memory. On old
computers the memory was referred to as core so this type of functionality is often called in-
core formatting.

The class names for strstreams echo those for file streams. If you want to create a strstream to
extract characters from, you create an istrstream. If you want to put characters into a
strstream, you create an ostrstream.

String streams work with memory, so you must deal with the issue of where the memory
comes from and where it goes. This isn’t terribly complicated, but you must understand it and
pay attention (it turned out is was too easy to lose track of this particular issue, thus the birth
of stringstreams).

User-allocated storage
The easiest approach to understand is when the user is responsible for allocating the storage.
With istrstreams this is the only allowed approach. There are two constructors:

istrstream::istrstream(char* buf);
istrstream::istrstream(char* buf, int size);



Chapter 14: Templates & Container Classes
560

The first constructor takes a pointer to a zero-terminated character array; you can extract bytes
until the zero. The second constructor additionally requires the size of the array, which
doesn’t have to be zero-terminated. You can extract bytes all the way to buf[size], whether or
not you encounter a zero along the way.

When you hand an istrstream constructor the address of an array, that array must already be
filled with the characters you want to extract and presumably format into some other data
type. Here’s a simple example:55

//: C19:Istring.cpp
// Input strstreams
#include <iostream>
#include <strstream>
using namespace std;

int main() {
  istrstream s("47 1.414 This is a test");
  int i;
  float f;
  s >> i >> f; // Whitespace-delimited input
  char buf2[100];
  s >> buf2;
  cout << "i = " << i << ", f = " << f;
  cout << " buf2 = " << buf2 << endl;
  cout << s.rdbuf(); // Get the rest...
} ///:~

You can see that this is a more flexible and general approach to transforming character strings
to typed values than the Standard C Library functions like atof( ), atoi( ), and so on.

The compiler handles the static storage allocation of the string in

  istrstream s("47 1.414 This is a test");

You can also hand it a pointer to a zero-terminated string allocated on the stack or the heap.

In s >> i >> f, the first number is extracted into i and the second into f. This isn’t «the first
whitespace-delimited set of characters» because it depends on the data type it’s being
extracted into. For example, if the string were instead, «1.414 47 This is a test,» then i would
get the value one because the input routine would stop at the decimal point. Then f would get
0.414. This could be useful if you want to break a floating-point number into a whole number
and a fraction part. Otherwise it would seem to be an error.

                                                       

55 Note the name has been truncated to handle the DOS limitation on file names. You may
need to adjust the header file name if your system supports longer file names (or simply copy
the header file).



Chapter 14: Templates & Container Classes
561

As you may already have guessed, buf2 doesn’t get the rest of the string, just the next
whitespace-delimited word. In general, it seems the best place to use the extractor in
iostreams is when you know the exact sequence of data in the input stream and you’re
converting to some type other than a character string. However, if you want to extract the rest
of the string all at once and send it to another iostream, you can use rdbuf( ) as shown.

Output strstreams
Output strstreams also allow you to provide your own storage; in this case it’s the place in
memory the bytes are formatted into. The appropriate constructor is

ostrstream::ostrstream(char*, int, int = ios::out);

The first argument is the preallocated buffer where the characters will end up, the second is
the size of the buffer, and the third is the mode. If the mode is left as the default, characters
are formatted into the starting address of the buffer.  If the mode is either ios::ate or ios::app
(same effect), the character buffer is assumed to already contain a zero-terminated string, and
any new characters are added starting at the zero terminator.

The second constructor argument is the size of the array and is used by the object to ensure it
doesn’t overwrite the end of the array. If you fill the array up and try to add more bytes, they
won’t go in.

An important thing to remember about ostrstreams is that the zero terminator you normally
need at the end of a character array is not inserted for you. When you’re ready to zero-
terminate the string, use the special manipulator ends.

Once you’ve created an ostrstream you can insert anything you want, and it will magically
end up formatted in the memory buffer. Here’s an example:

//: C19:Ostring.cpp
// Output strstreams
#include <iostream>
#include <strstream>
using namespace std;
#define SZ 100

int main() {
  cout << "type an int, a float and a string:";
  int i;
  float f;
  cin >> i >> f;
  cin >> ws; // Throw away white space
  char buf[SZ];
  cin.getline(buf, SZ); // Get rest of the line
  // (cin.rdbuf() would be awkward)
  ostrstream os(buf, SZ, ios::app);



Chapter 14: Templates & Container Classes
562

  os << endl;
  os << "integer = " << i << endl;
  os << "float = " << f << endl;
  os << ends;
  cout << buf;
  cout << os.rdbuf(); // Same effect
  cout << os.rdbuf(); // NOT the same effect
} ///:~

This is similar to the previous example in fetching the int and float. You might think the
logical way to get the rest of the line is to use rdbuf( ); this works, but it’s awkward because
all the input including carriage returns is collected until the user presses control-Z (control-D
on Unix) to indicate the end of the input. The approach shown, using getline( ), gets the input
until the user presses the carriage return. This input is fetched into buf, which is subsequently
used to construct the ostrstream os. If the third argument ios::app weren’t supplied, the
constructor would default to writing at the beginning of buf, overwriting the line that was just
collected. However, the «append» flag causes it to put the rest of the formatted information at
the end of the string.

You can see that, like the other output streams, you can use the ordinary formatting tools for
sending bytes to the ostrstream. The only difference is that you’re responsible for inserting
the zero at the end with ends. Note that endl inserts a newline in the strstream, but no zero.

Now the information is formatted in buf, and you can send it out directly with cout << buf.
However, it’s also possible to send the information out with os.rdbuf( ). When you do this,
the get pointer inside the streambuf is moved forward as the characters are output. For this
reason, if you say cout << os.rdbuf( ) a second time, nothing happens — the get pointer is
already at the end.

Automatic storage allocation
Output strstreams (but not istrstreams) give you a second option for memory allocation: they
can do it themselves. All you do is create an ostrstream with no constructor arguments:

ostrstream A;

Now A takes care of all its own storage allocation on the heap. You can put as many bytes
into A as you want, and if it runs out of storage, it will allocate more, moving the block of
memory, if necessary.

This is a very nice solution if you don’t know how much space you’ll need, because it’s
completely flexible. And if you simply format data into the strstream and then hand its
streambuf off to another iostream, things work perfectly:

A << "hello, world. i = " << i << endl << ends;
cout << A.rdbuf();



Chapter 14: Templates & Container Classes
563

This is the best of all possible solutions. But what happens if you want the physical address of
the memory that A’s characters have been formatted into? It’s readily available — you simply
call the str( ) member function:

char* cp = A.str();

There’s a problem now. What if you want to put more characters into A? It would be OK if
you knew A had already allocated enough storage for all the characters you want to give it,
but that’s not true. Generally, A will run out of storage when you give it more characters, and
ordinarily it would try to allocate more storage on the heap. This would usually require
moving the block of memory. But the stream objects has just handed you the address of its
memory block, so it can’t very well move that block, because you’re expecting it to be at a
particular location.

The way an ostrstream handles this problem is by «freezing» itself. As long as you don’t use
str( ) to ask for the internal char*, you can add as many characters as you want to the
ostrstream. It will allocate all the necessary storage from the heap, and when the object goes
out of scope, that heap storage is automatically released.

However, if you call str( ), the ostrstream becomes «frozen.» You can’t add any more
characters to it. Rather, you aren’t supposed to — implementations are not required to detect
the error. Adding characters to a frozen ostrstream results in undefined behavior. In addition,
the ostrstream is no longer responsible for cleaning up the storage. You took over that
responsibility when you asked for the char* with str( ).

To prevent a memory leak, the storage must be cleaned up somehow. There are two
approaches. The more common one is to directly release the memory when you’re done. To
understand this, you need a sneak preview of two new keywords in C++: new and delete. As
you’ll see in Chapter 11, these do quite a bit, but for now you can think of them as
replacements for malloc( ) and free( ) in C. The operator new returns a chunk of memory, and
delete frees it. It’s important to know about them here because virtually all memory allocation
in C++ is performed with new, and this is also true with ostrstream. If it’s allocated with
new, it must be released with delete, so if you have an ostrstream A and you get the char*
using str( ), the typical way to clean up the storage is

delete A.str();

This satisfies most needs, but there’s a second, much less common way to release the storage:
You can unfreeze the ostrstream. You do this by calling freeze( ), which is a member
function of the ostrstream’s streambuf. freeze( ) has a default argument of one, which
freezes the stream, but an argument of zero will unfreeze it:

A.rdbuf()->freeze(0);

Now the storage is deallocated when A goes out of scope and its destructor is called. In
addition, you can add more bytes to A. However, this may cause the storage to move, so you
better not use any pointer you previously got by calling str( ) — it won’t be reliable after
adding more characters.



Chapter 14: Templates & Container Classes
564

The following example tests the ability to add more characters after a stream has been
unfrozen:

//: C19:Walrus.cpp
// Freezing a strstream
#include <iostream>
#include <strstream>
using namespace std;

int main() {
  ostrstream s;
  s << "'The time has come', the walrus said,";
  s << ends;
  cout << s.str() << endl; // String is frozen
  // s is frozen; destructor won't delete
  // the streambuf storage on the heap
  s.seekp(-1, ios::cur); // Back up before NULL
  s.rdbuf()->freeze(0); // Unfreeze it
  // Now destructor releases memory, and
  // you can add more characters (but you
  // better not use the previous str() value)
  s << " 'To speak of many things'" << ends;
  cout << s.rdbuf();
} ///:~

After putting the first string into s, an ends is added so the string can be printed using the
char* produced by str( ). At that point, s is frozen. We want to add more characters to s, but
for it to have any effect, the put pointer must be backed up one so the next character is placed
on top of the zero inserted by ends. (Otherwise the string would be printed only up to the
original zero.) This is accomplished with seekp( ). Then s is unfrozen by fetching the
underlying streambuf pointer using rdbuf( ) and calling freeze(0). At this point s is like it
was before calling str( ): We can add more characters, and cleanup will occur automatically,
with the destructor.

It is possible to unfreeze an ostrstream and continue adding characters, but it is not common
practice. Normally, if you want to add more characters once you’ve gotten the char* of a
ostrstream, you create a new one, pour the old stream into the new one using rdbuf( ) and
continue adding new characters to the new ostrstream.

Proving movement
If you’re still not convinced you should be responsible for the storage of a ostrstream if you
call str( ), here’s an example that demonstrates the storage location is moved, therefore the
old pointer returned by str( ) is invalid:

//: C19:Strmove.cpp



Chapter 14: Templates & Container Classes
565

// ostrstream memory movement
#include <iostream>
#include <strstream>
using namespace std;

int main() {
  ostrstream s;
  s << "hi";
  char* old = s.str(); // Freezes s
  s.rdbuf()->freeze(0); // Unfreeze
  for(int i = 0; i < 100; i++)
    s << "howdy"; // Should force reallocation
  cout << "old = " << (void*)old << endl;
  cout << "new = " << (void*)s.str(); // Freezes
  delete s.str(); // Release storage
} ///:~

After inserting a string to s and capturing the char* with str( ), the string is unfrozen and
enough new bytes are inserted to virtually assure the memory is reallocated and most likely
moved. After printing out the old and new char* values, the storage is explicitly released with
delete because the second call to str( ) froze the string again.

To print out addresses instead of the strings they point to, you must cast the char* to a void*.
The operator << for char* prints out the string it is pointing to, while the operator << for
void* prints out the hex representation of the pointer.

It’s interesting to note that if you don’t insert a string to s before calling str( ), the result is
zero. This means no storage is allocated until the first time you try to insert bytes to the
ostrstream.

A better way
Again, remember that this section was only left in to support legacy code. You should always
use string and stringstream rather than character arrays and strstream. The former is much
safer and easier to use and will help ensure your projects get finished faster.

Output stream formatting
The whole goal of this effort, and all these different types of iostreams, is to allow you to
easily move and translate bytes from one place to another. It certainly wouldn’t be very useful
if you couldn’t do all the formatting with the printf( ) family of functions. In this section,
you’ll learn all the output formatting functions that are available for iostreams, so you can get
your bytes the way you want them.



Chapter 14: Templates & Container Classes
566

The formatting functions in iostreams can be somewhat confusing at first because there’s
often more than one way to control the formatting: through both member functions and
manipulators. To further confuse things, there is a generic member function to set state flags
to control formatting, such as left- or right-justification, whether to use uppercase letters for
hex notation, whether to always use a decimal point for floating-point values, and so on. On
the other hand, there are specific member functions to set and read values for the fill
character, the field width, and the precision.

In an attempt to clarify all this, the internal formatting data of an iostream is examined first,
along with the member functions that can modify that data. (Everything can be controlled
through the member functions.) The manipulators are covered separately.

Internal formatting data
The class ios (which you can see in the header file IOSTREAM.H) contains data members to
store all the formatting data pertaining to that stream. Some of this data has a range of values
and is stored in variables: the floating-point precision, the output field width, and the
character used to pad the output (normally a space). The rest of the formatting is determined
by flags, which are usually combined to save space and are referred to collectively as the
format flags. You can find out the value of the format flags with the ios::flags( ) member
function, which takes no arguments and returns a long (typedefed to fmtflags) that contains
the current format flags. All the rest of the functions make changes to the format flags and
return the previous value of the format flags.

fmtflags ios::flags(fmtflags newflags);
fmtflags ios::setf(fmtflags ored_flag);
fmtflags ios::unsetf(fmtflags clear_flag);

fmtflags ios::setf(fmtflags bits, fmtflags field);

The first function forces all the flags to change, which you do sometimes. More often, you
change one flag at a time using the remaining three functions.

The use of setf( ) can seem more confusing: To know which overloaded version to use, you
must know what type of flag you’re changing. There are two types of flags: ones that are
simply on or off, and ones that work in a group with other flags. The on/off flags are the
simplest to understand because you turn them on with setf(fmtflags) and off with
unsetf(fmtflags). These flags are

on/off flag effect
ios::skipws Skip white space. (For input; this is the

default.)



Chapter 14: Templates & Container Classes
567

on/off flag effect
ios::showbase Indicate the numeric base (dec, oct, or

hex) when printing an integral value.
The format used can be read by the
C++ compiler.

ios::showpoint Show decimal point and trailing zeros
for floating-point values.

ios::uppercase Display uppercase A-F for
hexadecimal values and E for scientific
values.

ios::showpos Show plus sign (+) for positive values.

ios::unitbuf «Unit buffering.» The stream is flushed
after each insertion.

ios::stdio Synchronizes the stream with the C
standard I/O system.

For example, to show the plus sign for cout, you say cout.setf(ios::showpos). To stop
showing the plus sign, you say cout.unsetf(ios::showpos).

The last two flags deserve some explanation. You turn on unit buffering when you want to
make sure each character is output as soon as it is inserted into an output stream. You could
also use unbuffered output, but unit buffering provides better performance.

The ios::stdio flag is used when you have a program that uses both iostreams and the C
standard I/O library (not unlikely if you’re using C libraries). If you discover your iostream
output and printf( ) output are occurring in the wrong order, try setting this flag.

Format fields
The second type of formatting flags work in a group. You can have only one of these flags on
at a time, like the buttons on old car radios — you push one in, the rest pop out. Unfortunately
this doesn’t happen automatically, and you have to pay attention to what flags you’re setting
so you don’t accidentally call the wrong setf( ) function. For example, there’s a flag for each
of the number bases: hexadecimal, decimal, and octal. Collectively, these flags are referred to
as the ios::basefield. If the ios::dec flag is set and you call setf(ios::hex), you’ll set the
ios::hex flag, but you won’t clear the ios::dec bit, resulting in undefined behavior. The proper
thing to do is call the second form of setf( ) like this: setf(ios::hex, ios::basefield). This
function first clears all the bits in the ios::basefield, then sets ios::hex. Thus, this form of
setf( ) ensures that the other flags in the group «pop out» whenever you set one. Of course,



Chapter 14: Templates & Container Classes
568

the hex( ) manipulator does all this for you, automatically, so you don’t have to concern
yourself with the internal details of the implementation of this class or to even care that it’s a
set of binary flags. Later you’ll see there are manipulators to provide equivalent functionality
in all the places you would use setf( ).

Here are the flag groups and their effects:

ios::basefield effect
ios::dec Format integral values in base 10

(decimal) (default radix).

ios::hex Format integral values in base 16
(hexadecimal).

ios::oct Format integral values in base 8
(octal).

ios::floatfield effect
ios::scientific Display floating-point numbers in

scientific format. Precision field
indicates number of digits after the
decimal point.

ios::fixed Display floating-point numbers in
fixed format. Precision field
indicates number of digits after the
decimal point.

«automatic» (Neither bit
is set.)

Precision field indicates the total
number of significant digits.

ios::adjustfield effect
ios::left Left-align values; pad on the right

with the fill character.

ios::right Right-align values. Pad on the left
with the fill character. This is the
default alignment.



Chapter 14: Templates & Container Classes
569

ios::adjustfield effect
ios::internal Add fill characters after any leading

sign or base indicator, but before
the value.

Width, fill and precision
The internal variables that control the width of the output field, the fill character used when
the data doesn’t fill the output field, and the precision for printing floating-point numbers are
read and written by member functions of the same name.

function effect
int ios::width( ) Reads the current width. (Default is

0.) Used for both insertion and
extraction.

int ios::width(int n) Sets the width, returns the previous
width.

int ios::fill( ) Reads the current fill character.
(Default is space.)

int ios::fill(int n) Sets the fill character, returns the
previous fill character.

int ios::precision( ) Reads current floating-point
precision. (Default is 6.)

int ios::precision(int n) Sets floating-point precision,
returns previous precision. See
ios::floatfield table for the meaning
of «precision.»

The fill and precision values are fairly straightforward, but width requires some explanation.
When the width is zero, inserting a value will produce the minimum number of characters
necessary to represent that value. A positive width means that inserting a value will produce
at least as many characters as the width; if the value has less than width characters, the fill
character is used to pad the field. However, the value will never be truncated, so if you try to
print 123 with a width of two, you’ll still get 123. The field width specifies a minimum
number of characters; there’s no way to specify a maximum number.



Chapter 14: Templates & Container Classes
570

The width is also distinctly different because it’s reset to zero by each inserter or extractor
that could be influenced by its value. It’s really not a state variable, but an implicit argument
to the inserters and extractors. If you want to have a constant width, you have to call width( )
after each insertion or extraction.

An exhaustive example
To make sure you know how to call all the functions previously discussed, here’s an example
that calls them all:

//: C19:Format.cpp
// Formatting functions
#include <fstream>
using namespace std;
#define D(a) T << #a << endl; a
ofstream T("format.out");

int main() {
  D(int i = 47;)
  D(float f = 2300114.414159;)
  char* s = "Is there any more?";

  D(T.setf(ios::unitbuf);)
//  D(T.setf(ios::stdio);)  // SOMETHING MAY HAVE CHANGED

  D(T.setf(ios::showbase);)
  D(T.setf(ios::uppercase);)
  D(T.setf(ios::showpos);)
  D(T << i << endl;) // Default to dec
  D(T.setf(ios::hex, ios::basefield);)
  D(T << i << endl;)
  D(T.unsetf(ios::uppercase);)
  D(T.setf(ios::oct, ios::basefield);)
  D(T << i << endl;)
  D(T.unsetf(ios::showbase);)
  D(T.setf(ios::dec, ios::basefield);)
  D(T.setf(ios::left, ios::adjustfield);)
  D(T.fill('0');)
  D(T << "fill char: " << T.fill() << endl;)
  D(T.width(10);)
  T << i << endl;
  D(T.setf(ios::right, ios::adjustfield);)
  D(T.width(10);)



Chapter 14: Templates & Container Classes
571

  T << i << endl;
  D(T.setf(ios::internal, ios::adjustfield);)
  D(T.width(10);)
  T << i << endl;
  D(T << i << endl;) // Without width(10)

  D(T.unsetf(ios::showpos);)
  D(T.setf(ios::showpoint);)
  D(T << "prec = " << T.precision() << endl;)
  D(T.setf(ios::scientific, ios::floatfield);)
  D(T << endl << f << endl;)
  D(T.setf(ios::fixed, ios::floatfield);)
  D(T << f << endl;)
  D(T.setf(0, ios::floatfield);) // Automatic
  D(T << f << endl;)
  D(T.precision(20);)
  D(T << "prec = " << T.precision() << endl;)
  D(T << endl << f << endl;)
  D(T.setf(ios::scientific, ios::floatfield);)
  D(T << endl << f << endl;)
  D(T.setf(ios::fixed, ios::floatfield);)
  D(T << f << endl;)
  D(T.setf(0, ios::floatfield);) // Automatic
  D(T << f << endl;)

  D(T.width(10);)
  T << s << endl;
  D(T.width(40);)
  T << s << endl;
  D(T.setf(ios::left, ios::adjustfield);)
  D(T.width(40);)
  T << s << endl;

  D(T.unsetf(ios::showpoint);)
  D(T.unsetf(ios::unitbuf);)
//  D(T.unsetf(ios::stdio);) // SOMETHING MAY HAVE CHANGED
} ///:~

This example uses a trick to create a trace file so you can monitor what’s happening. The
macro D(a) uses the preprocessor «stringizing» to turn a into a string to print out. Then it
reiterates a so the statement takes effect. The macro sends all the information out to a file
called T, which is the trace file. The output is

int i = 47;



Chapter 14: Templates & Container Classes
572

float f = 2300114.414159;
T.setf(ios::unitbuf);
T.setf(ios::stdio);
T.setf(ios::showbase);
T.setf(ios::uppercase);
T.setf(ios::showpos);
T << i << endl;
+47
T.setf(ios::hex, ios::basefield);
T << i << endl;
+0X2F
T.unsetf(ios::uppercase);
T.setf(ios::oct, ios::basefield);
T << i << endl;
+057
T.unsetf(ios::showbase);
T.setf(ios::dec, ios::basefield);
T.setf(ios::left, ios::adjustfield);
T.fill('0');
T << "fill char: " << T.fill() << endl;
fill char: 0
T.width(10);
+470000000
T.setf(ios::right, ios::adjustfield);
T.width(10);
0000000+47
T.setf(ios::internal, ios::adjustfield);
T.width(10);
+000000047
T << i << endl;
+47
T.unsetf(ios::showpos);
T.setf(ios::showpoint);
T << "prec = " << T.precision() << endl;
prec = 6
T.setf(ios::scientific, ios::floatfield);
T << endl << f << endl;

2.300115e+06
T.setf(ios::fixed, ios::floatfield);
T << f << endl;
2300114.500000
T.setf(0, ios::floatfield);



Chapter 14: Templates & Container Classes
573

T << f << endl;
2.300115e+06
T.precision(20);
T << "prec = " << T.precision() << endl;
prec = 20
T << endl << f << endl;

2300114.50000000020000000000
T.setf(ios::scientific, ios::floatfield);
T << endl << f << endl;

2.30011450000000020000e+06
T.setf(ios::fixed, ios::floatfield);
T << f << endl;
2300114.50000000020000000000
T.setf(0, ios::floatfield);
T << f << endl;
2300114.50000000020000000000
T.width(10);
Is there any more?
T.width(40);
0000000000000000000000Is there any more?
T.setf(ios::left, ios::adjustfield);
T.width(40);
Is there any more?0000000000000000000000
T.unsetf(ios::showpoint);
T.unsetf(ios::unitbuf);
T.unsetf(ios::stdio);

Studying this output should clarify your understanding of the iostream formatting member
functions.

Formatting manipulators
As you can see from the previous example, calling the member functions can get a bit tedious.
To make things easier to read and write, a set of manipulators is supplied to duplicate the
actions provided by the member functions.

Manipulators with no arguments are provided in IOSTREAM.H. These include dec, oct,  and
hex , which perform the same action as, respectively, setf(ios::dec, ios::basefield),



Chapter 14: Templates & Container Classes
574

setf(ios::oct, ios::basefield), and setf(ios::hex, ios::basefield), albeit more succinctly.
IOSTREAM.H56 also includes ws, endl, ends, and flush and the additional set shown here:

                                                       

56 These only appear in the revised library; you won’t find them in older implementations of
iostreams.



Chapter 14: Templates & Container Classes
575

manipulator effect
showbase
noshowbase

Indicate the numeric base (dec,
oct, or hex) when printing an
integral value. The format used
can be read by the C++
compiler.

showpos
noshowpos

Show plus sign (+) for positive
values

uppercase
nouppercase

Display uppercase A-F for
hexadecimal values, and E for
scientific values

showpoint
noshowpoint

Show decimal point and trailing
zeros for floating-point values.

skipws
noskipws

Skip white space on input.

left
right
internal

Left-align, pad on right.
Right-align, pad on left.
Fill between leading sign or base
indicator and value.

scientific
fixed

Use scientific notation
setprecision( ) or
ios::precision( ) sets number of
places after the decimal point.

Manipulators with arguments
If you are using manipulators with arguments, you must also include the header file
IOMANIP.H. This contains code to solve the general problem of creating manipulators with
arguments. In addition, it has six predefined manipulators:

manipulator effect



Chapter 14: Templates & Container Classes
576

manipulator effect
setiosflags (fmtflags n) Sets only the format flags

specified by n. Setting remains
in effect until the next change,
like ios::setf( ).

resetiosflags(fmtflags n) Clears only the format flags
specified by n. Setting remains
in effect until the next change,
like ios::unsetf( ).

setbase(base n) Changes base to n, where n is
10, 8, or 16. (Anything else
results in 0.) If n is zero, output
is base 10, but input uses the C
conventions: 10 is 10, 010 is 8,
and 0xf is 15. You might as well
use dec, oct, and hex for output.

setfill(char n) Changes the fill character to n,
like ios::fill( ).

setprecision(int n) Changes the precision to n, like
ios::precision( ).

setw(int n) Changes the field width to n,
like ios::width( ).

If you’re using a lot of inserters, you can see how this can clean things up. As an example,
here’s the previous program rewritten to use the manipulators. (The macro has been removed
to make it easier to read.)

//: C19:Manips.cpp
// FORMAT.CPP using manipulators
#include <fstream>
#include <iomanip>
using namespace std;

int main() {
  ofstream trc("trace.out");
  int i = 47;
  float f = 2300114.414159;



Chapter 14: Templates & Container Classes
577

  char* s = "Is there any more?";

  trc << setiosflags(
         ios::unitbuf /*| ios::stdio */ /// ?????
         | ios::showbase | ios::uppercase
         | ios::showpos);
  trc << i << endl; // Default to dec
  trc << hex << i << endl;
  trc << resetiosflags(ios::uppercase)
    << oct << i << endl;
  trc.setf(ios::left, ios::adjustfield);
  trc << resetiosflags(ios::showbase)
    << dec << setfill('0');
  trc << "fill char: " << trc.fill() << endl;
  trc << setw(10) << i << endl;
  trc.setf(ios::right, ios::adjustfield);
  trc << setw(10) << i << endl;
  trc.setf(ios::internal, ios::adjustfield);
  trc << setw(10) << i << endl;
  trc << i << endl; // Without setw(10)

  trc << resetiosflags(ios::showpos)
    << setiosflags(ios::showpoint)
    << "prec = " << trc.precision() << endl;
  trc.setf(ios::scientific, ios::floatfield);
  trc << f << endl;
  trc.setf(ios::fixed, ios::floatfield);
  trc << f << endl;
  trc.setf(0, ios::floatfield); // Automatic
  trc << f << endl;
  trc << setprecision(20);
  trc << "prec = " << trc.precision() << endl;
  trc << f << endl;
  trc.setf(ios::scientific, ios::floatfield);
  trc << f << endl;
  trc.setf(ios::fixed, ios::floatfield);
  trc << f << endl;
  trc.setf(0, ios::floatfield); // Automatic
  trc << f << endl;

  trc << setw(10) << s << endl;
  trc << setw(40) << s << endl;
  trc.setf(ios::left, ios::adjustfield);



Chapter 14: Templates & Container Classes
578

  trc << setw(40) << s << endl;

  trc << resetiosflags(
         ios::showpoint | ios::unitbuf
         // | ios::stdio // ?????????
 );
} ///:~

You can see that a lot of the multiple statements have been condensed into a single chained
insertion. Note the calls to setiosflags( ) and resetiosflags( ), where the flags have been
bitwise-ORed together. This could also have been done with setf( ) and unsetf( ) in the
previous example.

Creating manipulators
(Note: This section contains some material that will not be introduced until later chapters.)
Sometimes you’d like to create your own manipulators, and it turns out to be remarkably
simple. A zero-argument manipulator like endl is simply a function that takes as its argument
an ostream reference (references are a different way to pass arguments, discussed in Chapter
9). The declaration for endl is

ostream& endl(ostream&);

Now, when you say:

cout << «howdy» << endl;

the endl produces the address of that function. So the compiler says «is there a function I can
call that takes the address of a function as its argument?» There is a pre-defined function in
IOSTREAM.H to do this; it’s called an applicator. The applicator calls the function, passing
it the ostream object as an argument.

You don’t need to know how the applicator works to create your own manipulator; you only
need to know the applicator exists. Here’s an example that creates a manipulator called nl that
emits a newline without flushing the stream:

//: C19:nl.cpp
// Creating a manipulator
#include <iostream>
using namespace std;

ostream& nl(ostream& os) {
  return os << '\n';
}

int main() {



Chapter 14: Templates & Container Classes
579

  cout << "newlines" << nl << "between" << nl
       << "each" << nl << "word" << nl;
} ///:~

The expression

os << '\n';

calls a function that returns os, which is what is returned from nl.57

People often argue that the nl approach shown above is preferable to using endl because the
latter always flushes the output stream, which may incur a performance penalty.

Effectors
As you’ve seen, zero-argument manipulators are quite easy to create. But what if you want to
create a manipulator that takes arguments? The iostream library has a rather convoluted and
confusing way to do this, but Jerry Schwarz, the creator of the iostream library, suggests58 a
scheme he calls effectors. An effector is a simple class whose constructor performs the desired
operation, along with an overloaded operator<< that works with the class. Here’s an example
with two effectors. The first outputs a truncated character string, and the second prints a
number in binary (the process of defining an overloaded operator<< will not be discussed
until Chapter 10):

//: C19:Effector.txt
// (Should be "cpp" but I can't get it to compile with
// My windows compilers, so making it a txt file will
// keep it out of the makefile for the time being)
// Jerry Schwarz's "effectors"
#include<iostream>
#include <cstdlib>
#include <string>
#include <climits> // ULONG_MAX
using namespace std;

// Put out a portion of a string:
class Fixw {
  string str;
public:
  Fixw(const string& s, int width)

                                                       

57 Before putting nl into a header file, you should make it an inline function (see Chapter 7).

58 In a private conversation.



Chapter 14: Templates & Container Classes
580

    : str(s, 0, width) {}
  friend ostream&
  operator<<(ostream& os, Fixw& fw) {
    return os << fw.str;
  }
};

typedef unsigned long ulong;

// Print a number in binary:
class Bin {
  ulong n;
public:
  Bin(ulong N) { n = N; }
  friend ostream& operator<<(ostream&, Bin&);
};

ostream& operator<<(ostream& os, Bin& b) {
  ulong bit = ~(ULONG_MAX >> 1); // Top bit set
  while(bit) {
    os << (b.n & bit ? '1' : '0');
    bit >>= 1;
  }
  return os;
}

int main() {
  char* string =
    "Things that make us happy, make us wise";
  for(int i = 1; i <= strlen(string); i++)
    cout << Fixw(string, i) << endl;
  ulong x = 0xCAFEBABEUL;
  ulong y = 0x76543210UL;
  cout << "x in binary: " << Bin(x) << endl;
  cout << "y in binary: " << Bin(y) << endl;
} ///:~

The constructor for Fixw creates a shortened copy of its char* argument, and the destructor
releases the memory created for this copy. The overloaded operator<< takes the contents of
its second argument, the Fixw object, and inserts it into the first argument, the ostream, then
returns the ostream so it can be used in a chained expression. When you use Fixw in an
expression like this:

cout << Fixw(string, i) << endl;



Chapter 14: Templates & Container Classes
581

a temporary object is created by the call to the Fixw constructor, and that temporary is passed
to operator<<. The effect is that of a manipulator with arguments.

The Bin effector relies on the fact that shifting an unsigned number to the right shifts zeros
into the high bits. ULONG_MAX (the largest unsigned long value, from the standard include
file LIMITS.H) is used to produce a value with the high bit set, and this value is moved across
the number in question (by shifting it), masking each bit.

Initially the problem with this technique was that once you created a class called Fixw for
char* or Bin for unsigned long, no one else could create a different Fixw or Bin class for
their type. However, with namespaces (covered in Chapter XX), this problem is eliminated.

Iostream examples
In this section you’ll see some examples of what you can do with all the information you’ve
learned in this chapter. Although many tools exist to manipulate bytes (stream editors like sed
and awk from Unix are perhaps the most well known, but a text editor also fits this category),
they generally have some limitations. sed and awk can be slow and can only handle lines in a
forward sequence, and text editors usually require human interaction, or at least learning a
proprietary macro language. The programs you write with iostreams have none of these
limitations: They’re fast, portable, and flexible. It’s a very useful tool to have in your kit.

Code generation
The first examples concern the generation of programs that, coincidentally, fit the format used
in this book. This provides a little extra speed and consistency when developing code. The
first program creates a file to hold main( ) (assuming it takes no command-line arguments and
uses the iostream library):

//: C19:Makemain.cpp
// From Thinking in C++, 2nd Edition
// (c) Bruce Eckel 1998
// Copyright notice in Copyright.txt
// Create a shell main() file
#include <fstream>
#include <strstream>
#include <cstring>
#include <cctype>
#include "../require.h"
using namespace std;

int main(int argc, char* argv[]) {
  requireArgs(argc,  2);
  ofstream mainfile(argv[1]);



Chapter 14: Templates & Container Classes
582

  assure(mainfile, argv[1]);
  istrstream name(argv[1]);
  ostrstream CAPname;
  char c;
  while(name.get(c))
    CAPname << char(toupper(c));
  CAPname << ends;
  mainfile << "//" << ": " << CAPname.rdbuf()
    << " -- " << endl
    << "#include <iostream>" << endl
    << endl
    << "main() {" << endl << endl
    << "}" << endl;
} ///:~

The argument on the command line is used to create an istrstream, so the characters can be
extracted one at a time and converted to upper case with the Standard C library macro
toupper( ). This returns an int so it must be explicitly cast to a char. This name is used in the
headline, followed by the remainder of the generated file.

Maintaining class library source
The second example performs a more complex and useful task. Generally, when you create a
class you think in library terms, and make a header file NAME.H for the class declaration and
a file where the member functions are implemented, called NAME.CPP. These files have
certain requirements: a particular coding standard (the program shown here will use the
coding format for this book), and in the header file the declarations are generally surrounded
by some preprocessor statements to prevent multiple declarations of classes. (Multiple
declarations confuse the compiler — it doesn’t know which one you want to use. They could
be different, so it throws up its hands and gives an error message.)

This example allows you to create a new header-implementation pair of files, or to modify an
existing pair. If the files already exist, it checks and potentially modifies the files, but if they
don’t exist, it creates them using the proper format.

//: C19:Cppcheck.cpp
// Configures .H & .CPP files
// To conform to style standard.
// Tests existing files for conformance
#include <fstream>
#include <strstream>
#include <cstring>
#include <cctype>
#include "../require.h"
using namespace std;
#define SZ 40  // Buffer sizes



Chapter 14: Templates & Container Classes
583

#define BSZ 100

int main(int argc, char* argv[]) {
  requireArgs(argc,  2); // File set name
  enum bufs { base, header, implement,
    Hline1, guard1, guard2, guard3,
    CPPline1, include, bufnum };
  char b[bufnum][SZ];
  ostrstream osarray[] = {
    ostrstream(b[base], SZ),
    ostrstream(b[header], SZ),
    ostrstream(b[implement], SZ),
    ostrstream(b[Hline1], SZ),
    ostrstream(b[guard1], SZ),
    ostrstream(b[guard2], SZ),
    ostrstream(b[guard3], SZ),
    ostrstream(b[CPPline1], SZ),
    ostrstream(b[include], SZ),
  };
  osarray[base] << argv[1] << ends;
  // Find any '.' in the string using the
  // Standard C library function strchr():
  char* period = strchr(b[base], '.');
  if(period) *period = 0; // Strip extension
  // Force to upper case:
  for(int i = 0; b[base][i]; i++)
    b[base][i] = toupper(b[base][i]);
  // Create file names and internal lines:
  osarray[header] << b[base] << ".H" << ends;
  osarray[implement] << b[base] << ".CPP" << ends;
  osarray[Hline1] << "//" << ": " << b[header]
    << " -- " << ends;
  osarray[guard1] << "#ifndef " << b[base]
                  << "_H_" << ends;
  osarray[guard2] << "#define " << b[base]
                  << "_H_" << ends;
  osarray[guard3] << "#endif // " << b[base]
                  << "_H_" << ends;
  osarray[CPPline1] << "//" << ": "
                    << b[implement]
                    << " -- " << ends;
  osarray[include] << "#include \""
                   << b[header] << "\"" <<ends;



Chapter 14: Templates & Container Classes
584

  // First, try to open existing files:
  ifstream existh(b[header]),
           existcpp(b[implement]);
  if(!existh) { // Doesn't exist; create it
    ofstream newheader(b[header]);
    assure(newheader, b[header]);
    newheader << b[Hline1] << endl
      << b[guard1] << endl
      << b[guard2] << endl << endl
      << b[guard3] << endl;
  }
  if(!existcpp) { // Create cpp file
    ofstream newcpp(b[implement]);
    assure(newcpp, b[implement]);
    newcpp << b[CPPline1] << endl
      << b[include] << endl;
  }
  if(existh) { // Already exists; verify it
    strstream hfile; // Write & read
    ostrstream newheader; // Write
    hfile << existh.rdbuf() << ends;
    // Check that first line conforms:
    char buf[BSZ];
    if(hfile.getline(buf, BSZ)) {
      if(!strstr(buf, "//" ":") ||
         !strstr(buf, b[header]))
        newheader << b[Hline1] << endl;
    }
    // Ensure guard lines are in header:
    if(!strstr(hfile.str(), b[guard1]) ||
       !strstr(hfile.str(), b[guard2]) ||
       !strstr(hfile.str(), b[guard3])) {
       newheader << b[guard1] << endl
         << b[guard2] << endl
         << buf
         << hfile.rdbuf() << endl
         << b[guard3] << endl << ends;
    } else
      newheader << buf
        << hfile.rdbuf() << ends;
    // If there were changes, overwrite file:
    if(strcmp(hfile.str(),newheader.str())!=0){
      existh.close();



Chapter 14: Templates & Container Classes
585

      ofstream newH(b[header]);
      assure(newH, b[header]);
      newH << "//@//" << endl // Change marker
        << newheader.rdbuf();
    }
    delete hfile.str();
    delete newheader.str();
  }
  if(existcpp) { // Already exists; verify it
    strstream cppfile;
    ostrstream newcpp;
    cppfile << existcpp.rdbuf() << ends;
    char buf[BSZ];
    // Check that first line conforms:
    if(cppfile.getline(buf, BSZ))
      if(!strstr(buf, "//" ":") ||
         !strstr(buf, b[implement]))
        newcpp << b[CPPline1] << endl;
    // Ensure header is included:
    if(!strstr(cppfile.str(), b[include]))
      newcpp << b[include] << endl;
    // Put in the rest of the file:
    newcpp << buf << endl; // First line read
    newcpp << cppfile.rdbuf() << ends;
    // If there were changes, overwrite file:
    if(strcmp(cppfile.str(),newcpp.str())!=0){
      existcpp.close();
      ofstream newCPP(b[implement]);
      assure(newCPP, b[implement]);
      newCPP << "//@//" << endl // Change marker
        << newcpp.rdbuf();
    }
    delete cppfile.str();
    delete newcpp.str();
  }
} ///:~

This example requires a lot of string formatting in many different buffers. Rather than
creating a lot of individually named buffers and ostrstream objects, a single set of names is
created in the enum bufs. Then two arrays are created: an array of character buffers and an
array of ostrstream objects built from those character buffers. Note that in the definition for
the two-dimensional array of char buffers b, the number of char arrays is determined by
bufnum, the last enumerator in bufs. When you create an enumeration, the compiler assigns



Chapter 14: Templates & Container Classes
586

integral values to all the enum labels starting at zero, so the sole purpose of bufnum is to be a
counter for the number of enumerators in buf. The length of each string in b is SZ.

The names in the enumeration are base, the capitalized base file name without extension;
header, the header file name; implement, the implementation file (CPP) name; Hline1, the
skeleton first line of the header file; guard1, guard2, and guard3, the «guard» lines in the
header file (to prevent multiple inclusion); CPPline1, the skeleton first line of the CPP file;
and include, the line in the CPP file that includes the header file.

osarray is an array of ostrstream objects created using aggregate initialization and automatic
counting. Of course, this is the form of the ostrstream constructor that takes two arguments
(the buffer address and buffer size), so the constructor calls must be formed accordingly
inside the aggregate initializer list. Using the bufs enumerators, the appropriate array element
of b is tied to the corresponding osarray object. Once the array is created, the objects in the
array can be selected using the enumerators, and the effect is to fill the corresponding b
element. You can see how each string is built in the lines following the ostrstream array
definition.

Once the strings have been created, the program attempts to open existing versions of both the
header and CPP file as ifstreams. If you test the object using the operator ‘!’ and the file
doesn’t exist, the test will fail. If the header or implementation file doesn’t exist, it is created
using the appropriate lines of text built earlier.

If the files do exist, then they are verified to ensure the proper format is followed. In both
cases, a strstream is created and the whole file is read in; then the first line is read and
checked to make sure it follows the format by seeing if it contains both a «//:» and the name
of the file. This is accomplished with the Standard C library function strstr( ). If the first line
doesn’t conform, the one created earlier is inserted into an ostrstream that has been created to
hold the edited file.

In the header file, the whole file is searched (again using strstr( )) to ensure it contains the
three «guard» lines; if not, they are inserted. The implementation file is checked for the
existence of the line that includes the header file (although the compiler effectively guarantees
its existence).

In both cases, the original file (in its strstream) and the edited file (in the ostrstream) are
compared to see if there are any changes. If there are, the existing file is closed, and a new
ofstream object is created to overwrite it. The ostrstream is output to the file after a special
change marker is added at the beginning, so you can use a text search program to rapidly find
any files that need reviewing to make additional changes.

Detecting compiler errors
All the code in this book is designed to compile as shown without errors. Any line of code
that should generate a compile-time error is commented out with the special comment
sequence «//!». The following program will remove these special comments and append a
numbered comment to the line, so that when you run your compiler it should generate error
messages and you should see all the numbers appear when you compile all the files. It also



Chapter 14: Templates & Container Classes
587

appends the modified line to a special file so you can easily locate any lines that don’t
generate errors:

//: C19:Showerr.cpp
// Un-comment error generators
#include <iostream>
#include <fstream>
#include <strstream>
#include <cstdio>
#include <cstring>
#include <cctype>
#include "../require.h"
using namespace std;
char* marker = "//!";

char* usage =
"usage: showerr filename chapnum\n"
"where filename is a C++ source file\n"
"and chapnum is the chapter name it's in.\n"
"Finds lines commented with //! and removes\n"
"comment, appending //(#) where # is unique\n"
"across all files, so you can determine\n"
"if your compiler finds the error.\n"
"showerr /r\n"
"resets the unique counter.";

// File containing error number counter:
char* errnum = "../errnum.txt";
// File containing error lines:
char* errfile = "../errlines.txt";
ofstream errlines(errfile,ios::app);

int main(int argc, char* argv[]) {
  if(argc < 2) {
    cerr << usage << endl;
    return 1;
  }
  if(argv[1][0] == '/' || argv[1][0] == '-') {
    // Allow for other switches:
    switch(argv[1][1]) {
      case 'r': case 'R':
        cout << "reset counter" << endl;
        remove(errnum); // Delete files
        remove(errfile);



Chapter 14: Templates & Container Classes
588

        return 0;
      default:
        cerr << usage << endl;
        return 1;
    }
  }
  char* chapter = argv[2];
  strstream edited; // Edited file
  int counter = 0;
  {
    ifstream infile(argv[1]);
    assure(infile, argv[1]);
    ifstream count(errnum);
    assure(count, errnum);
    if(count) count >> counter;
    int linecount = 0;
    #define sz 255
    char buf[sz];
    while(infile.getline(buf, sz)) {
      linecount++;
      // Eat white space:
      int i = 0;
      while(isspace(buf[i]))
        i++;
      // Find marker at start of line:
      if(strstr(&buf[i], marker) == &buf[i]) {
        // Erase marker:
        memset(&buf[i], ' ', strlen(marker));
        // Append counter & error info:
        ostrstream out(buf, sz, ios::ate);
        out << "//(" << ++counter << ") "
            << "Chapter " << chapter
            << " File: " << argv[1]
            << " Line " << linecount << endl
            << ends;
          edited << buf;
        errlines << buf; // Append error file
      } else
        edited << buf << "\n"; // Just copy
    }
  } // Closes files
  ofstream outfile(argv[1]); // Overwrites
  assure(outfile, argv[1]);



Chapter 14: Templates & Container Classes
589

  outfile << edited.rdbuf();
  ofstream count(errnum); // Overwrites
  assure(count, errnum);
  count << counter; // Save new counter
} ///:~

The marker can be replaced with one of your choice.

Each file is read a line at a time, and each line is searched for the marker appearing at the head
of the line; the line is modified and put into the error line list and into the strstream edited.
When the whole file is processed, it is closed (by reaching the end of a scope), reopened as an
output file and edited is poured into the file. Also notice the counter is saved in an external
file, so the next time this program is invoked it continues to sequence the counter.

A simple datalogger
This example shows an approach you might take to log data to disk and later retrieve it for
processing. The example is meant to produce a temperature-depth profile of the ocean at
various points. To hold the data, a class is used:

//: C19:DataLogger.h
// Datalogger record layout
#ifndef DATALOG_H_
#define DATALOG_H_
#include <ctime>
#include <iostream>
#define BSZ 10

class DataPoint {
  tm Tm; // Time & day
  // Ascii degrees (*) minutes (') seconds ("):
  char Latitude[BSZ], Longitude[BSZ];
  double Depth, Temperature;
public:
  tm Time(); // Read the time
  void Time(tm t); // Set the time
  const char* latitude(); // Read
  void latitude(const char* l); // Set
  const char* longitude(); // Read
  void longitude(const char* l); // Set
  double depth(); // Read
  void depth(double d); // Set
  double temperature(); // Read
  void temperature(double t); // Set
  void print(ostream& os);



Chapter 14: Templates & Container Classes
590

};
#endif // DATALOG_H_ ///:~

The access functions provide controlled reading and writing to each of the data members. The
print( ) function formats the DataPoint in a readable form onto an ostream object (the
argument to print( )). Here’s the definition file:

//: C19:Datalog.cpp {O}
// Datapoint member functions
#include "DataLogger.h"
#include <iomanip>
#include <cstring>

tm DataPoint::Time() { return Tm; }

void DataPoint::Time(tm t) { Tm = t; }

const char* DataPoint::latitude() {
  return Latitude;
}

void DataPoint::latitude(const char* l) {
  Latitude[BSZ - 1] = 0;
  strncpy(Latitude, l, BSZ - 1);
}

const char* DataPoint::longitude() {
  return Longitude;
}

void DataPoint::longitude(const char* l) {
  Longitude[BSZ - 1] = 0;
  strncpy(Longitude, l, BSZ - 1);
}

double DataPoint::depth() { return Depth; }

void DataPoint::depth(double d) { Depth = d; }

double DataPoint::temperature() {
  return Temperature;
}

void DataPoint::temperature(double t) {



Chapter 14: Templates & Container Classes
591

  Temperature = t;
}

void DataPoint::print(ostream& os) {
  os.setf(ios::fixed, ios::floatfield);
  os.precision(4);
  os.fill('0'); // Pad on left with '0'
  os << setw(2) << Time().tm_mon << '\\'
     << setw(2) << Time().tm_mday << '\\'
     << setw(2) << Time().tm_year << ' '
     << setw(2) << Time().tm_hour << ':'
     << setw(2) << Time().tm_min << ':'
     << setw(2) << Time().tm_sec;
  os.fill(' '); // Pad on left with ' '
  os << " Lat:" << setw(9) << latitude()
     << ", Long:" << setw(9) << longitude()
     << ", depth:" << setw(9) << depth()
     << ", temp:" << setw(9) << temperature()
     << endl;
} ///:~

In print( ), the call to setf( ) causes the floating-point output to be fixed-precision, and
precision( ) sets the number of decimal places to four.

The default is to right-justify the data within the field. The time information consists of two
digits each for the hours, minutes and seconds, so the width is set to two with setw( ) in each
case. (Remember that any changes to the field width affect only the next output operation, so
setw( ) must be given for each output.) But first, to put a zero in the left position if the value is
less than 10, the fill character is set to ‘0’. Afterwards, it is set back to a space.

The latitude and longitude are zero-terminated character fields, which hold the information as
degrees (here, ‘*’ denotes degrees), minutes (‘), and seconds(«). You can certainly devise a
more efficient storage layout for latitude and longitude if you desire.

Generating test data
Here’s a program that creates a file of test data in binary form (using write( )) and a second
file in ASCII form using DataPoint::print( ). You can also print it out to the screen but it’s
easier to inspect in file form.

//: C19:Datagen.cpp
// From Thinking in C++, 2nd Edition
// (c) Bruce Eckel 1998
// Copyright notice in Copyright.txt
//{L} Datalog
// Test data generator



Chapter 14: Templates & Container Classes
592

#include <fstream>
#include <cstdlib>
#include <cstring>
#include "../require.h"
#include "DataLogger.h"
using namespace std;

int main() {
  ofstream data("data.txt");
  assure(data, "data.txt");
  ofstream bindata("data.bin", ios::binary);
  assure(bindata, "data.bin");
  time_t timer;
  srand(time(&timer)); // Seed random number generator
  for(int i = 0; i < 100; i++) {
    DataPoint d;
    // Convert date/time to a structure:
    d.Time(*localtime(&timer));
    timer += 55; // Reading each 55 seconds
    d.latitude("45*20'31\"");
    d.longitude("22*34'18\"");
    // Zero to 199 meters:
    double newdepth  = rand() % 200;
    double fraction = rand() % 100 + 1;
    newdepth += double(1) / fraction;
    d.depth(newdepth);
    double newtemp = 150 + rand()%200; // Kelvin
    fraction = rand() % 100 + 1;
    newtemp += (double)1 / fraction;
    d.temperature(newtemp);
    d.print(data);
    bindata.write((unsigned char*)&d,
                  sizeof(d));
  }
} ///:~

The file DATA.TXT is created in the ordinary way as an ASCII file, but DATA.BIN has the
flag ios::binary to tell the constructor to set it up as a binary file.

The Standard C library function time( ), when called with a zero argument, returns the current
time as a time_t value, which is the number of seconds elapsed since 00:00:00 GMT, January
1 1970 (the dawning of the age of Aquarius?). The current time is the most convenient way to
seed the random number generator with the Standard C library function srand( ), as is done
here.



Chapter 14: Templates & Container Classes
593

Sometimes a more convenient way to store the time is as a tm structure, which has all the
elements of the time and date broken up into their constituent parts as follows:

struct tm {
  int tm_sec; // 0-59 seconds
  int tm_min; // 0-59 minutes
  int tm_hour; // 0-23 hours
  int tm_mday; // Day of month
  int tm_mon; // 1-12 months
  int tm_year; // Calendar year
  int tm_wday; // Sunday == 0, etc.
  int tm_yday; // 0-365 day of year
  int tm_isdst; // Daylight savings?
};

To convert from the time in seconds to the local time in the tm format, you use the Standard
C library localtime( ) function, which takes the number of seconds and returns a pointer to the
resulting tm. This tm, however, is a static structure inside the localtime( ) function, which is
rewritten every time localtime( ) is called. To copy the contents into the tm struct inside
DataPoint, you might think you must copy each element individually. However, all you must
do is a structure assignment, and the compiler will take care of the rest. This means the right-
hand side must be a structure, not a pointer, so the result of localtime( ) is dereferenced. The
desired result is achieved with

d.Time(*localtime(&timer));

After this, the timer is incremented by 55 seconds to give an interesting interval between
readings.

The latitude and longitude used are fixed values to indicate a set of readings at a single
location. Both the depth and the temperature are generated with the Standard C library rand( )
function, which returns a pseudorandom number between zero and the constant
RAND_MAX. To put this in a desired range, use the modulus operator % and the upper end
of the range. These numbers are integral; to add a fractional part, a second call to rand( ) is
made, and the value is inverted after adding one (to prevent divide-by-zero errors).

In effect, the DATA.BIN file is being used as a container for the data in the program, even
though the container exists on disk and not in RAM. To send the data out to the disk in binary
form, write( ) is used. The first argument is the starting address of the source block — notice
it must be cast to an unsigned char* because that’s what the function expects. The second
argument is the number of bytes to write, which is the size of the DataPoint object. Because
no pointers are contained in DataPoint, there is no problem in writing the object to disk. If
the object is more sophisticated, you must implement a scheme for serialization . (Most
vendor class libraries have some sort of serialization structure built into them.)



Chapter 14: Templates & Container Classes
594

Verifying & viewing the data
To check the validity of the data stored in binary format, it is read from the disk and put in
text form in DATA2.TXT, so that file can be compared to DATA.TXT for verification. In the
following program, you can see how simple this data recovery is. After the test file is created,
the records are read at the command of the user.

//: C19:Datascan.cpp
//{L} Datalog
// Verify and view logged data
#include <iostream>
#include <fstream>
#include <strstream>
#include <iomanip>
#include "../require.h"
#include "DataLogger.h"
using namespace std;

int main() {
  ifstream bindata("data.bin", ios::binary);
  assure(bindata, "data.bin");
  // Create comparison file to verify data.txt:
  ofstream verify("data2.txt");
  assure(verify, "data2.txt");
  DataPoint d;
  while(bindata.read(
    (unsigned char*)&d, sizeof d))
    d.print(verify);
  bindata.clear(); // Reset state to "good"
  // Display user-selected records:
  int recnum = 0;
  // Left-align everything:
  cout.setf(ios::left, ios::adjustfield);
  // Fixed precision of 4 decimal places:
  cout.setf(ios::fixed, ios::floatfield);
  cout.precision(4);
  for(;;) {
    bindata.seekg(recnum* sizeof d, ios::beg);
    cout << "record " << recnum << endl;
    if(bindata.read(
      (unsigned char*)&d, sizeof d)) {
      cout << asctime(&(d.Time()));
      cout << setw(11) << "Latitude"
           << setw(11) << "Longitude"



Chapter 14: Templates & Container Classes
595

           << setw(10) << "Depth"
           << setw(12) << "Temperature"
           << endl;
      // Put a line after the description:
      cout << setfill('-') << setw(43) << '-'
           << setfill(' ') << endl;
      cout << setw(11) << d.latitude()
           << setw(11) << d.longitude()
           << setw(10) << d.depth()
           << setw(12) << d.temperature()
           << endl;
    } else {
      cout << "invalid record number" << endl;
      bindata.clear(); // Reset state to "good"
    }
    cout << endl
      << "enter record number, x to quit:";
    char buf[10];
    cin.getline(buf, 10);
    if(buf[0] == 'x') break;
    istrstream input(buf, 10);
    input >> recnum;
  }
} ///:~

The ifstream bindata is created from DATA.BIN as a binary file, with the ios::nocreate flag
on to cause the assert( ) to fail if the file doesn’t exist. The read( ) statement reads a single
record and places it directly into the DataPoint d. (Again, if DataPoint contained pointers
this would result in meaningless pointer values.) This read( ) action will set bindata’s failbit
when the end of the file is reached, which will cause the while statement to fail. At this point,
however, you can’t move the get pointer back and read more records because the state of the
stream won’t allow further reads. So the clear( ) function is called to reset the failbit.

Once the record is read in from disk, you can do anything you want with it, such as perform
calculations or make graphs. Here, it is displayed to further exercise your knowledge of
iostream formatting.

The rest of the program displays a record number (represented by recnum) selected by the
user. As before, the precision is fixed at four decimal places, but this time everything is left
justified.

The formatting of this output looks different from before:

record 0
Tue Nov 16 18:15:49 1993
Latitude   Longitude  Depth     Temperature



Chapter 14: Templates & Container Classes
596

-------------------------------------------
45*20'31"  22*34'18"  186.0172  269.0167

To make sure the labels and the data columns line up, the labels are put in the same width
fields as the columns, using setw( ). The line in between is generated by setting the fill
character to ‘-’, the width to the desired line width, and outputting a single ‘-’.

If the read( ) fails, you’ll end up in the else part, which tells the user the record number was
invalid. Then, because the failbit was set, it must be reset with a call to clear( ) so the next
read( ) is successful (assuming it’s in the right range).

Of course, you can also open the binary data file for writing as well as reading. This way you
can retrieve the records, modify them, and write them back to the same location, thus creating
a flat-file database management system. In my very first programming job, I also had to create
a flat-file DBMS — but using BASIC on an Apple II. It took months, while this took minutes.
Of course, it might make more sense to use a packaged DBMS now, but with C++ and
iostreams you can still do all the low-level operations that are necessary in a lab.

Counting editor
Often you’ve got some editing task where you must go through and sequentially number
something, but all the other text is duplicated. I encountered this problem when pasting digital
photos into a Web page – I got the formatting just right, then duplicated it, then had the
problem of incrementing the photo number for each one. So I replaced the photo number with
XXX, duplicated that, and wrote the following program to find and replace the «XXX» with
an incremented count. Notice the formatting, so the value will be «001,» «002,» etc.:

//: C19:NumberPhotos.cpp
// Find the marker "XXX" and replace it with an
// incrementing number whereever it appears. Used
// to help format a web page with photos in it
#include <fstream>
#include <sstream>
#include <iomanip>
#include <string>
#include "../require.h"
using namespace std;

int main(int argc, char* argv[]) {
  requireArgs(argc,  3);
  ifstream in(argv[1]);
  assure(in, argv[1]);
  ofstream out(argv[2]);
  assure(out, argv[2]);
  string line;



Chapter 14: Templates & Container Classes
597

  int counter = 1;
  while(getline(in, line)) {
    int xxx = line.find("XXX");
    if(xxx != string::npos) {
      ostringstream cntr;
      cntr << setfill('0') << setw(3) << counter++;
      line.replace(xxx, 3, cntr.str());
    }
    out << line << endl;
  }
} ///:~

Breaking up big files
This program was created to break up big files into smaller ones, in particular so they could
be more easily downloaded from an Internet server (since hangups sometimes occur, this
allows someone to download a file a piece at a time and then re-assemble it at the client end).
You’ll note that the program also creates a reassembly batch file for DOS (where it is
messier), whereas under Linux/Unix you simply say something like «cat *piece* >
destination.file».

This program reads the entire file into memory, which of course relies on having a 32-bit
operating system with virtual memory for big files. It then pieces it out in chunks to the
smaller files, generating the names as it goes. Of course, you can come up with a possibly
more reasonable strategy that reads a chunk, creates a file, reads another chunk, etc.

Note that this program can be run on the server, so you only have to download the big file
once and then break it up once it’s on the server.

//: C19:Breakup.cpp
// Breaks a file up into smaller files for
// easier downloads
#include <iostream>
#include <fstream>
#include <iomanip>
#include <strstream>
#include <string>
#include "../require.h"
using namespace std;

int main(int argc, char* argv[]) {
  requireArgs(argc, 2);
  ifstream in(argv[1], ios::binary);



Chapter 14: Templates & Container Classes
598

  assure(in, argv[1]);
  in.seekg(0, ios::end); // End of file
  long fileSize = in.tellg(); // Size of file
  cout << "file size = " << fileSize << endl;
  in.seekg(0, ios::beg); // Start of file
  char* fbuf = new char[fileSize];
  require(fbuf != 0);
  in.read(fbuf, fileSize);
  in.close();
  string infile(argv[1]);
  int dot = infile.find('.');
  while(dot != string::npos) {
    infile.replace(dot, 1, "-");
    dot = infile.find('.');
  }
  string batchName(
    "DOSAssemble" + infile + ".bat");
  ofstream batchFile(batchName.c_str());
  batchFile << "copy /b ";
  int filecount = 0;
  const int sbufsz = 128;
  char sbuf[sbufsz];
  const long pieceSize = 1000L * 100L;
  long byteCounter = 0;
  while(byteCounter < fileSize) {
    ostrstream name(sbuf, sbufsz);
    name << argv[1] << "-part" << setfill('0')
      << setw(2) << filecount++ << ends;
    cout << "creating " << sbuf << endl;
    if(filecount > 1)
      batchFile << "+";
    batchFile << sbuf;
    ofstream out(sbuf, ios::out | ios::binary);
    assure(out, sbuf);
    long byteq;
    if(byteCounter + pieceSize < fileSize)
      byteq = pieceSize;
    else
      byteq = fileSize - byteCounter;
    out.write(fbuf + byteCounter, byteq);
    cout << "wrote " << byteq << " bytes, ";
    byteCounter += byteq;
    out.close();



Chapter 14: Templates & Container Classes
599

    cout << "ByteCounter = " << byteCounter
      << ", fileSize = " << fileSize << endl;
  }
  batchFile << " " << argv[1] << endl;
} ///:~

Summary
This chapter has given you a fairly thorough introduction to the iostream class library. In all
likelihood, it is all you need to create programs using iostreams. (In later chapters you’ll see
simple examples of adding iostream functionality to your own classes.) However, you should
be aware that there are some additional features in iostreams that are not used often, but which
you can discover by looking at the iostream header files and by reading your compiler’s
documentation on iostreams.

Exercises
 1.  Open a file by creating an ifstream object called in. Make an ostrstream

object called os, and read the entire contents into the ostrstream using the
rdbuf( ) member function. Get the address of os’s char* with the str( )
function, and capitalize every character in the file using the Standard C
toupper( ) macro. Write the result out to a new file, and delete the memory
allocated by os.

 2.  Create a program that opens a file (the first argument on the command line)
and searches it for any one of a set of words (the remaining arguments on
the command line). Read the input a line at a time, and print out the lines
(with line numbers) that match.

 3.  Write a program that adds a copyright notice to the beginning of all source-
code files. This is a small modification to exercise 1.

 4.  Use your favorite text-searching program (grep, for example) to output the
names (only) of all the files that contain a particular pattern. Redirect the
output into a file. Write a program that uses the contents of that file to
generate a batch file that invokes your editor on each of the files found by
the search program.





601

XX: Advanced
templates

The typename keyword

template-templates

Controlling template
instantiation

The export keyword





603

20: STL Containers
& Iterators

Container classes are the solution to a specific kind of code
reuse problem. They are building blocks used to create
object-oriented programs — they make the internals of a
program much easier to construct.

A container class describes an object that holds other objects. Container classes are so
important that they were considered fundamental to early object-oriented languages. In
Smalltalk, for example, programmers think of the language as the program translator together
with the class library, and a critical part of that library is the container classes. So it became
natural that C++ compiler vendors also include a container class library. You’ll note that the
vector was so useful that it was introduced in its simplest form very early in this book.

Like many other early C++ libraries, early container class libraries followed Smalltalk’s
object-based hierarchy, which worked well for Smalltalk, but turned out to be awkward and
difficult to use in C++. Another approach was required.

This chapter attempts to slowly work you into the concepts of the STL, which is a powerful
library of containers (as well as algorithms, but these are covered in the following chapter). In
the past, I have taught that there is a relatively small subset of elements and ideas that you
need to understand in order to get much of the usefulness from the STL. Although this can be
true it turns out that understanding the STL more deeply is important to gain the full power of
the library. This chapter and the next probe into the STL containers and algorithms.

STL reference documentation
You will notice that this chapter does not contain exhaustive documentation describing each
of the member functions in each STL container. Although I describe the member functions
that I use, I’ve left the full descriptions to others: there are at least two very good on-line
sources of STL documentation in HTML format that you can keep resident on your computer
and view with a Web browser whenever you need to look something up:

1. The SGI STL and documentation at http://www.sgi.com/Technology/STL/.



Chapter 15: Multiple Inheritance
604

2. The Dinkumware C/C++ Library reference at http://www.dinkumware.com. This
contains STL reference information, as well as reference pages for the rest of the C and
C++ libraries (so it’s good to use for all your Standard C/C++ programming questions).

When you’re actively programming, these two sources should adequately satisfy your
reference needs (and you can use them to look up anything in this chapter that isn’t clear to
you). In addition, the STL books listed in Appendix XX will provide you with other
resources.

The Standard Template Library
The C++ STL59 is a powerful library intended to satisfy the vast bulk of your needs for
containers and algorithms, but in a completely portable fashion. This means that not only are
your programs easier to port to other platforms, but that your knowledge itself does not
depend on the libraries provided by a particular compiler vendor (and the STL is likely to be
more tested and scrutinized than a particular vendor’s library). Thus, it will benefit you
greatly to look first to the STL for containers and algorithms, before looking at vendor-
specific solutions.

A fundamental principle of software design is that all problems can be simplified by
introducing an extra level of indirection. This simplicity is achieved in the STL using
iterators to perform operations on a data structure while knowing as little as possible about
that structure, thus producing data structure independence. With the STL, this means that any
operation that can be performed on an array of objects can also be performed on an STL
container of objects and vice versa. The STL containers work just as easily with built-in types
as they do with user-defined types. If you learn the library, it will work on everything.

The drawback to this independence is that you’ll have to take a little time at first getting used
to the way things are done in the STL. However, the STL uses a consistent pattern, so once
you fit your mind around it, it doesn’t change from one STL tool to another.

Consider an example using the STL set class. A set will allow only one of each object value
to be inserted into itself. Here is a simple set created to work with ints by providing int as the
template argument to set:

//: C20:Intset.cpp
// Simple use of STL set
#include <set>
#include <iostream>
using namespace std;

                                                       

59 Contributed to the C++ Standard by Alexander Stepanov and Meng Lee at Hewlett-
Packard.



Chapter 15: Multiple Inheritance
605

int main() {
 set<int> intset;
  for(int i = 0; i < 25; i++)
    for(int j = 0; j < 10; j++)
      // Try to insert multiple copies:
      intset.insert(j);
  // Print to output:
 copy(intset.begin(), intset.end(),
   ostream_iterator<int>(cout, "\n"));
} ///:~

The insert( ) member does all the work: it tries putting the new element in and rejects it if it’s
already there. Very often the activities involved in using a set are simply insertion and a test
to see whether it contains the element. You can also form a union, intersection, or difference
of sets, and test to see if one set is a subset of another.

In this example, the values 1 - 10 are inserted into the set 25 times, and the results are printed
out to show that only one of each of the values is actually retained in the set.

The copy( ) function is actually the instantiation of an STL template function, of which there
are many. These template functions are generally referred to as «the STL Algorithms» and
will be the subject of the following chapter. However, several of the algorithms are so useful
that they will be introduced in this chapter. Here, copy( ) shows the use of iterators. The set
member functions begin( ) and end( ) produce iterators as their return values. These are used
by copy( ) as beginning and ending points for its operation, which is simply to move between
the boundaries established by the iterators and copy the elements to the third argument, which
is also an iterator but a special type created for iostreams. This places int objects on cout and
separates them with a newline.

Because of its genericity, copy( ) is certainly not restricted to printing on a stream. It can be
used in virtually any situation: it needs only three iterators to talk to. All of the algorithms
follow the form of copy( ) and simply manipulate iterators (that’s the extra indirection).

Now consider taking the form of Intset.cpp and reshaping it to display a list of the words
used in a document. The solution becomes remarkably simple.

//: C20:WordSet.cpp
#include <string>
#include <fstream>
#include <iostream>
#include <set>
#include "../require.h"
using namespace std;

int main(int argc, char* argv[]) {
  requireArgs(argc, 2);
  ifstream source(argv[1]);



Chapter 15: Multiple Inheritance
606

  assure(source, argv[1]);
  string word;
  set<string> words;
  while(source >> word)
    words.insert(word);
  copy(words.begin(), words.end(),
    ostream_iterator<string>(cout, "\n"));
  cout << "Number of unique words:"
    << words.size() << endl;
} ///:~

The only substantive difference here is that string is used instead of int. The words are pulled
from a file, but everything else is the same as in Intset.cpp. The operator>> returns a
whitespace-separated group of characters each time it is called, until there’s no more input
from the file. So it approximately breaks an input stream up into words. Each string is placed
in the words vector using push_back( ), and the copy( ) function is used to display the
results. Because of the way set is implemented (as a tree), the words are automatically sorted.

Consider how much effort it would be to accomplish the same task in C, or even in C++
without the STL.

The basic concepts
The primary idea in the STL is the container (also known as a collection), which is just what
it sounds like: a place to hold things. You need containers because objects are constantly
marching in and out of your program and there must be someplace to put them while they’re
around. You can’t make named local objects because in a typical program you don’t know
how many, or what type, or the lifetime of the objects you’re working with. So you need a
container that will expand whenever necessary to fill your needs.

All the containers in the STL hold objects and expand themselves. In addition, they hold your
objects in a particular way. The difference between one container and another is the way the
objects are held and how the sequence is created. Let’s start by looking at the simplest
containers.

A vector is a linear sequence that allows rapid random access to its elements. However, it’s
expensive to insert an element in the middle of the sequence, and is also expensive when it
allocactes additional storage. A deque is also a linear sequence, and it allows random access
that’s nearly as fast as vector, but it’s significantly faster when it needs to allocate new
storage, and you can easily add new elements at either end (vector only allows the addition of
elements at its tail). A list the third type of basic linear sequence, but it’s expensive to move
around randomly and cheap to insert an element in the middle. Thus list, deque and vector
are very similar in their basic functionality, but different in the cost of their activities. So for
your first shot at a program, you could use any one, and only experiment with the others if
you’re tuning for efficiency.



Chapter 15: Multiple Inheritance
607

Many of the problems you set out to solve will only require a simple linear sequence like a
vector, deque or list. All three have a member function push_back( ) which you use to insert
a new element at the back of the sequence (deque and list also have push_front( )).

But now how do you retrieve those elements? With a vector or deque, it is possible to use the
indexing operator[ ], but that doesn’t work with list. Since it would be nicest to learn a single
interface, we’ll use the one defined for all STL containers: the iterator.

An iterator is a class that abstracts the process of moving through a sequence. It allows you to
select each element of a sequence without knowing the underlying structure of that sequence.
This is a powerful feature, partly because it allows us to learn a single interface that works
with all containers, and partly because it allows containers to be used interchangeably.

One more observation and you’re ready for another example. Even though the STL containers
hold objects by value (that is, they hold the whole object inside themselves) that’s probably
not the way you’ll generally use them time if you’re doing object-oriented programming.
That’s because in OOP, most of the time you’ll create objects on the heap with new and then
upcast the address to the base-class type, later manipulating it as a pointer to the base class.
The beauty of this is that you don’t worry about the specific type of object you’re dealing
with, which greatly reduces the complexity of your code and increases the maintainability of
your program. This process of upcasting is what you try to do in OOP, so you’ll usually be
using containers of pointers.

Consider the classic «shape» example where shapes have a set of common operations, and
you have different types of shapes. Here’s what it looks like using the STL vector to hold
pointers to various types of shape created on the heap:

//: C18:Stlshape.cpp
// Simple shapes w/ STL
#include <vector>
#include <iostream>
using namespace std;

class shape {
public:
  virtual void draw() = 0;
  virtual ~shape() {};
};

class circle : public shape {
public:
  void draw() { cout << "circle::draw\n"; }
  ~circle() { cout << "~circle\n"; }
};

class triangle : public shape {



Chapter 15: Multiple Inheritance
608

public:
  void draw() { cout << "triangle::draw\n"; }
  ~triangle() { cout << "~triangle\n"; }
};

class square : public shape {
public:
  void draw() { cout << "square::draw\n"; }
  ~square() { cout << "~square\n"; }
};

typedef std::vector<shape*> container;
typedef container::iterator iter;

int main() {
  container shapes;
  shapes.push_back(new circle);
  shapes.push_back(new square);
  shapes.push_back(new triangle);
  for(iter i = shapes.begin();
      i != shapes.end(); i++)
    (*i)->draw();
  // ... Sometime later:
  for(iter i = shapes.begin();
      i != shapes.end(); i++)
    delete *i;
  return 0;
} ///:~

 The creation of Shape, Circle, Square and Triangle should be fairly familiar. Shape is a
pure abstract base class (because of the pure specifier =0) that defines the interface for all
types of shapes; the derived classes redefine the virtual function draw( ) to perform the
appropriate operation. Now we’d like to create a bunch of different types of Shape object, but
where to put them? In an STL container, of course. For convenience, the typedef container:

typedef std::vector<Shape*> container;

creates an alias for a vector of Shape*, and the typedef Iter:

typedef container::iterator Iter;

uses that alias to create another one, for vector<Shape*>::iterator. Notice that the container
type name must be used to produce the appropriate iterator, which is defined as a nested class.
Although there are different types of iterators (forward, bidirectional, reverse, etc., which will
be explained later) they all have the same basic interface: you can increment them with ++,
you can dereference them to produce the object they’re currently selecting, and you can test



Chapter 15: Multiple Inheritance
609

them to see if they’re at the end of the sequence. That’s what you’ll want to do 90% of the
time. And that’s what is done in the above example: after creating a container, it’s filled with
different types of Shape*. Notice that the upcast happens as the Circle, Square or Rectangle
pointer is added to the shapes container, which doesn’t know about those specific types but
instead holds only Shape*. So as soon as the pointer is added to the container it loses its
specific identity and becomes an anonymous Shape*. This is exactly what we want: toss them
all in and let polymorphism sort it out.

The first for loop creates an iterator and sets it to the beginning of the sequence by calling the
begin( ) member function for the container. All containers have begin( ) and end( ) member
functions that produce an iterator selecting, respectively, the beginning of the sequence and
one past the end of the sequence. To test to see if you’re done, you make sure you’re != to the
iterator produced by end( ). Not < or <=. The only test that works is !=. So it’s very common
to write a loop like:

for(Iter i = shapes.begin(); i != shapes.end(); i++)

This says: «take me through every element in the sequence.»

What do you do with the iterator to produce the element it’s selecting? You dereference it
using (what else) the ‘*’ (which is actually an overloaded operator). What you get back is
whatever the container is holding. This container holds Shape*, so that’s what *i produces. If
you want to send a message to the Shape, you must select that message with ->, so you write
the line:

(*i)->draw();

This calls the draw( ) function for the Shape* the iterator is currently selecting. The
parentheses are ugly but necessary to produce the proper order of evaluation. As an
alternative, operator-> is defined so that you can say:

i->draw();

As they are destroyed or in other cases where the pointers are removed, the STL containers do
not call delete for the pointers they contain. If you create an object on the heap with new and
place its pointer in a container, the container can’t tell if that pointer is also placed inside
another container. So the STL just doesn’t do anything about it, and puts the responsibility
squarely in your lap. The last lines in the program move through and delete every object in the
container so proper cleanup occurs.

It’s very interesting to note that you can change the type of container that this program uses
with two lines. Instead of including <vector>, you include <list>, and in the first typedef you
say:

typedef std::list<Shape*> container;

instead of using a vector. Everything else goes untouched. This is possible not because of an
interface enforced by inheritance (there isn’t any inheritance in the STL, which comes as a
surprise when you first see it), but because the interface is enforced by a convention adopted



Chapter 15: Multiple Inheritance
610

by the designers of STL, precisely so you could perform this kind of interchange. Now I can
easily switch between vector and list and see which one works fastest for my needs.

Containers of strings
One of the biggest time-wasters in C is character arrays: keeping track of the difference
between static quoted strings and arrays created on the stack and the heap, and the fact that
sometimes you’re passing around a char* and sometimes you must copy the whole array (in
C++ we sometimes refer to this as the general problem of shallow copy vs. deep copy).
Especially because string manipulation is so common, character arrays are a great source of
misunderstandings and bugs.

Despite this, creating string classes remained a common exercise for beginning C++
programmers for many years. The Standard C++ library string class solves the problem of
character array manipulation once and for all, keeping track of memory even during
assignments and copy-constructions. You simply don’t need to think about it (strings are
thoroughly covered in Chapter XX).

One of the places where this is particularly useful is pointed out in the prior example. At the
end of main( ), it was necessary to move through the whole list and delete all the Shape
pointers.

for(Iter j = shapes.begin();
      j != shapes.end(); j++)
    delete *j;

This highlights what could be seen as a flaw in the STL: there’s no facility in any of the STL
containers to automatically delete pointers they contain, so you must do it by hand. It’s as if
the assumption of the STL designers was that containers of pointers weren’t an interesting
problem, although I assert that it is one of the more common things you’ll want to do.

Automatically deleting a pointer turns out to be a rather aggressive thing to do because of the
multiple membership problem. If a container holds a pointer to an object, it’s not unlikely that
pointer could also be in another container. A pointer to an Aluminum object in a list of Trash
pointers could also reside in a list of Aluminum pointers. Then which list is responsible for
cleaning up that object – which list «owns» the object?

This question is virtually eliminated if the object rather than a pointer resides in the list. Then
it seems clear that when the list is destroyed, the objects it contains must also be destroyed.
Here, the STL shines, as you can see when creating a container of string objects. The
following example stores each incoming line as a string in a vector<string>:

//: C20:Strvector.cpp
// A vector of strings
#include <string>
#include <vector>



Chapter 15: Multiple Inheritance
611

#include <fstream>
#include <iostream>
#include <iterator>
#include <sstream>
#include "../require.h"
using namespace std;

int main(int argc, char* argv[]) {
  requireArgs(argc, 2);
  ifstream in(argv[1]);
  assure(in, argv[1]);
  vector<string> strings;
  string line;
  while(getline(in, line))
    strings.push_back(line);
  // Do something to the strings...
  int i = 1;
  vector<string>::iterator w;
  for(w = strings.begin();
      w != strings.end(); w++) {
    ostringstream ss;
    ss << i++;
    *w = ss.str() + ": " + *w;
  }
  // Now send them out:
  copy(strings.begin(), strings.end(),
    ostream_iterator<string>(cout, "\n"));
  // Since they aren't pointers, string
  // objects clean themselves up!
} ///:~

Once the vector<string> called strings is created, each line in the file is read into a string
and put in the vector:

  while(getline(in, line))
    strings.push_back(line);

The operation that’s being performed on this file is to add line numbers. A stringstream
provides easy conversion from an int to a string of characters representing that int.

Assembling string objects is quite easy, since operator+ is overloaded. Amazingly enough,
the iterator w can be dereferenced to produce a string that can be used as both an rvalue and
an lvalue:

*w = ss.str() + ": " + *w;



Chapter 15: Multiple Inheritance
612

The fact that you can assign back into the container via the iterator may seem a bit surprising
at first, but it’s a tribute to the careful design of the STL.

Because the vector<string> contains the objects themselves, a number of interesting things
take place. First, no cleanup is necessary. Even if you were to put addresses of the string
objects as pointers into other containers, it’s clear that strings is the «master list» and
maintains ownership of the objects.

Second, you are effectively using dynamic object creation, and yet you never use new or
delete! That’s because, somehow, it’s all taken care of for you by the vector (this is non-
trivial. You can try to figure it out by looking at the header files for the STL – all the code is
there – but it’s quite an exercise). Thus your coding is significantly cleaned up.

The limitation of holding objects instead of pointers inside containers is quite severe: you
can’t upcast from derived types, thus you can’t use polymorphism. The problem with
upcasting objects by value is that they get sliced and converted until their type is completely
changed into the base type, and there’s no remnant of the derived type left. It’s pretty safe to
say that you never want to do this.

Inheriting from STL containers
The power of instantly creating a sequence of elements is amazing, and it makes you realize
how much time you’ve spent (or rather, wasted) in the past solving this particular problem.
For example, many utility programs involve reading a file into memory, modifying the file
and writing it back out to disk. One might as well take the functionality in Strvector.cpp and
package it into a class for later reuse.

Now the question is: do you create a member object of type vector, or do you inherit? A
general guideline is to always prefer composition (member objects) over inheritance, but with
the STL this is often not true, because there are so many existing algorithms that work with
the STL types that you may want your new type to be an STL type. So the list of strings
should also be a vector, thus inheritance is desired.

//: C20:FileEditor.h
// File editor tool
#ifndef FILEEDITOR_H_
#define FILEEDITOR_H_
#include <string>
#include <vector>
#include <iostream>

class FileEditor :
public std::vector<std::string> {
public:
  FileEditor(char* filename);



Chapter 15: Multiple Inheritance
613

  void write(std::ostream& out = std::cout);
};
#endif // FILEEDITOR_H_ ///:~

Note the careful avoidance of a global using namespace std statement here, to prevent the
opening of the std namespace to every file that includes this header.

The constructor opens the file and reads it into the FileEditor, and write( ) puts the vector of
string onto any ostream. Notice in write( ) that you can have a default argument for a
reference.

The implementation is quite simple:

//: C20:FileEditor.cpp {O}
#include "FileEditor.h"
#include <fstream>
#include "../require.h"
using namespace std;

FileEditor::FileEditor(char* filename) {
  ifstream in(filename);
  assure(in, filename);
  string line;
  while(getline(in, line))
    push_back(line);
}

// Could also use copy() here:
void FileEditor::write(ostream& out) {
  for(iterator w = begin();  w != end(); w++)
    out << *w << endl;
} ///:~

The functions from Strvector.cpp are simply repackaged. Often this is the way classes evolve
– you start by creating a program to solve a particular application, then discover some
commonly-used functionality within the program that can be turned into a class.

The line numbering program can now be rewritten using FileEditor:

//: C20:FEditTest.cpp
//{L} FileEditor
// Test the FileEditor tool
#include "FileEditor.h"
#include <sstream>
using namespace std;

int main(int, char* argv[]) {



Chapter 15: Multiple Inheritance
614

  FileEditor file(argv[1]);
  // Do something to the lines...
  int i = 1;
  FileEditor::iterator w = file.begin();
  while(w != file.end()) {
    ostringstream ss;
    ss << i++;
    *w = ss.str() + ": " + *w;
    w++;
  }
  // Now send them to cout:
  file.write();
} ///:~

Now the operation of reading the file is in the constructor:

FileEditor file(argv[1]);

and writing happens in the single line (which defaults to sending the output to cout):

file.write();

The bulk of the program is involved with actually modifying the file in memory.

A plethora of iterators
As mentioned earlier, the iterator is the abstraction that allows a piece of code to be generic,
and to work with different types of containers without knowing the underlying structure of
those containers. Every container produces iterators. You must always be able to say:

ContainerType::iterator
ContainerType::const_iterator

to produce the types of the iterators produced by that container. Every container has begin( )
method that produces an iterator indicating the beginning of the elements in the container, and
an end( ) method that produces an iterator which is the as the past-the-end value of the
container. If the container is const¸ begin( ) and end( ) produce const iterators.

Every iterator can be moved forward to the next element using the operator++ (an iterator
may be able to do more than this, as you shall see, but it must at least support forward
movement with operator++).

The basic iterator is only guaranteed to be able to perform == and != comparisons. Thus, to
move an iterator it forward without running it off the end you say something like:

while(it != pastEnd) {
  // Do something
  it++;



Chapter 15: Multiple Inheritance
615

}

Where pastEnd is the past-the-end value produced by the container’s end( ) member
function.

An iterator can be used to produce the element that it is currently selecting within a container
by dereferencing the iterator. This can take two forms.  If it is an iterator and f( ) is a member
function of the objects held in the container that the iterator is pointing within, then you can
say either:

(*it).f();

or

it->f();

Knowing this, you can create a template that works with any container. Here, the apply( )
function template calls a member function for every object in the container, using a pointer to
member that is passed as an argument:

//: C20:Apply.cpp
// Using basic iterators
#include <iostream>
#include <vector>
#include <iterator>
using namespace std;

template<class Cont, class PtrMemFun>
void apply(Cont& c, PtrMemFun f) {
  typename Cont::iterator it = c.begin();
  while(it != c.end()) {
    (it->*f)(); // Compact form
    ((*it).*f)(); // Alternate form
    it++;
  }
}

class Z {
  int i;
public:
  Z(int ii) : i(ii) {}
  void g() { i++; }
  friend ostream&
  operator<<(ostream& os, const Z& z) {
    return os << z.i;
  }
};



Chapter 15: Multiple Inheritance
616

int main() {
  ostream_iterator<Z> out(cout, " ");
  vector<Z> vz;
  for(int i = 0; i < 10; i++)
    vz.push_back(Z(i));
  copy(vz.begin(), vz.end(), out);
  cout << endl;
  apply(vz, &Z::g);
  copy(vz.begin(), vz.end(), out);
} ///:~

Because operator-> is defined for STL iterators, it can be used for pointer-to-member
dereferencing.

Much of the time, this is all you need to know about iterators – that they are produced by
begin( ) and end( ), and that you can use them to move through a container and select
elements. Many of the problems that you solve, and the STL algorithms (covered in the next
chapter) will allow you to just flail away with the basics of iterators. However, things can at
times become more subtle, and in those cases you need to know more about iterators. The rest
of this section gives you the details.

Iterators in reversible containers
All containers must produce the basic iterator. A container may also be reversible, which
means that it can produce iterators that move backwards from the end, as well as the iterators
that move forward from the beginning.

A reversible container has the methods rbegin( ) (to produce a reverse_iterator selecting the
end) and rend( ) (to produce a reverse_iterator indicating «one past the beginning»). If the
container is const then rbegin( ) and rend( ) will produce const_reverse_iterators.

All the basic sequence containers vector, deque and list are reversible containers. The
following example uses vector, but will work with deque and list as well:

//: C20:Reversible.cpp
// Using reversible containers
#include <vector>
#include <iostream>
#include <fstream>
using namespace std;

int main() {
  ifstream in("Reversible.cpp");
  string line;
  vector<string> lines;



Chapter 15: Multiple Inheritance
617

  while(getline(in, line))
    lines.push_back(line);
  vector<string>::reverse_iterator r;
  for(r = lines.rbegin(); r != lines.rend(); r++)
    cout << *r << endl;
} ///:~

You move backward through the container using the same syntax as moving forward through
a container with an ordinary iterator.

The associative containers set, multiset, map and multimap are also reversible. Using
iterators with associative containers is a bit different, however, and will be delayed until those
containers are more fully introduced.

Iterator categories
The iterators are classified into different «categories» which describe what they are capable of
doing. They are generally described in order from the the categories with most restricted
behavior to those with the most powerful behavior.

Input: read-only, one pass
The only predefined implementations of input iterators are istream_iterator and
istreambuf_iterator, to read from an istream. As you can imagine, an input iterator can only
be dereferenced once for each element that’s selected, just as you can only read a particular
portion of an input stream once. They can only move forward. There is a special constructor
to define the past-the-end value. In summary, you can dereference it for reading (once only
for each value), and move it forward.

Output: write-only, one pass
The complement of an input iterator, but for writing rather than reading. The only predefined
implementations of output iterators are ostream_iterator and ostreambuf_iterator, to write
to an ostream, and the less-commonly-used raw_storage_iterator. Again, these can only be
dereferenced once for each written value, and they can only move forward. There is no
concept of a terminal past-the-end value for an output iterator. Summarizing, you can
dereference it for writing (once only for each value) and move it forward.

Forward: multiple read/write
The forward iterator contains all the functionality of both the input iterator and the output
iterator, plus you can dereference an iterator location multiple times, so you can read and
write to a value multiple times. As the name implies, you can only move forward. There are
no predefined iterators that are only forward iterators.



Chapter 15: Multiple Inheritance
618

Bidirectional: operator--
The bidirectional iterator has all the functionality of the forward iterator, and in addition it can
be moved backwards one location at a time using operator--.

Random-access: like a pointer
Finally, the random-access iterator has all the functionality of the bidirectional iterator plus all
the functionality of a pointer. Basically, anything you can do with a pointer you can do with a
bidirectional iterator, including indexing with operator[ ], adding integral values to a pointer
to move it forward or backward by a number of locations, and comparing one iterator to
another with <, >=, etc.

Is this really important?
Why do you care about this categorization? When you’re just using containers in a
straightforward way (for example, just hand-coding all the operations you want to perform on
the objects in the container) it usually doesn’t impact you too much. Things either work or
they don’t. The iterator categories become important when:

1. You use some of the fancier built-in iterator types that will be demonstrated shortly. Or
you graduate to creating your own iterators (this will also be demonstrated, later in this
chapter).

2. You use the STL algorithms (the subject of the next chapter). Each of the algorithms have
requirements that they place on the iterators that they work with. Knowledge of the
iterator categories is even more important when you create your own reusable algorithm
templates, because the iterator category that your algorithm requires determines how
flexible the algorithm will be. If you only require the most primitive iterator category
(input or output) then your algorithm will work with everything (copy( ) is an example of
this).

Predefined iterators
The STL has a predefined set of iterator classes that can be quite handy for programs. For
example, you’ve already seen reverse_iterator (produced by calling rbegin( ) and rend( ) for
all the basic containers).

The insertion iterators are necessary because some of the STL algorithms – copy( ) for
example – use the assignment operator= in order to place objects in the destination container.
This is a problem when you’re using the algorithm to fill the container rather than to overwrite
items that are already in the destination container. That is, when the space isn’t already there.
What the insert iterators do is change the implementation of the operator= so that instead of
doing an assignment, it calls a «push» or «insert» function for that container, thus causing it to
allocate new space. The constructors for both back_insert_iterator and
front_insert_iterator take a basic sequence container object (vector, deque or list) as their



Chapter 15: Multiple Inheritance
619

argument and produce an iterator that calls push_back( ) or push_front( ), respectively, to
perform assignment. The shorthand functions back_inserter( ) and front_inserter( ) produce
the same objects with a little less typing. Since all the basic sequence containers support
push_back( ), you will probably find yourself using back_inserter( ) with some regularity.

The insert_iterator allows you to insert elements in the middle of the sequence, again
replacing the meaning of operator=, but this time with insert( ) instead of one of the «push»
functions. The insert( ) member function requires an iterator indicating the place to insert
before, so the insert_iterator requires that in addition to the basic sequence container object.
The shorthand function inserter( ) produces the same object.

The following example shows the use of the different types of inserters:

//: C20:Inserters.cpp
// Different types of iterator inserters
#include <iostream>
#include <vector>
#include <deque>
#include <list>
#include <iterator>
using namespace std;

int a[] = { 1, 3, 5, 7, 11, 13, 17, 19, 23 };

template<class Cont>
void frontInsertion(Cont& ci) {
  copy(a, a + sizeof(a)/sizeof(int),
    front_inserter(ci));
  copy(ci.begin(), ci.end(),
    ostream_iterator<int>(cout, " "));
  cout << endl;
}

template<class Cont>
void backInsertion(Cont& ci) {
  copy(a, a + sizeof(a)/sizeof(int),
    back_inserter(ci));
  copy(ci.begin(), ci.end(),
    ostream_iterator<int>(cout, " "));
  cout << endl;
}

template<class Cont>
void midInsertion(Cont& ci) {
  typename Cont::iterator it = ci.begin();



Chapter 15: Multiple Inheritance
620

  it++; it++; it++;
  copy(a, a + sizeof(a)/(sizeof(int) * 2),
    inserter(ci, it));
  copy(ci.begin(), ci.end(),
    ostream_iterator<int>(cout, " "));
  cout << endl;
}

int main() {
  deque<int> di;
  list<int>  li;
  vector<int> vi;
  // Can't use a front_inserter() with vector:
  frontInsertion(di);
  frontInsertion(li);
  di.clear();
  li.clear();
  backInsertion(vi);
  backInsertion(di);
  backInsertion(li);
  midInsertion(vi);
  midInsertion(di);
  midInsertion(li);
} ///:~

Since vector does not support push_front( ), it cannot produce a front_insertion_iterator.
However, you can see that vector does support the other two types of insertion (even though,
as you shall see later, insert( ) is not a very efficient operation for vector).

IO stream iterators
You’ve already seen quite a bit of use of the ostream_iterator (an output iterator) in
conjuction with copy( ) to place the contents of a container on an output stream. There is a
corresponding istream_iterator (an input iterator) which allows you to «iterate» a set of
objects of a specified type from an input stream. An important difference between
ostream_iterator and istream_iterator comes from the fact that an output stream doesn’t
have any concept of an «end,» since you can always just keep writing more elements.
However, an input stream eventually terminates (for example, when you reach the end of a
file) so there needs to be a way to represent that. An istream_iterator has two constructors,
one that takes an istream and produces the iterator you actually read from, and the other
which is the default constructor and produces an object which is the past-the-end sentinel. In
the following program this object is named end:

//: C20:StreamIt.cpp
// Iterators for istreams and ostreams



Chapter 15: Multiple Inheritance
621

#include <iostream>
#include <fstream>
#include <vector>
#include <string>
using namespace std;

int main() {
  ifstream in("StreamIt.cpp");
  istream_iterator<string> init(in), end;
  ostream_iterator<string> out(cout, "\n");
  vector<string> vs;
  copy(init, end, back_inserter(vs));
  copy(vs.begin(), vs.end(), out);
  out = vs[0];
  out = "That's all, folks!";
} ///:~

When in runs out of input (in this case when the end of the file is reached) then init becomes
equivalent to end and the copy( ) terminates.

Because out is an ostream_iterator<string>, you can simply assign any string object to it
using operator= and it will put that string on the output stream, as seen in the two
assignments to out. Because out is defined with a newline as its second argument, these
assignments also cause a newline to be inserted along with each assignment.

While it is possible to create an istream_iterator<char> and ostream_iterator<char>, these
actually parse  the input and thus will for example automatically eat whitespace (spaces, tabs
and newlines), which is not desirable if you want to manipulate an exact representation of an
istream. Instead, you can use the special iterators istreambuf_iterator and
ostreambuf_iterator, which are designed strictly to move characters60. Although these are
templates, the only template arguments they will accept are either char or wchar_t (for wide
characters). The following example allows you to compare the behavior of the stream iterators
vs. the streambuf iterators:

//: C20:StreambufIterator.cpp
// istreambuf_iterator & ostreambuf_iterator
#include <iostream>
#include <fstream>
#include <iterator>

                                                       

60 These were actually created to abstract the «locale» facets away from iostreams, so that
locale facets could operate on any sequence of characters, not only iostreams. Locales allow
iostreams to easily handle culturally-different formatting (such as representation of money),
and are beyond the scope of this book.



Chapter 15: Multiple Inheritance
622

#include <algorithm>
using namespace std;

int main() {
  ifstream in("StreambufIterator.cpp");
  // Exact representation of stream:
  istreambuf_iterator<char> isb(in), end;
  ostreambuf_iterator<char> osb(cout);
  while(isb != end)
    *osb++ = *isb++; // Copy 'in' to cout
  cout << endl;
  ifstream in2("StreambufIterator.cpp");
  // Strips white space:
  istream_iterator<char> is(in2), end2;
  ostream_iterator<char> os(cout);
  while(is != end2)
    *os++ = *is++;
  cout << endl;
} ///:~

The stream iterators use the parsing defined by istream::operator>>, which is probably not
what you want if you are parsing characters directly – it’s fairly rare that you would want all
the whitespace stripped out of your character stream. You’ll virtually always want to use a
streambuf iterator when using characters and streams, rather than a stream iterator. In
addition, istream::operator>> adds significant overhead for each operation, so it is only
appropriate for higher-level operations such as parsing floating-point numbers.

Manipulating raw storage
This is a little more esoteric and is generally used in the implementation of other Standard
Library functions, but it is nonetheless interesting. The raw_storage_iterator is defined in
<algorithm> and is an output iterator. It is provided to enable algorithms to store their results
into uninitialized memory. The interface is quite simple: the constructor takes an output
iterator that is pointing to the raw memory (thus it is typically a pointer) and the operator=
assigns an object into that raw memory. The template parameters are the type of the output
iterator pointing to the raw storage, and the type of object that will be stored. Here’s an
example which creates Noisy objects (you’ll be introduced to the Noisy class shortly; it’s not
necessary to know its details for this example):

//: C20:RawStorageIterator.cpp
// Demonstrate the raw_storage_iterator
#include <iostream>
#include <iterator>
#include <algorithm>
#include "Noisy.h"



Chapter 15: Multiple Inheritance
623

using namespace std;

int main() {
  const int quantity = 10;
  // Create raw storage and cast to desired type:
  Noisy* np =
    (Noisy*)new char[quantity * sizeof(Noisy)];
  raw_storage_iterator<Noisy*, Noisy> rsi(np);
  for(int i = 0; i < quantity; i++)
    *rsi++ = Noisy(); // Place objects in storage
  cout << endl;
  copy(np, np + quantity,
    ostream_iterator<Noisy>(cout, " "));
  cout << endl;
  // Explicit destructor call for cleanup:
  for(int j = 0; j < quantity; j++)
    (&np[j])->~Noisy();
  // Release raw storage:
  delete (char*)np;
} ///:~

To make the raw_storage_iterator template happy, the raw storage must be of the same type
as the objects you’re creating. That’s why the pointer from the new array of char is cast to a
Noisy*. The assignment operator forces the objects into the raw storage using the copy-
constructor. Note that the explicit destructor call must be made for proper cleanup, and this
also allows the objects to be deleted one at a time during container manipulation.

Basic sequences:
vector, list & deque

If you take a step back from the STL containers you’ll see that there are really only two types
of container: sequences (including vector, list, deque, stack, queue, and priority_queue)
and associations (including set, multiset, map and multimap). The sequences keep the
objects in whatever sequence that you establish (either by pushing the objects on the end or
inserting them in the middle).

Since all the sequence containers have the same basic goal (to maintain your order) they seem
relatively interchangeable. However, they differ in the efficiency of their operations, so if you
are going to manipulate a sequence in a particular fashion you can choose the appropriate
container for those types of manipulations. The «basic» sequence containers are vector, list
and deque – these actually have fleshed-out implementations, while stack, queue and
priority_queue are built on top of the basic sequences, and represent more specialized uses



Chapter 15: Multiple Inheritance
624

rather than differences in underlying structure (stack, for example, can be implemented using
a deque, vector or list).

So far in this book I have been using vector as a catch-all container. This was acceptable
because I’ve only used the simplest and safest operations, primarily push_back( ) and
operator[ ]. However, when you start making more sophisticated uses of containers it
becomes important to know more about their underlying implementations and behavior, so
you can make the right choices (and, as you’ll see, stay out of trouble).

Basic sequence operations
Using a template, the following example shows the operations that all the basic sequences
(vector, deque or list) support. As you shall learn in the sections on the specific sequence
containers, not all of these operations make sense for each basic sequence, but they are
supported.

//: C20:BasicSequenceOperations.cpp
// The operations available for all the
// basic sequence Containers.
#include <iostream>
#include <vector>
#include <deque>
#include <list>
using namespace std;

template<class ContainerOfInt>
void print(ContainerOfInt& c, char* s = "") {
  cout << s << ":" << endl;
  if(c.empty()) {
    cout << "(empty)" << endl;
    return;
  }
  typename ContainerOfInt::iterator it;
  for(it = c.begin(); it != c.end(); it++)
    cout << *it << " ";
  cout << endl;
  cout << "size() " << c.size()
    << " max_size() "<< c.max_size()
    << " front() " << c.front()
    << " back() " << c.back() << endl;
}

template<class ContainerOfInt>
void basicOps(char* s) {



Chapter 15: Multiple Inheritance
625

  cout << "------- " << s << " -------" << endl;
  typedef ContainerOfInt Ci;
  Ci c;
  print(c, "c after default constructor");
  Ci c2(10, 1); // 10 elements, values all 1
  print(c2, "c2 after constructor(10,1)");
  int ia[] = { 1, 3, 5, 7, 9 };
  const int iasz = sizeof(ia)/sizeof(*ia);
  // Initialize with begin & end iterators:
  Ci c3(ia, ia + iasz);
  print(c3, "c3 after constructor(iter,iter)");
  Ci c4(c2); // Copy-constructor
  print(c4, "c4 after copy-constructor(c2)");
  c = c2; // Assignment operator
  print(c, "c after operator=c2");
  c.assign(10, 2); // 10 elements, values all 2
  print(c, "c after assign(10, 2)");
  // Assign with begin & end iterators:
  c.assign(ia, ia + iasz);
  print(c, "c after assign(iter, iter)");
  cout << "c using reverse iterators:" << endl;
  typename Ci::reverse_iterator rit = c.rbegin();
  while(rit != c.rend())
    cout << *rit++ << " ";
  cout << endl;
  c.resize(4);
  print(c, "c after resize(4)");
  c.push_back(47);
  print(c, "c after push_back(47)");
  c.pop_back();
  print(c, "c after pop_back()");
  typename Ci::iterator it = c.begin();
  it++; it++;
  c.insert(it, 74);
  print(c, "c after insert(it, 74)");
  it = c.begin();
  it++;
  c.insert(it, 3, 96);
  print(c, "c after insert(it, 3, 96)");
  it = c.begin();
  it++;
  c.insert(it, c3.begin(), c3.end());
  print(c, "c after insert("



Chapter 15: Multiple Inheritance
626

    "it, c3.begin(), c3.end())");
  it = c.begin();
  it++;
  c.erase(it);
  print(c, "c after erase(it)");
  typename Ci::iterator it2 = it = c.begin();
  it++;
  it2++; it2++; it2++; it2++; it2++;
  c.erase(it, it2);
  print(c, "c after erase(it, it2)");
  c.swap(c2);
  print(c, "c after swap(c2)");
  c.clear();
  print(c, "c after clear()");
}

int main() {
  basicOps<vector<int> >("vector");
  basicOps<deque<int> >("deque");
  basicOps<list<int> >("list");
} ///:~

The first function template, print( ), demonstrates the basic information you can get from any
sequence container: whether it’s empty, it’s current size, the size of the largest possible
container, the element at the beginning and the element at the end. You can also see that every
container has begin( ) and end( ) methods that return iterators.

The basicOps( ) function tests everything else (and in turn calls print( )), including a variety
of constructors: default, copy-constructor, quantity and initial value, and beginning and
ending iterators. There’s an assignment operator= and two kinds of assign( ) member
functions, one which takes a quantity and initial value and the other which take a beginning
and ending iterator.

All the basic sequence containers are reversible containers, as shown by the use of the
rbegin( ) and rend( ) member functions. A sequence container can be resized, and the entire
contents of the container can be removed with clear( ).

Using an iterator to indicate where you want to start inserting into any sequence container,
you can insert( ) a single element, a number of elements all the same value, and a group of
elements from another container using the beginning and ending iterators of that group.

To erase( ) a single element from the middle, use a iterator; to erase( ) a range of elments you
use a pair of iterators. Notice that since a list only supports bidirectional iterators, all the
iterator motion must be performed with increments and decrements (if the containers were
limited to vector and deque, which produce random-access iterators, then operator+ and
operator- could have been used to move the iterators in big jumps).



Chapter 15: Multiple Inheritance
627

Although both list and deque support push_front( ) and pop_front( ), vector does not, so the
only member functions that work with all three are push_back( ) and pop_back( ).

The naming of the member function swap( ) is a little confusing, since there’s also a non-
member swap( ) algorithm that switches two elements of a container. The member swap( ),
however, swaps everything in one container for another (of the same type), effectively
swapping the containers themselves. There’s also a non-member version of this function.

The following sections on the seqence containers discuss the particulars of each type of
container.

vector
The vector is intentionally made to look like a souped-up array, since it has array-style
indexing but also can expand dynamically. vector is so fundamentally useful that it was
introduced in a very primitive way early in this book, and used quite regularly in previous
examples. This section will give a more in-depth look at vector.

To achieve maximally-fast indexing and iteration, the vector maintains its storage as a single
contiguous array of objects. This is a critical point to observe in understanding the behavior of
vector. It means that indexing and iteration are lighting-fast, being basically the same as
indexing and iterating over an array of objects. But it also means that inserting an object
anywhere but at the end (that is, appending) is not really an acceptable operation for a vector.
It also means that when a vector runs out of pre-allocated storage, in order to maintain its
contiguous array it must allocate a whole new (larger) chunk of storage elsewhere and copy
the objects to the new storage. This has a number of unpleasant side effects.

Cost of overflowing allocated storage
A vector starts by grabbing a block of storage, as if it’s taking a guess at how many objects
you plan to put in it. As long as you don’t try to put in more objects than that everything is
very rapid and efficient (note that if you do know how many objects to expect, you can pre-
allocate storage using reserve( )). But eventually you will put in one too many objects and,
unbeknownst to you, the vector responds by:

1. Allocating a new, bigger piece of storage

2. Copying all the objects from the old storage to the new (using the copy-constructor)

3. Destroying all the old objects (the destructor is called for each one)

4. Releasing the old memory

For complex objects, this copy-construction and destruction can end up being very expensive
if you overfill your vector a lot. To see what happens when you’re filling a vector, here is a
class that prints out information about its creations, destructions, asignments and copy-
constructions:



Chapter 15: Multiple Inheritance
628

//: C20:Noisy.h
// A class to track various object activities
#ifndef NOISY_H
#define NOISY_H
#include <iostream>

class Noisy {
  static long create, assign, copycons, destroy;
  long id;
public:
  Noisy() : id(create++) {
    std::cout << "d[" << id << "]";
  }
  Noisy(const Noisy& rv) : id(rv.id) {
    std::cout << "c[" << id << "]";
    copycons++;
  }
  Noisy& operator=(const Noisy& rv) {
    std::cout << "(" << id << ")=[" <<
      rv.id << "]";
    id = rv.id;
    assign++;
    return *this;
  }
  friend bool
  operator<(const Noisy& lv, const Noisy& rv) {
    return lv.id < rv.id;
  }
  friend bool
  operator==(const Noisy& lv, const Noisy& rv) {
    return lv.id == rv.id;
  }
  ~Noisy() {
    std::cout << "~[" << id << "]";
    destroy++;
  }
  friend std::ostream&
  operator<<(std::ostream& os, const Noisy& n) {
    return os << n.id;
  }
  friend class NoisyReport;
};



Chapter 15: Multiple Inheritance
629

struct NoisyGen {
  Noisy operator()() { return Noisy(); }
};

// A singleton. Will automatically report the
// statistics as the program terminates:
class NoisyReport {
  static NoisyReport nr;
  NoisyReport() {} // Private constructor
public:
  ~NoisyReport() {
    std::cout << "\n-------------------\n"
      << "Noisy creations: " << Noisy::create
      << "\nCopy-Constructions: "
      << Noisy::copycons
      << "\nAssignments: " << Noisy::assign
      << "\nDestructions: " << Noisy::destroy
      << std::endl;
  }
};

// Because of these this file can only be used
// in simple test situations. Move them to a
// .cpp file for more complex programs:
long Noisy::create = 0, Noisy::assign = 0,
  Noisy::copycons = 0, Noisy::destroy = 0;
NoisyReport NoisyReport::nr;
#endif // NOISY_H ///:~

Each Noisy object has its own identifier, and there are static variables to keep track of all the
creations, assignments (using operator=), copy-constructions and destructions. The id is
initialized using the create counter inside the default constructor; the copy-constructor and
assignment operator take their id values from the rvalue. Of course, with operator= the lvalue
is already an initialized object so the old value of id is printed before it is overwritten with the
id from the rvalue.

In order to support certain operations like sorting and searching (which are used implicitly by
some of the containers), Noisy must have an operator< and operator==. These simply
compare the id values. The operator<< for ostream follows the standard form and simply
prints the id.

NoisyGen produces a function object (since it has an operator( )) that is used to
automatically generate Noisy objects during testing.



Chapter 15: Multiple Inheritance
630

NoisyReport is a type of class called a singleton, which is a «design pattern» (these are
covered more fully in Chapter XX). Here, the goal is to make sure there is one and only one
NoisyReport object, because it is responsible for printing out the results at program
termination. It has a private constructor so no one else can make a NoisyReport object, and a
single static instance of NoisyReport called nr. The only actual code is the destructor, which
is called as the program exits and the static destructors are called; this destructor prints out the
statistics captured by the static variables in Noisy.

The one snag to this header file is the inclusion of the definitions for the statics at the end. If
you include this header in more than one place in your project, you’ll get multiple-definition
errors at link time. Of course, you can put the static definitions in a separate CPP file and link
it in, but that is less convenient and since Noisy is just intended for quick-and-dirty
experiments the header file should be reasonable for most situations.

Using Noisy.h, the following program will show the behaviors that occur when a vector
overflows its currently allocated storage:

//: C20:VectorOverflow.cpp
// Shows the copy-construction and destruction
// That occurs when a vector must reallocate
// (It maintains a linear array of elements)
#include <vector>
#include <iostream>
#include <string>
#include <cstdlib>
#include "Noisy.h"
using namespace std;

int main(int argc, char* argv[]) {
  int size = 1000;
  if(argc >= 2) size = atoi(argv[1]);
  vector<Noisy> vn;
  Noisy n;
  for(int i = 0; i < size; i++)
    vn.push_back(n);
  cout << "\n cleaning up \n";
} ///:~

You can either use the default value of 1000, or use your own value by putting it on the
command-line.

When you run this program, you’ll see single default constructor call (for n), then a lot of
copy-constructor calls, then some destructor calls, then some more copy-constructor calls, and
so on. When the vector runs out of space in the linear array of bytes it has allocated, it must
(to maintain all the objects in a linear array, which is an essential part of its job) get a bigger
piece of storage and move everything over, copying first and then destroying the old objects.



Chapter 15: Multiple Inheritance
631

You can imagine that if you store a lot of large and complex objects, this process could
rapidly become prohibitive.

There are two solutions to this problem. The nicest one requires that you know beforehand
how many objects you’re going to make. In that case you can use reserve( ) to tell the vector
how much storage to pre-allocate, thus eliminating all the copies and destructions and making
everything very fast (especially random access to the objects with operator[ ]).

However, in the more general case you won’t know how many objects you’ll need. If vector
reallocations are slowing things down, you can change sequence containers. You could use a
list, but as you’ll see, the deque allows speedy insertions at either end of the sequence, and
never needs to copy or destroy objects as it expands its storage. The deque also allows
random access with operator[ ], but it’s not quite as fast as vector’s operator[ ]. So in the
case where you’re creating all your objects in one part of the program and randomly accessing
them in another, you may find yourself filling a deque, then calling reserve( ) for a vector
and copying the deque contents to the vector and using the vector for rapid indexing. Of
course, you don’t want to program this way habitually, just be aware of these issues (avoid
premature optimization).

There is a darker side to vector’s reallocation of memory, however. Because vector keeps its
objects in a nice, neat array (allowing, for one thing, maximally-fast random access), the
iterators used by vector are generally just pointers. This is a good thing – these pointers allow
the fastest selection and manipulation of any of the sequence containers. However, consider
what happens when you’re holding onto an iterator (i.e. a pointer) and then you add the one
additional object that causes the vector to reallocate storage and move it elsewhere. Your
pointer is now pointing off into nowhere:

//: C20:VectorCoreDump.cpp
// How to break a program using a vector
#include <vector>
#include <iostream>
using namespace std;

int main() {
  vector<int> vi(10, 0);
  ostream_iterator<int> out(cout, " ");
  copy(vi.begin(), vi.end(), out);
  vector<int>::iterator i = vi.begin();
  cout << "\n i: " << long(i) << endl;
  *i = 47;
  copy(vi.begin(), vi.end(), out);
  // Force it to move memory (could also just add
  // enough objects):
  vi.resize(vi.capacity() + 1);
  // Now i points to wrong memory:
  cout << "\n i: " << long(i) << endl;



Chapter 15: Multiple Inheritance
632

  cout << "vi.begin(): " << long(vi.begin());
  *i = 48;  // Access violation
} ///:~

If your program is breaking mysteriously, look for places where you hold onto an iterator
while adding more objects to a vector. You’ll need to get a new iterator after adding
elements, or use operator[ ] instead for element selections. If you combine the above
observation with the awareness of the potential expense of adding new objects to a vector,
you may conclude that the safest way to use one is to fill it up all at once (ideally, knowing
first how many objects you’ll need) and then just use it (without adding more objects)
elsewhere in the program. This is the way vector has been used in the book up to this point.

You may observe that using vector as the «basic» container the book in earlier chapters may
not be the best choice in all cases. This is a fundamental issue in containers, and in data
structures in general: the «best» choice varies according to the way the container is used. The
reason vector has been the «best» choice up until now is that it looks a lot like an array, and
was thus familiar and easy for you to adopt. But from now on it’s also worth thinking about
other issues when choosing containers.

Inserting and erasing elements
The vector is most efficient if:

1. You reserve( ) the correct amount of storage at the beginning so the vector never has to
reallocate.

2. You only add and remove elements from the back end.

It is possible to insert and erase elements from the middle of a vector using an iterator, but the
following program demonstrates what a bad idea it is:

//: C20:VectorInsertAndErase.cpp
// Erasing an element from a vector
#include <iostream>
#include <vector>
#include "Noisy.h"
using namespace std;

int main() {
  vector<Noisy> v;
  v.reserve(11);
  cout << "11 spaces have been reserved" << endl;
  generate_n(back_inserter(v), 10, NoisyGen());
  ostream_iterator<Noisy> out(cout, " ");
  cout << endl;
  copy(v.begin(), v.end(), out);



Chapter 15: Multiple Inheritance
633

  cout << "Inserting an element:" << endl;
  vector<Noisy>::iterator it =
    v.begin() + v.size() / 2; // Middle
  v.insert(it, Noisy());
  cout << endl;
  copy(v.begin(), v.end(), out);
  cout << "\nErasing an element:" << endl;
  // Cannot use the previous value of it:
  it = v.begin() + v.size() / 2;
  v.erase(it);
  cout << endl;
  copy(v.begin(), v.end(), out);
  cout << endl;
} ///:~

When you run the program you’ll see that the call to reserve( ) really only allocates storage –
no constructors are called. The generate_n( ) call is pretty busy: each call to
NoisyGen::operator( ) results in a construction, a copy-construction (into the vector) and a
destruction of the temporary. But when an object is inserted into the vector, it must shove
everything down to maintain the linear array and – since there is enough space – it does this
with the assignment operator (if the argument of reserve( ) is 10 instead of eleven then it
would have to reallocate storage). When an object is erased from the vector, the assignment
operator is once again used to move everything up to cover the place that is being erased
(notice that this requires that the assignment operator properly cleans up the lvalue). Lastly,
the object on the end of the array is deleted.

You can imagine how enormous the overhead can become if objects are inserted and removed
from the middle of a vector if the number of elements is large and the objects are
complicated. It’s obviously a practice to avoid.

deque
The deque (double-ended-queue, pronounced «deck») is the basic sequence container
optimized for adding and removing elements from either end. It also allows for reasonably
fast random access – it has an operator[ ] like vector. However, it does not have vector’s
constraint of keeping everything in a single sequential block of memory. Instead, deque uses
multiple blocks of sequential storage (keeping track of all the blocks and their order in a
mapping structure). For this reason the overhead for a deque to add or remove elements at
either end is very low. In addition, it never needs to copy and destroy contained objects during
a new storage allocation (like vector does) so it is far more efficient than vector if you are
adding an unknown quantity of objects. This means that vector is the best choice only if you
have a pretty good idea of how many objects you need. In addition, many of the programs
shown earlier in this book that use vector and push_back( ) might be more efficient with a
deque. The interface to deque is only slightly different from a vector (deque has a



Chapter 15: Multiple Inheritance
634

push_front( ) and pop_front( ) while vector does not, for example) so converting code from
using vector to using deque is almost trivial. Consider Strvector.cpp, which can be changed
to the use of deque by replacing the word «vector» with «deque» everywhere. The following
program adds parallel deque operations to the vector operations in Strvector.cpp, and
performs timing comparisons:

//: C20:Strdeque.cpp
// Converted from Strvector.cpp
#include <string>
#include <deque>
#include <vector>
#include <fstream>
#include <iostream>
#include <iterator>
#include <sstream>
#include <ctime>
#include "../require.h"
using namespace std;

int main(int argc, char* argv[]) {
  requireArgs(argc, 2);
  ifstream in(argv[1]);
  assure(in, argv[1]);
  vector<string> vstrings;
  deque<string> dstrings;
  string line;
  // Time reading into vector:
  clock_t ticks = clock();
  while(getline(in, line))
    vstrings.push_back(line);
  ticks = clock() - ticks;
  cout << "Read into vector: " << ticks << endl;
  // Repeat for deque:
  ifstream in2(argv[1]);
  assure(in2, argv[1]);
  ticks = clock();
  while(getline(in2, line))
    dstrings.push_back(line);
  ticks = clock() - ticks;
  cout << "Read into deque: " << ticks << endl;
  // Now compare indexing:
  ticks = clock();
  for(int i = 0; i < vstrings.size(); i++) {
    ostringstream ss;



Chapter 15: Multiple Inheritance
635

    ss << i;
    vstrings[i] = ss.str() + ": " + vstrings[i];
  }
  ticks = clock() - ticks;
  cout << "Indexing vector: " << ticks << endl;
  ticks = clock();
  for(int j = 0; j < dstrings.size(); j++) {
    ostringstream ss;
    ss << j;
    dstrings[j] = ss.str() + ": " + dstrings[j];
  }
  ticks = clock() - ticks;
  cout << "Indexing deqeue: " << ticks << endl;
  // Compare iteration
  ofstream tmp1("tmp1.tmp"), tmp2("tmp2.tmp");
  ticks = clock();
  copy(vstrings.begin(), vstrings.end(),
    ostream_iterator<string>(tmp1, "\n"));
  ticks = clock() - ticks;
  cout << "Iterating vector: " << ticks << endl;
  ticks = clock();
  copy(dstrings.begin(), dstrings.end(),
    ostream_iterator<string>(tmp2, "\n"));
  ticks = clock() - ticks;
  cout << "Iterating deqeue: " << ticks << endl;
} ///:~

Knowing now what you do about the inefficiency of adding things to vector because of
storage reallocation, you may expect dramatic differences between the two. However, on a 1.7
Mbyte text file one compiler’s program produced the following (measured in
platform/compiler specific clock ticks, not seconds):

Read into vector: 8350
Read into deque: 7690
Indexing vector: 2360
Indexing deqeue: 2480
Iterating vector: 2470
Iterating deqeue: 2410

A different compiler and platform roughly agreed with this. It’s not so dramatic, is it? This
points out some important points:

1. We (programmers) are typically very bad at guessing where inefficiencies occur in our
programs.



Chapter 15: Multiple Inheritance
636

2. Efficiency comes from a combination of effects – here, reading the lines in and
converting them to strings may dominate over the cost of the vector vs. deque.

3. The string class is probably fairly well-designed in terms of efficiency.

Of course, this doesn’t mean you shouldn’t use a deque rather than a vector when you know
that an uncertain number of objects will be pushed onto the end of the container. On the
contrary, you should. But you should also be aware that performance issues are usually not
where you think they are, and the only way to know for sure where your bottlenecks are is by
testing. Later in this chapter there will be a more «pure» comparison of performance between
vector, deque and list.

Converting between sequences
Sometimes you need the behavior or efficiency of one kind of container for one part of your
program, and a different container’s behavior or efficiency in another part of the program. For
example, you may need the efficiency of a deque when adding objects to the container but the
efficiency of a vector when indexing them. Each of the basic sequence containers (vector,
deque and list) has a two-iterator constructor (indicating the beginning and ending of the
sequence to read from when creating a new object) and an assign( ) member function to read
into an existing container, so you can easily move objects from one sequence container to
another.

The following example reads objects into a deque and then converts to a vector:

//: C20:DequeConversion.cpp
// Reading into a Deque, converting to a vector
#include <deque>
#include <vector>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include "Noisy.h"
using namespace std;

int main(int argc, char* argv[]) {
  int size = 25;
  if(argc >= 2) size = atoi(argv[1]);
  deque<Noisy> d;
  ostream_iterator<Noisy> out(cout, " ");
  generate_n(back_inserter(d), size, NoisyGen());
  cout << "\n Converting to a vector(1)" << endl;
  vector<Noisy> v1(d.begin(), d.end());
  cout << "\n Converting to a vector(2)" << endl;
  vector<Noisy> v2;



Chapter 15: Multiple Inheritance
637

  v2.reserve(d.size());
  v2.assign(d.begin(), d.end());
  cout << "\n Cleanup" << endl;
} ///:~

You can try various sizes, but you should see that it makes no difference – the objects are
simply copy-constructed into the new vectors. What’s interesting is that v1 does not cause
multiple allocations while building the vector, no matter how many elements you use. You
might initially think that you must follow the process used for v2 and preallocate the storage
to prevent messy reallocations, but apparently the constructor used for v1 determines the
memory need ahead of time so this is unnecessary. [[Note: assign( ) and the
constructor(iterator, iterator) are not universally implemented yet]].

Cost of overflowing allocated storage
It’s illuminating to see what happens with a deque when it overflows a block of storage, in
contrast with VectorOverflow.cpp:

//: C20:DequeOverflow.cpp
// A deque is much more efficient than a vector
// when pushing back a lot of elements, since it
// doesn't require copying and destroying
#include <queue>
#include <cstdlib>
#include "Noisy.h"
using namespace std;

int main(int argc, char* argv[]) {
  int size = 1000;
  if(argc >= 2) size = atoi(argv[1]);
  deque<Noisy> dn;
  Noisy n;
  for(int i = 0; i < size; i++)
    dn.push_back(n);
  cout << "\n cleaning up \n";
} ///:~

Here you will never see any destructors before the words «cleaning up» appear. Since the
deque allocates all its storage in blocks instead of a contiguous array like vector, it never
needs to move existing storage (thus no additional copy-constructions and destructions occur).
It simply allocates a new block. For the same reason, the deque can just as efficiently add
elements to the beginning of the sequence, since if it runs out of storage it (again) just
allocates a new block for the beginning. Insertions in the middle of a deque, however, could
be even messier than for vector (but not as costly).



Chapter 15: Multiple Inheritance
638

Because a deque never moves its storage, a held iterator never becomes invalid when you add
new things to a deque, as it was demonstrated to do with vector (in VectorCoreDump.cpp).
However, it’s still possible (albeit harder) to do bad things:

//: C20:DequeCoreDump.cpp
// How to break a program using a deque
#include <queue>
#include <iostream>
using namespace std;

int main() {
  deque<int> di(100, 0);
  // No problem iterating from beginning to end,
  // even though it spans multiple blocks:
  copy(di.begin(), di.end(),
    ostream_iterator<int>(cout, " "));
  deque<int>::iterator i = // In the middle:
    di.begin() + di.size() / 2;;
  // Walk the iterator forward as you perform
  // a lot of insertions in the middle:
  for(int j = 0; j < 1000; j++) {
    cout << j << endl;
    di.insert(i++, 1); // Eventually breaks
  }
} ///:~

Of course, there are two things here that you wouldn’t normally do with a deque: elements
are inserted in the middle, which deque allows but isn’t designed for. Secondly, calling
insert( ) repeatedly with the same iterator would not ordinarily cause an access violation, but
the iterator is walked forward after each insertion. I’m guessing it eventually walks off the
end of a block, but I’m not sure what actually causes the problem.

If you stick to what deque is best at – insertions and removals from either end, reasonably
rapid traversals and to some degree random-access using operator[ ] – you’ll be in good
shape.

Checked random-access
Both vector and deque provide two ways to perform random access of their elements: the
operator[ ], which you’ve seen already, and at( ), which checks the boundaries of the
container that’s being indexed and throws an exception if you go out of bounds. It does cost
more to use at( ):

//: C20:IndexingVsAt.cpp
// Comparing "at()" to operator[]



Chapter 15: Multiple Inheritance
639

#include <vector>
#include <deque>
#include <iostream>
#include <ctime>
using namespace std;

int main(int argc, char* argv[]) {
  long count = 1000;
  int sz = 1000;
  if(argc >= 2) count = atoi(argv[1]);
  if(argc >= 3) sz = atoi(argv[2]);
  vector<int> vi(sz);
  clock_t ticks = clock();
  for(int i1 = 0; i1 < count; i1++)
    for(int j = 0; j < sz; j++)
      vi[j];
  cout << "vector[]" << clock() - ticks << endl;
  ticks = clock();
  for(int i2 = 0; i2 < count; i2++)
    for(int j = 0; j < sz; j++)
      vi.at(j);
  cout << "vector::at()" << clock()-ticks <<endl;
  deque<int> di(sz);
  ticks = clock();
  for(int i3 = 0; i3 < count; i3++)
    for(int j = 0; j < sz; j++)
      di[j];
  cout << "deque[]" << clock() - ticks << endl;
  ticks = clock();
  for(int i4 = 0; i4 < count; i4++)
    for(int j = 0; j < sz; j++)
      di.at(j);
  cout << "deque::at()" << clock()-ticks <<endl;
  // Demonstrate at() when you go out of bounds:
  di.at(vi.size() + 1);
} ///:~

As you’ll learn in the exception-handling chapter, different systems may handle the uncaught
exception in different ways, but you’ll know one way or another that something went wrong
with the program when using at( ), whereas it’s possible to go blundering ahead using
operator[ ].



Chapter 15: Multiple Inheritance
640

list
A list is implemented as a doubly-linked list and is thus designed for rapid insertion and
removal of elements in the middle of the sequence (whereas for vector and deque this is a
much more costly operation). A list is so slow when randomly accessing elements that it does
not have an operator[ ]. It’s best used when you’re traversing a sequence, in order, from
beginning to end (or end to beginning) rather than choosing elements randomly from the
middle. Even then the traversal is significantly slower than either a vector or a deque, but if
you aren’t doing a lot of traversals that won’t be your bottleneck.

Another thing to be aware of with a list is the memory overhead of each link, which requires a
forward and backward pointer on top of the storage for the actual object. Thus a list is a better
choice when you’ve got larger objects which you’ll be inserting and removing from the
middle of the list, but not traversing so much (since the amount of time it takes to get from the
beginning of the list – which is the only place you can start unless you’ve already got an
iterator to somewhere you know is closer to your destination – to the object of interest is
proportional to the number of objects between the beginning and that object).

The objects in a list never move after they are created; «moving» a list element means
changing the links, but never copying or assigning. This means that a held iterator never
moves when you add new things to a list as it was demonstrated to do in vector. Here’s an
example using the Noisy class:

//: C20:ListStability.cpp
// Things don't move around in lists
#include <list>
#include <iostream>
#include <algorithm>
#include "Noisy.h"
using namespace std;

int main() {
  list<Noisy> l;
  ostream_iterator<Noisy> out(cout, " ");
  generate_n(back_inserter(l), 25, NoisyGen());
  cout << "\n Printing the list:" << endl;
  copy(l.begin(), l.end(), out);
  cout << "\n Reversing the list:" << endl;
  l.reverse();
  copy(l.begin(), l.end(), out);
  cout << "\n Sorting the list:" << endl;
  l.sort();
  copy(l.begin(), l.end(), out);
  cout << "\n Swapping two elements:" << endl;



Chapter 15: Multiple Inheritance
641

  list<Noisy>::iterator it1, it2;
  it1 = it2 = l.begin();
  it2++;
  swap(*it1, *it2);
  cout << endl;
  copy(l.begin(), l.end(), out);
  cout << "\n Using generic reverse(): " << endl;
  reverse(l.begin(), l.end());
  cout << endl;
  copy(l.begin(), l.end(), out);
  cout << "\n Cleanup" << endl;
} ///:~

Operations as seemingly radical as reversing and sorting the list require no copying because
instead of moving the objects, the links are simply changed. However, notice that sort( ) and
reverse( ) are member functions of list, so they have special knowledge of the internals of list
and can perform the pointer movement instead of copying. On the other hand, the swap( )
function is a generic algorithm, and doesn’t know about list in particular and so it uses the
copying approach for swapping two elements. There are also generic algorithms for sort( )
and reverse( ), but if you try to use these you’ll discover that the generic reverse( ) performs
lots of copying and destruction (so you should never use it with a list) and the generic sort( )
simply doesn’t work because it requires random-access iterators that list doesn’t provide (a
definite benefit, since this would certainly be an expensive way to sort compared to the built-
in list::sort( )). The generic sort( ) and reverse( ) should only be used with vector and deque
objects.

If you have large and complex objects you may want to choose a list first, especially if
construction, destruction, copy-construction and assignment are expensive and if you are
doing things like sorting the objects or otherwise reordering them a lot.

Special list operations
The list has some special operations that are built-in to make the best use of the structure of
the list. You’ve already seen reverse( ) and sort( ), and here are some of the others in use:

//: C20:ListSpecialFunctions.cpp
#include <list>
#include <iostream>
#include <algorithm>
#include "Noisy.h"
using namespace std;
ostream_iterator<Noisy> out(cout, " ");

void print(list<Noisy>& ln, char* comment = "") {
  cout << "\n" << comment << ":\n";



Chapter 15: Multiple Inheritance
642

  copy(ln.begin(), ln.end(), out);
  cout << endl;
}

int main() {
  typedef list<Noisy> LN;
  LN l1, l2, l3, l4;
  generate_n(back_inserter(l1), 6, NoisyGen());
  generate_n(back_inserter(l2), 6, NoisyGen());
  generate_n(back_inserter(l3), 6, NoisyGen());
  generate_n(back_inserter(l4), 6, NoisyGen());
  print(l1, "l1"); print(l2, "l2");
  print(l3, "l3"); print(l4, "l4");
  LN::iterator it1 = l1.begin();
  it1++; it1++; it1++;
  l1.splice(it1, l2);
  print(l1, "l1 after splice(it1, l2)");
  print(l2, "l2 after splice(it1, l2)");
  LN::iterator it2 = l3.begin();
  it2++; it2++; it2++;
  l1.splice(it1, l3, it2);
  print(l1, "l1 after splice(it1, l3, it2)");
  LN::iterator it3 = l4.begin(), it4 = l4.end();
  it3++; it4--;
  l1.splice(it1, l4, it3, it4);
  print(l1, "l1 after splice(it1,l4,it3,it4)");
  Noisy n;
  LN l5(3, n);
  generate_n(back_inserter(l5), 4, NoisyGen());
  l5.push_back(n);
  print(l5, "l5 before remove()");
  l5.remove(l5.front());
  print(l5, "l5 after remove()");
  l1.sort(); l5.sort();
  l5.merge(l1);
  print(l5, "l5 after l5.merge(l1)");
  cout << "\n Cleanup" << endl;
} ///:~

The print( ) function is used to display results. After filling four lists with Noisy objects, one
list is spliced into another in three different ways. In the first, the entire list l2 is spliced into l1
at the iterator it1. Notice that after the splice, l2 is empty – splicing means removing the
elements from the source list. The second splice inserts elements from l3 starting at it2 into l1
starting at it1. The third splice starts at it1 and uses elements from l4 starting at it3 and ending



Chapter 15: Multiple Inheritance
643

at it4 (the seemingly-redundant mention of the source list is because the elements must be
erased from the source list as part of the transfer to the destination list).

The output from the code that demonstrates remove( ) shows that the list does not have to be
sorted in order for all the elements of a particular value to be removed.

Finally, if you merge( ) one list with another, the merge only works sensibly if the lists have
been sorted. What you end up with in that case is a sorted list containing all the elements from
both lists (the source list is erased – that is, the elements are moved to the destination list).

There are four additional list member functions that are not demonstrated here: a remove_if( )
that takes a predicate which is used to decide whether an object should be removed, a
unique( ) that takes a binary predicate to perform uniqueness comparisons, a merge( ) that
takes an additional argument which performs comparisons, and a sort( ) that takes a
comparator (to provide a comparison or override the existing one).

list vs. set
The other list member function that hasn’t been mentioned yet is unique( ), which removes
any adjacent duplicate elements from a list. This means that if you want all the duplicate
elements removed you should sort( ) the list first. But if you want a sorted list with no
duplicates, a set can give you that, right?  It’s interesting to compare the performance of the
two containers:

//: C20:ListVsSet.cpp
// Comparing list and set performance
#include <iostream>
#include <list>
#include <set>
#include <algorithm>
#include <ctime>
#include <cstdlib>
#include "assocGen.h" // Defined later
using namespace std;

class Obj {
  int a[20];
  int val;
public:
  Obj() : val(rand() % 500) {}
  friend bool
  operator<(const Obj& a, const Obj& b) {
    return a.val < b.val;
  }
  friend bool
  operator==(const Obj& a, const Obj& b) {



Chapter 15: Multiple Inheritance
644

    return a.val == b.val;
  }
  friend ostream&
  operator<<(ostream& os, const Obj& a) {
    return os << a.val;
  }
};

template<class Container>
void print(Container& c) {
  typename Container::iterator it;
  for(it = c.begin(); it != c.end(); it++)
    cout << *it << " ";
  cout << endl;
}

struct ObjGen {
  Obj operator()() { return Obj(); }
};

int main() {
  const int sz = 5000;
  srand(time(0));
  list<Obj> lo;
  clock_t ticks = clock();
  generate_n(back_inserter(lo), sz, ObjGen());
  lo.sort();
  lo.unique();
  cout << "list:" << clock() - ticks << endl;
  set<Obj> so;
  ticks = clock();
  assocGen_n(so, sz, ObjGen());
  cout << "set:" << clock() - ticks << endl;
  print(lo);
  print(so);
} ///:~

When you run the program, you should discover that set is much faster than list. This is
reassuring – after all, it is set’s primary job description!



Chapter 15: Multiple Inheritance
645

Swapping all basic sequences
It turns out that all basic sequences have a member function swap( ) that’s designed to switch
one sequence with another (however, this swap( ) is only defined for sequences of the same
type). The member swap( ) makes use of its knowledge of the internal structure of the
particular container in order to be efficient:

//: C20:Swapping.cpp
// All basic sequence containers can be swapped
#include <list>
#include <vector>
#include <deque>
#include <iostream>
#include <algorithm>
#include "Noisy.h"
using namespace std;
ostream_iterator<Noisy> out(cout, " ");

template<class Cont>
void print(Cont& c, char* comment = "") {
  cout << "\n" << comment << ": ";
  copy(c.begin(), c.end(), out);
  cout << endl;
}

template<class Cont>
void testSwap(char* cname) {
  Cont c1, c2;
  generate_n(back_inserter(c1), 10, NoisyGen());
  generate_n(back_inserter(c2), 5, NoisyGen());
  cout << "\n" << cname << ":" << endl;
  print(c1, "c1"); print(c2, "c2");
  cout << "\n Swapping the " << cname
    << ":" << endl;
  c1.swap(c2);
  print(c1, "c1"); print(c2, "c2");
}

int main() {
  testSwap<vector<Noisy> >("vector");
  testSwap<deque<Noisy> >("deque");
  testSwap<list<Noisy> >("list");
} ///:~



Chapter 15: Multiple Inheritance
646

When you run this, you’ll discover that each type of sequence container is able to swap one
sequence for another without any copying or assignments, even if the sequences are of
different sizes.

Robustness of lists
To break a list, you have to work pretty hard:

//: C20:ListRobustness.cpp
// lists are harder to break
#include <list>
#include <iostream>
using namespace std;

int main() {
  list<int> li(100, 0);
  list<int>::iterator i = li.begin();
  for(int j = 0; j < li.size() / 2; j++)
    i++;
  // Walk the iterator forward as you perform
  // a lot of insertions in the middle:
  for(int k = 0; k < 1000; k++)
    li.insert(i++, 1); // No problem
  li.erase(i);
  i++;
  *i = 2; // Oops! It's invalid
} ///:~

When the link that the iterator i was pointing to was erased, it was unlinked from the list and
thus became invalid. Trying to move forward to the «next link» from an invalid link is poorly-
formed code. Notice that the operation that broke deque in DequeCoreDump.cpp is
perfectly fine with a list.

Performance comparison
To get a better feel for the differences between the sequence containers, it’s illuminating to
race them against each other while performing various operations.

//: C20:SequencePerformance.cpp
// Comparing the performance of the basic
// sequence containers for various operations
#include <vector>
#include <queue>



Chapter 15: Multiple Inheritance
647

#include <list>
#include <iostream>
#include <string>
#include <typeinfo>
#include <ctime>
#include <cstdlib>
using namespace std;

class FixedSize {
  int x[20];
  // Automatic generation of default constructor,
  // copy-constructor and operator=
} fs;

template<class Cont>
struct InsertBack {
  void operator()(Cont& c, long count) {
    for(long i = 0; i < count; i++)
      c.push_back(fs);
  }
  char* testName() { return "InsertBack"; }
};

template<class Cont>
struct InsertFront {
  void operator()(Cont& c, long count) {
    long cnt = count * 10;
    for(long i = 0; i < cnt; i++)
      c.push_front(fs);
  }
  char* testName() { return "InsertFront"; }
};

template<class Cont>
struct InsertMiddle {
  void operator()(Cont& c, long count) {
    typename Cont::iterator it;
    long cnt = count / 10;
    for(long i = 0; i < cnt; i++) {
      // Must get the iterator every time to keep
      // from causing an access violation with
      // vector. Increment it to put it in the
      // middle of the container:



Chapter 15: Multiple Inheritance
648

      it = c.begin();
      it++;
      c.insert(it, fs);
    }
  }
  char* testName() { return "InsertMiddle"; }
};

template<class Cont>
struct RandomAccess { // Not for list
  void operator()(Cont& c, long count) {
    int sz = c.size();
    long cnt = count * 100;
    for(long i = 0; i < cnt; i++)
      c[rand() % sz];
  }
  char* testName() { return "RandomAccess"; }
};

template<class Cont>
struct Traversal {
  void operator()(Cont& c, long count) {
    long cnt = count / 100;
    for(long i = 0; i < cnt; i++) {
      typename Cont::iterator it = c.begin(),
        end = c.end();
      while(it != end) it++;
    }
  }
  char* testName() { return "Traversal"; }
};

template<class Cont>
struct Swap {
  void operator()(Cont& c, long count) {
    int middle = c.size() / 2;
    typename Cont::iterator it = c.begin(),
      mid = c.begin();
    it++; // Put it in the middle
    for(int x = 0; x < middle + 1; x++)
      mid++;
    long cnt = count * 10;
    for(long i = 0; i < cnt; i++)



Chapter 15: Multiple Inheritance
649

      swap(*it, *mid);
  }
  char* testName() { return "Swap"; }
};

template<class Cont>
struct RemoveMiddle {
  void operator()(Cont& c, long count) {
    long cnt = count / 10;
    if(cnt > c.size()) {
      cout << "RemoveMiddle: not enough elements"
        << endl;
      return;
    }
    for(long i = 0; i < cnt; i++) {
      typename Cont::iterator it = c.begin();
      it++;
      c.erase(it);
    }
  }
  char* testName() { return "RemoveMiddle"; }
};

template<class Cont>
struct RemoveBack {
  void operator()(Cont& c, long count) {
    long cnt = count * 10;
    if(cnt > c.size()) {
      cout << "RemoveBack: not enough elements"
        << endl;
      return;
    }
    for(long i = 0; i < cnt; i++)
      c.pop_back();
  }
  char* testName() { return "RemoveBack"; }
};

template<class Op, class Container>
void measureTime(Op f, Container& c, long count){
  string id(typeid(f).name());
  bool Deque = id.find("deque") != string::npos;
  bool List = id.find("list") != string::npos;



Chapter 15: Multiple Inheritance
650

  bool Vector = id.find("vector") !=string::npos;
  string cont = Deque ? "deque" : List ? "list"
    : Vector? "vector" : "unknown";
  cout << f.testName() << " for " << cont << ": ";
  // Standard C library CPU ticks:
  clock_t ticks = clock();
  f(c, count); // Run the test
  ticks = clock() - ticks;
  cout << ticks << endl;
}

typedef deque<FixedSize> DF;
typedef list<FixedSize> LF;
typedef vector<FixedSize> VF;

int main(int argc, char* argv[]) {
  srand(time(0));
  long count = 1000;
  if(argc >= 2) count = atoi(argv[1]);
  DF deq;
  LF lst;
  VF vec, vecres;
  vecres.reserve(count); // Preallocate storage
  measureTime(InsertBack<VF>(), vec, count);
  measureTime(InsertBack<VF>(), vecres, count);
  measureTime(InsertBack<DF>(), deq, count);
  measureTime(InsertBack<LF>(), lst, count);
  // Can't push_front() with a vector:
//! measureTime(InsertFront<VF>(), vec, count);
  measureTime(InsertFront<DF>(), deq, count);
  measureTime(InsertFront<LF>(), lst, count);
  measureTime(InsertMiddle<VF>(), vec, count);
  measureTime(InsertMiddle<DF>(), deq, count);
  measureTime(InsertMiddle<LF>(), lst, count);
  measureTime(RandomAccess<VF>(), vec, count);
  measureTime(RandomAccess<DF>(), deq, count);
  // Can't operator[] with a list:
//! measureTime(RandomAccess<LF>(), lst, count);
  measureTime(Traversal<VF>(), vec, count);
  measureTime(Traversal<DF>(), deq, count);
  measureTime(Traversal<LF>(), lst, count);
  measureTime(Swap<VF>(), vec, count);
  measureTime(Swap<DF>(), deq, count);



Chapter 15: Multiple Inheritance
651

  measureTime(Swap<LF>(), lst, count);
  measureTime(RemoveMiddle<VF>(), vec, count);
  measureTime(RemoveMiddle<DF>(), deq, count);
  measureTime(RemoveMiddle<LF>(), lst, count);
  vec.resize(vec.size() * 10); // Make it bigger
  measureTime(RemoveBack<VF>(), vec, count);
  measureTime(RemoveBack<DF>(), deq, count);
  measureTime(RemoveBack<LF>(), lst, count);
} ///:~

This example makes heavy use of templates to eliminate redundancy, save space, guarantee
identical code and improve clarity. Each test is represented by a class that is templatized on
the container it will operate on. The test itself is inside the operator( ) which, in each case,
takes a reference to the container and a repeat count – this count is not always used exactly as
it is, but sometimes increased or decreased to prevent the test from being too short or too long.
The repeat count is just a factor, and all tests are compared using the same value.

Each test class also has a member function that returns its name, so that it can easily be
printed. You might think that this should be accomplished using run-time type identification,
but since the actual name of the class involves a template expansion, this is actually the more
direct approach.

The measureTime( ) function template takes as its first template argument the operation that
it’s going to test – which is itself a class template selected from the group defined previously
in the listing. Since the template argument Op will contain not only the name of the class, but
also (mangled into it) the type of the container it’s working with. The RTTI typeid( )
operation allows the name of the class to be extracted as a char*, which can then be used to
create a string called id. This string can be searched using string::find( ) to look for deque,
list or vector. The bool variable that corresponds to the string that matches becomes true,
and this is used to properly initialize the cont string so the container name can be accurately
printed, along with the test name.

Once the type of test and the container being tested has been printed out, the actual test is
quite simple. The Standard C library function clock( ) is used to capture the starting and
ending CPU ticks (this is typically more fine-grained than trying to measure seconds). Since f
is an object of type Op, which is a class that has an operator( ), the line:

f(c, count);

is actually calling the operator( ) for the object f.

In main( ), you can see that each different type of test is run on each type of container, except
for the containers that don’t support the particular operation being tested (these are
commented out).

When you run the program, you’ll get comparitive performance numbers for your particular
compiler and your particular operating system and platform. Although this is only intended to
give you a feel for the various performance features relative to the other sequences, it is not a



Chapter 15: Multiple Inheritance
652

bad way to get a quick-and-dirty idea of the behavior of your library, and also to compare one
library with another.

set
The set produces a container that will accept only one of each thing you place in it; it also
sorts the elements (sorting isn’t intrinsic to the conceptual definition of a set, but the STL set
stores its elements in a balanced binary tree to provide rapid lookups, thus producing sorted
results when you traverse it). The first two examples in this chapter used sets.

Consider the problem of creating an index for a book. You might like to start with all the
words in the book, but you only want one each and you want them sorted. Of course, a set is
perfect for this, and solves the problem effortlessly as shown at the beginning of this chapter.
However, there’s also the problem of punctuation and any other non-alpha characters, which
must be stripped off to generate proper words. One solution to this problem is to use the
Standard C library function strtok( ), which produces tokens (in our case, words) given a set
of delimiters to strip out:

//: C20:WordList.cpp
// Display a list of words used in a document
#include <string>
#include <cstring>
#include <set>
#include <iostream>
#include <fstream>
#include "../require.h"
using namespace std;

const char* delimiters =
  " \t;()\"<>:{}[]+-=&*#.,/\\~";

int main(int argc, char* argv[]) {
  requireArgs(argc,  2);
  std::ifstream in(argv[1]);
  assure(in, argv[1]);
  std::set<std::string> wordlist;
  std::string line;
  while(getline(in, line)) {
    // Capture individual words:
    char* s = // Cast probably won’t crash:
      strtok((char*)line.c_str(), delimiters);
    while(s) {
      wordlist.insert(s); // Auto type conv.



Chapter 15: Multiple Inheritance
653

      s = strtok(0, delimiters);
    }
  }
  // Output results:
  std::copy(wordlist.begin(), wordlist.end(),
       ostream_iterator<string>(cout, "\n"));
} ///:~

strtok( ) takes the starting address of a character buffer (the first argument) and looks for
delimiters (the second argument). It replaces the delimiter with a zero, and returns the address
of the beginning of the token. If you call it subsequent times with a first argument of zero it
will continue extracting tokens from the rest of the string until it finds the end. In this case,
the delimiters are those that delimit the keywords and identifiers of C++, so it extracts these
keywords and identifiers. Each word is turned into a string and placed into the wordlist
vector, which eventually contains the whole file, broken up into words.

You don’t have to use a set just to get a sorted sequence. You can use the sort( ) function
(along with a multitude of other functions in the STL) on different STL containers. However,
it’s likely that set will be faster.

Eliminating strtok( )
Some programmers consider strtok( ) to be the poorest design in the Standard C library
because it uses a static buffer to hold its data between function calls. This means:

 1.  You can't use strtok( ) in two places at the same time
 2.  You can't use strtok( ) in a multithreaded program
 3.  You can't use strtok( ) in a library that might be used in a multithreaded

program
 4.  strtok( ) modifies the input sequence, which can produce unexpected side

effects
 5.  strtok( )  depends on reading in "lines", which means you need a buffer big

enough for the longest line. This produces both wastefully-sized buffers,
and lines longer than the "longest" line. This can also introduce security
holes. (Notice that the buffer size problem was eliminated in WordList.cpp
by using string input, but this required a cast so that strtok( ) could modify
the data in the string – a dangerous approach for general-purpose
programming).

For all these reasons it seems like a good idea to find an alternative for strtok( ). The
following example will use an istreambuf_iterator (introduced earlier) to move the
characters from one place (which happens to be an istream) to another (which happens to be
a string), depending on whether the Standard C library function isalpha( ) is true:

//: C20:WordList2.cpp
// Eliminating strtok() from Wordlist.cpp



Chapter 15: Multiple Inheritance
654

#include <string>
#include <cstring>
#include <set>
#include <iostream>
#include <fstream>
#include <iterator>
#include "../require.h"
using namespace std;

main(int argc, char* argv[]) {
  using namespace std;
  requireArgs(argc,  2);
  ifstream in(argv[1]);
  assure(in, argv[1]);
  istreambuf_iterator<char> p(in), end;
  set<string> wordlist;
  while (p != end) {
    string word;
    insert_iterator<string>
      ii(word, word.begin());
    // Find the first alpha character:
    while(!isalpha(*p) && p != end)
      p++;
    // Copy until the first non-alpha character:
    while (isalpha(*p) && p != end)
      *ii++ = *p++;
    if (word.size() != 0)
      wordlist.insert(word);
  }
  // Output results:
  copy(wordlist.begin(), wordlist.end(),
    ostream_iterator<string>(cout, "\n"));
} ///:~

This example was suggested by Nathan Myers, who invented the istreambuf_iterator and its
relatives. This iterator extracts information character-by-character from a stream. Although
the istreambuf_iterator template argument might suggest to you that you could extract, for
example, ints instead of char, that’s not the case. The argument must be of some character
type – a regular char or a wide character.

After the file is open, an istreambuf_iterator called p is attached to the istream so characters
can be extracted from it. The set<string> called wordlist will be used to hold the resulting
words.



Chapter 15: Multiple Inheritance
655

The while loop reads words until the end of the input stream is found. This is detected using
the default constructor for istreambuf_iterator which produces the past-the-end iterator
object end. Thus, if you want to make sure you’re not at the end of the stream, you simply say
p != end.

The second type of iterator that’s used here is the insert_iterator, which creates an iterator
that knows how to insert objects into a container. Here, the «container» is the string called
word, which behaves enough like a container for the purposes of insert_iterator. The
constructor for insert_iterator requires the container and an iterator indicating where it
should start inserting the characters. There is also a front_insert_iterator and
back_insert_iterator, but those require that the container have a push_front( ) and
push_back( ), respectively. The string class has neither.

After the while loop sets everything up, it begins by looking for the first alpha character, and
incrementing start until that character is found. Then it copies characters from one iterator to
the other, stopping when a non-alpha character is found. Each word, assuming it is non-
empty, is added to wordlist.

StreamTokenizer:
a more flexible solution

The above program parses its input into strings of words containing only alpha characters, but
that’s still a special case compared to the generality of strtok( ). What we’d like now is an
actual replacement for strtok( ) so we’re never tempted to use it. WordList2.cpp can be
modified to create a class called StreamTokenizer that delivers a new token as a string
whenever you call next( ), according to the delimiters you give it upon construction (very
similar to strtok( )):

//: C20:StreamTokenizer.h
// C++ Replacement for Standard C strtok()
#ifndef STREAMTOKENIZER_H_
#define STREAMTOKENIZER_H_
#include <string>
#include <iostream>
#include <iterator>

class StreamTokenizer {
  typedef std::istreambuf_iterator<char> It;
  It p, end;
  std::string delimiters;
  bool isDelimiter(char c) {
    return
      delimiters.find(c) != std::string::npos;
  }



Chapter 15: Multiple Inheritance
656

public:
  StreamTokenizer(std::istream& is,
    std::string delim = " \t\n;()\"<>:{}[]+-=&*#"
    ".,/\\~!~") : p(is), end(It()),
    delimiters(delim) {}
  std::string next(); // Get next token
};
#endif STREAMTOKENIZER_H_ ///:~

The default delimiters for the StreamTokenizer constructor extract words with only alpha
characters, as before, but now you can choose different delimiters to parse different tokens.
The implementation of next( ) looks similar to Wordlist2.cpp:

//: C20:StreamTokenizer.cpp {O}
#include "StreamTokenizer.h"

string StreamTokenizer::next() {
  std::string result;
  if(p != end) {
    std::insert_iterator<std::string>
      ii(result, result.begin());
    while(isDelimiter(*p) && p != end)
      p++;
    while (!isDelimiter(*p) && p != end)
      *ii++ = *p++;
  }
  return result;
} ///:~

The first non-delimiter is found, then characters are copied until a delimiter is found, and the
resulting string is returned. Here’s a test:

//: C20:TokenizeTest.cpp
//{L} StreamTokenizer
// Test StreamTokenizer
#include <iostream>
#include <fstream>
#include <set>
#include "../require.h"
#include "StreamTokenizer.h"
using namespace std;

main(int argc, char* argv[]) {
  requireArgs(argc,  2);
  ifstream in(argv[1]);



Chapter 15: Multiple Inheritance
657

  assure(in, argv[1]);
  StreamTokenizer words(in);
  set<string> wordlist;
  string word;
  while((word = words.next()).size() != 0)
    wordlist.insert(word);
  // Output results:
  copy(wordlist.begin(), wordlist.end(),
    ostream_iterator<string>(cout, "\n"));
} ///:~

Now the tool is more reusable than before, but it’s still inflexible, because it can only work
with an istream. This isn’t as bad as it first seems, since a string can be turned into an
istream via an istringstream. But in the next section we’ll come up with the most general,
reusable tokenizing tool, and this should give you a feeling of what «reusable» really means,
and the effort necessary to create truly reusable code.

A completely reusable tokenizer
Since the STL containers and algorithms all revolve around iterators, the most flexible
solution will itself be an iterator. You could think of the TokenIterator as an iterator that
wraps itself around any other iterator that can produce characters. Because it is designed as an
input iterator (the most primitive type of iterator) it can be used with any STL algorithm. Not
only is it a useful tool in itself, the TokenIterator is also a good example of how you can
design your own iterators.61

The TokenIterator is doubly flexible: first, you can choose the type of iterator that will
produce the char input. Second, instead of just saying what characters represent the
delimiters, TokenIterator will use a predicate which is a function object whose operator( )
takes a char and decides if it should be in the token or not. Although the two examples given
here have a static concept of what characters belong in a token, you could easily design your
own function object to change its state as the characters are read, producing a more
sophisticated parser.

The following header file contains the two basic predicates Isalpha and Delimiters, along
with the template for TokenIterator:

//: C20:TokenIterator.h
#ifndef TOKENITERATOR_H_
#define TOKENITERATOR_H_
#include <string>
#include <iterator>

                                                       

61 This is another example suggested by Nathan Myers.



Chapter 15: Multiple Inheritance
658

#include <algorithm>
#include <cctype>

struct Isalpha {
  bool operator()(char c) { return isalpha(c); }
};

class Delimiters {
  std::string exclude;
public:
  Delimiters() {}
  Delimiters(const std::string& excl)
    : exclude(excl) {}
  bool operator()(char c) {
    return exclude.find(c) == std::string::npos;
  }
};

template <class InputIter, class Pred = Isalpha>
class TokenIterator: public std::iterator<
  std::input_iterator_tag,std::string,ptrdiff_t>{
  InputIter first;
  InputIter last;
  std::string word;
  Pred predicate;
public:
  TokenIterator(InputIter begin, InputIter end,
    Pred pred = Pred())
    : first(begin), last(end), predicate(pred) {
      ++*this;
  }
  TokenIterator() {} // End sentinel
  // Prefix increment:
  TokenIterator& operator++() {
    word.resize(0);
    first = std::find_if(first, last, predicate);
    while (first != last && predicate(*first))
      word += *first++;
    return *this;
  }
  // Postfix increment
  class Proxy {
    std::string word;



Chapter 15: Multiple Inheritance
659

  public:
    Proxy(const std::string& w) : word(w) {}
    std::string operator*() { return word; }
  };
  Proxy operator++(int) {
    Proxy d(word);
    ++*this;
    return d;
  }
  // Produce the actual value:
  std::string operator*() const { return word; }
  std::string* operator->() const {
    return &(operator*());
  }
  // Compare iterators:
  bool operator==(const TokenIterator&) {
    return word.size() == 0 && first == last;
  }
  bool operator!=(const TokenIterator& rv) {
    return !(*this == rv);
  }
};
#endif // TOKENITERATOR_H_ ///:~

TokenIterator is inherited from the std::iterator template. It might appear that there’s some
kind of functionality that comes with std::iterator, but it is purely a way of tagging an
iterator so that a container that uses it knows what it’s capable of. Here, you can see
input_iterator_tag as a template argument – this tells anyone who wants to know that a
TokenIterator only has the capabilities of an input iterator, and cannot be used with
algorithms requiring more sophisticated iterators. Apart from the tagging, std::iterator
doesn’t do anything else, which means you must design all the other functionality in yourself.

TokenIterator may look a little strange at first, because the first constructor requires both a
«begin» and «end» iterator as arguments, along with the predicate. Remember that this is a
«wrapper» iterator that has no idea of how to tell whether it’s at the end of its input source, so
the ending iterator is necessary in the first constructor. The reason for the second (default)
constructor is that the STL algorithms (and any algorithms you write) need a TokenIterator
sentinel to be the past-the-end value. Since all the information necessary to see if the
TokenIterator has reached the end of its input is collected in the first constructor, this second
constructor creates a TokenIterator that is merely used as a placeholder in algorithms.

The core of the behavior happens in operator++. This erases the current value of word using
string::resize( ), then finds the first character that satisfies the predicate (thus discovering the
beginning of the new token) using find_if( ). The resulting iterator is assigned to first, thus
moving first forward to the beginning of the token. Then, as long as the end of the input is not



Chapter 15: Multiple Inheritance
660

reached and the predicate is satisfied, characters are copied into the word from the input.
Finally the new token is returned.

The postfix increment requires a proxy object to hold the value before the increment, so it can
be returned (see the operator overloading chapter for more details of this). Producing the
actual value is a straightforward operator*. The only other functions that must be defined for
an output iterator are the operator== and operator!= to indicate whether the TokenIterator
has reached the end of its input. You can see that the argument for operator== is ignored – it
only cares about whether it has reached its internal last iterator. Notice that operator!= is
defined in terms of operator==.

A good test of TokenIterator includes a number of different sources of input characters
including a streambuf_iterator, a char*, and a deque<char>::iterator. Finally, the original
Wordlist.cpp problem is solved:

//: C20:TokenIteratorTest.cpp
#include <fstream>
#include <iostream>
#include <vector>
#include <deque>
#include <set>
#include "TokenIterator.h"
using namespace std;

int main() {
  ifstream in("TokenIteratorTest.cpp");
  ostream_iterator<string> out(cout, "\n");
  typedef istreambuf_iterator<char> IsbIt;
  IsbIt begin(in), isbEnd;
  Delimiters
    delimiters(" \t\n~;()\"<>:{}[]+-=&*#.,/\\");
  TokenIterator<IsbIt, Delimiters>
    wordIter(begin, isbEnd, delimiters),
    end;
  vector<string> wordlist;
  copy(wordIter, end, back_inserter(wordlist));
  // Output results:
  copy(wordlist.begin(), wordlist.end(), out);
  out = "--------------------------------------";
  // Use a char array as the source:
  char* cp =
    "typedef std::istreambuf_iterator<char> It";
  TokenIterator<char*, Delimiters>
    charIter(cp, cp + strlen(cp), delimiters),
    end2;



Chapter 15: Multiple Inheritance
661

  vector<string> wordlist2;
  copy(charIter, end2, back_inserter(wordlist2));
  copy(wordlist2.begin(), wordlist2.end(), out);
  out = "--------------------------------------";
  // Use a deque<char> as the source:
  ifstream in2("TokenIteratorTest.cpp");
  deque<char> dc;
  copy(IsbIt(in2), IsbIt(), back_inserter(dc));
  TokenIterator<deque<char>::iterator,Delimiters>
    dcIter(dc.begin(), dc.end(), delimiters),
    end3;
  vector<string> wordlist3;
  copy(dcIter, end3, back_inserter(wordlist3));
  copy(wordlist3.begin(), wordlist3.end(), out);
  out = "--------------------------------------";
  // Reproduce the Wordlist.cpp example:
  ifstream in3("TokenIteratorTest.cpp");
  TokenIterator<IsbIt, Delimiters>
    wordIter2(IsbIt(in3), isbEnd, delimiters);
  set<string> wordlist4;
  while(wordIter2 != end)
    wordlist4.insert(*wordIter2++);
  copy(wordlist4.begin(), wordlist4.end(), out);
} ///:~

When using an istreambuf_iterator, you create one to attach to the istream object, and one
with the default constructor as the past-the-end marker. Both of these are used to create the
TokenIterator that will actually produce the tokens; the default constructor produces the faux
TokenIterator past-the-end sentinel (this is just a placeholder, and as mentioned previously is
actually ignored). The container that the strings the TokenIterator produces are inserted into
must, naturally, be a container of string – here a vector<string> is used in all cases except
the last (you could also concatenate the results onto a string). Other than that, a
TokenIterator works like any other input iterator.

stack
The stack, along with the queue and priority_queue, are classified as adapters, which means
they are implemented using one of the basic sequence containers: vector, list or deque. This,
in my opinion, is an unfortunate case of confusing what something does with the details of its
underlying implementation – the fact that these are adapters is of primary value only to the
creator of the library. When you use them, you generally don’t care that they’re adapters, but
instead that they solve your problem. Admittedly there are times when it’s useful to know that
you can choose an alternate implementation or build an adapter from an exisiting container



Chapter 15: Multiple Inheritance
662

object, but that’s generally one level removed from the adapter’s behavior. So, while you may
see it emphasized elsewhere that a particular container is an adapter, I shall only point out that
fact when it’s useful. Note that each type of adapter has a default container that it’s built upon,
and this default is the most sensible implementation, so in most cases you won’t need to
concern yourself with the underlying implementation.

The following example shows stack<string> implemented in the three possible ways: the
default (which uses deque), with a vector and with a list:

//: C20:Stack1.cpp
// Demonstrates the STL stack
#include <iostream>
#include <fstream>
#include <stack>
#include <list>
#include <vector>
#include <string>
#include "../require.h"
using namespace std;

// Default: deque<string>:
typedef stack<string> Stack1;
// Use a vector<string>:
typedef stack<string, vector<string> > Stack2;
// Use a list<string>:
typedef stack<string, list<string> > Stack3;

int main(int argc, char* argv[]) {
  requireArgs(argc, 2); // File name is argument
  ifstream in(argv[1]);
  assure(in);
  Stack1 textlines; // Try the different versions
  // Read file and store lines in the stack:
  string line;
  while(getline(in, line))
    textlines.push(line + "\n");
  // Print lines from the stack and pop them:
  while(!textlines.empty()) {
    cout << textlines.top();
    textlines.pop();
  }
} ///:~

The top( ) and pop( ) operations will probably seem non-intuitive if you’ve used other stack
classes. When you call pop( ) it returns void rather than the top element, as you might expect.



Chapter 15: Multiple Inheritance
663

If you want the top element, you get a reference to it with top( ). It turns out this is more
efficient, since a traditional pop( ) would have to return a value rather than a reference, and
thus invoke the copy-constructor. When you’re using a stack (or a priority_queue, described
later) you can efficiently refer to top( ) as many times as you want, then discard the top
element explicitly using pop( ) (perhaps if some other term than the familiar «pop» had been
used, this would have been a bit clearer).

The stack template has a very simple interface, essentially the member functions you see
above. It doesn’t have sophisticated forms of initialization or access, but if you need that you
can use the underlying container that the stack is implemented upon. For example, suppose
you have a function that expects a stack interface but in the rest of your program you need the
objects stored in a list. The following program stores each line of a file along with the leading
number of spaces in that line (you might imagine it as a starting point for performing some
kinds of source-code reformatting):

//: C20:Stack2.cpp
// Converting a list to a stack
#include <iostream>
#include <fstream>
#include <stack>
#include <list>
#include <string>
#include "../require.h"
using namespace std;

// Expects a stack:
template<class stk>
void stackOut(stk& s, ostream& os = cout) {
  while(!s.empty()) {
    os << s.top() << "\n";
    s.pop();
  }
}

class Line {
  string line; // Without leading spaces
  int lspaces; // Number of leading spaces
public:
  Line(string s) : line(s) {
    lspaces = line.find_first_not_of(' ');
    if(lspaces == string::npos)
      lspaces = 0;
    line = line.substr(lspaces);
  }



Chapter 15: Multiple Inheritance
664

  friend ostream&
  operator<<(ostream& os, const Line& l) {
    for(int i = 0; i < l.lspaces; i++)
      os << ' ';
    return os << l.line;
  }
  // Other functions here...
};

int main(int argc, char* argv[]) {
  requireArgs(argc, 2); // File name is argument
  ifstream in(argv[1]);
  assure(in);
  list<Line> lines;
  // Read file and store lines in the list:
  string s;
  while(getline(in, s))
    lines.push_front(s);
  // Turn the list into a stack for printing:
  stack<Line, list<Line> > stk(lines);
  stackOut(stk);
} ///:~

The function that requires the stack interface just sends each top( ) object to an ostream and
then removes it by calling pop( ). The Line class determines the number of leading spaces,
then stores the contents of the line without the leading spaces. The ostream operator<< re-
inserts the leading spaces so the line prints properly, but you can easily change the number of
spaces by changing the value of lspaces (the member functions to do this are not shown here).

In main( ), the input file is read into a list<Line>, then a stack is wrapped around this list so
it can be sent to stackOut( ).

You cannot iterate through a stack; this emphasizes that you only want to perform stack
operations when you create a stack. You can get equivalent «stack» functionality using a
vector and its back( ), push_back( ) and pop_back( ) methods, and then you have all the
additional functionality of the vector. Stack1.cpp can be rewritten to show this:

//: C21:Stack3.cpp
// Using a vector as a stack; modified Stack1.cpp
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include "../require.h"
using namespace std;



Chapter 15: Multiple Inheritance
665

int main(int argc, char* argv[]) {
  requireArgs(argc, 2);
  ifstream in(argv[1]);
  assure(in);
  vector<string> textlines;
  string line;
  while(getline(in, line))
    textlines.push_back(line + "\n");
  while(!textlines.empty()) {
    cout << textlines.back();
    textlines.pop_back();
  }
} ///:~

You’ll see this produces the same output as Stack1.cpp, but you can now perform vector
operations as well. Of course, list has the aditional ability to push things at the front, but it’s
generally less efficient than using push_back( ) with vector. (In addition, deque is usually
more efficient than list for pushing things at the front).

queue
The queue is a restricted form of a deque – you can only enter elements at one end, and pull
them off the other end. Functionally, you could use a deque anywhere you need a queue, and
you would then also have the additional functionality of the deque. The only reason you need
to use a queue rather than a deque, then, is if you want to emphasize that you will only be
performing queue-like behavior.

The queue is an adapter class like stack, in that it is built on top of another sequence
container. As you might guess, the ideal implementation for a queue is a deque, and that is
the default template argument for the queue; you’ll rarely need a different implementation.

Queues are often used when modeling systems where some elements of the system are
waiting to be served by other elements in the system. A classic example of this is the «bank-
teller problem,» where you have customers arriving at random intervals, getting into a line,
and then being served by a set of tellers. Since the customers arrive randomly and each take a
random amount of time to be served, there’s no way to deterministically know how long the
line will be at any time. However, it’s possible to simulate the situation and see what happens.

A problem in performing this simulation is the fact that, in effect, each customer and teller
should be run by a separate process. What we’d like is a multithreaded environment, then
each customer or teller would have their own thread. However, Standard C++ has no model
for multithreading so there is no standard solution to this problem. On the other hand, with a
little adjustment to the code it’s possible to simulate enough multithreading to provide a
satisfactory solution to our problem.



Chapter 15: Multiple Inheritance
666

Multithreading means you have multiple threads of control running at once, in the same
address space (this differs from multitasking, where you have different processes each running
in their own address space). The trick is that you have fewer CPUs than you do threads (and
very often only one CPU) so to give the illusion that each thread has its own CPU there is a
time-slicing mechanism that says «OK, current thread – you’ve had enough time. I’m going to
stop you and go give time to some other thread.» This automatic stopping and starting of
threads is called pre-emptive and it means you don’t need to manage the threading process at
all.

An alternative approach is for each thread to voluntarily yield the CPU to the scheduler,
which then goes and finds another thread that needs running. This is easier to synthesize, but
it still requires a method of «swapping» out one thread and swapping in another (this usually
involves saving the stack frame and using the standard C library functions setjmp( ) and
longjmp( ); see my article in the (XX) issue of Computer Language magazine for an
example). So instead, we’ll build the time-slicing into the classes in the system. In this case, it
will be the tellers that represent the «threads,» (the customers will be passive) so each teller
will have an infinite-looping run( ) method that will execute for a certain number of «time
units,» and then simply return. By using the ordinary return mechanism, we eliminate the
need for any swapping. The resulting program, although small, provides a remarkably
reasonable simulation:

//: C20:BankTeller.cpp
// Using a queue and simulated multithreading
// To model a bank teller system
#include <iostream>
#include <queue>
#include <list>
#include <cstdlib>
#include <ctime>
using namespace std;

class Customer {
  int serviceTime;
public:
  Customer() : serviceTime(0) {}
  Customer(int tm) : serviceTime(tm) {}
  int getTime() { return serviceTime; }
  void setTime(int newtime) {
    serviceTime = newtime;
  }
  friend ostream&
  operator<<(ostream& os, const Customer& c) {
    return os << '[' << c.serviceTime << ']';
  }
};



Chapter 15: Multiple Inheritance
667

class Teller {
  queue<Customer>& customers;
  Customer current;
  static const int slice = 5;
  int ttime; // Time left in slice
  bool busy; // Is teller serving a customer?
public:
  Teller(queue<Customer>& cq)
    : customers(cq), ttime(0), busy(false) {}
  // Compiler can't synthesize operator=
  Teller& operator=(const Teller& rv) {
    customers = rv.customers;
    current = rv.current;
    ttime = rv.ttime;
    busy = rv.busy;
    return *this;
  }
  bool isBusy() { return busy; }
  void run(bool recursion = false) {
    if(!recursion)
      ttime = slice;
    int servtime = current.getTime();
    if(servtime > ttime) {
      servtime -= ttime;
      current.setTime(servtime);
      busy = true; // Still working on current
      return;
    }
    if(servtime < ttime) {
      ttime -= servtime;
      if(!customers.empty()) {
        current = customers.front();
        customers.pop(); // Remove it
        busy = true;
        run(true); // Recurse
      }
      return;
    }
    if(servtime == ttime) {
      // Done with current, set to empty:
      current = Customer(0);
      busy = false;



Chapter 15: Multiple Inheritance
668

      return; // No more time in this slice
    }
  }
};

// Inherit to access protected implementation:
class CustomerQ : public queue<Customer> {
public:
  friend ostream&
  operator<<(ostream& os, const CustomerQ& cd) {
    copy(cd.c.begin(), cd.c.end(),
      ostream_iterator<Customer>(os, ""));
    return os;
  }
};

int main() {
  CustomerQ customers;
  list<Teller> tellers;
  typedef list<Teller>::iterator TellIt;
  tellers.push_back(Teller(customers));
  srand(time(0)); // Seed random number generator
  while(true) {
    // Add a random number of customers to the
    // queue, with random service times:
    for(int i = 0; i < rand() % 5; i++)
      customers.push(Customer(rand() % 15 + 1));
    cout << '{' << tellers.size() << '}'
      << customers << endl;
    // Have the tellers service the queue:
    for(TellIt i = tellers.begin();
      i != tellers.end(); i++)
      (*i).run();
    cout << '{' << tellers.size() << '}'
      << customers << endl;
    // If line is too long, add another teller:
    if(customers.size() / tellers.size() > 2)
      tellers.push_back(Teller(customers));
    // If line is short enough, remove a teller:
    if(tellers.size() > 1 &&
      customers.size() / tellers.size() < 2)
      for(TellIt i = tellers.begin();
        i != tellers.end(); i++)



Chapter 15: Multiple Inheritance
669

        if(!(*i).isBusy()) {
          tellers.erase(i);
          break; // Out of for loop
        }
  }
} ///:~

Each customer requires a certain amount of service time, which is the number of time units
that a teller must spend on the customer in order to serve that customer’s needs. Of course, the
amount of service time will be different for each customer, and will be determined randomly.
In addition, you won’t know how many customers will be arriving in each interval, so this
will also be determined randomly.

The Customer objects are kept in a queue<Customer>, and each Teller object keeps a
reference to that queue. When a Teller object is finished with its current Customer object,
that Teller will get another Customer from the queue and begin working on the new
Customer, reducing the Customer’s service time during each time slice that the Teller is
allotted. All this logic is in the run( ) member function, which is basically a three-way if
statement based on whether the amount of time necessary to serve the customer is less than,
greater than or equal to the amount of time left in the teller’s current time slice. Notice that if
the Teller has more time after finishing with a Customer, it gets a new customer and recurses
into itself.

Just as with a stack, when you use a queue, it’s only a queue and doesn’t have any of the
other functionality of the basic sequence containers. This includes the ability to get an iterator
in order to step through the stack. However, the underlying sequence container (that the
queue is built upon) is held as a protected member inside the queue, and the identifier for
this member is specified in the C++ Standard as ‘c’, which means that you can inherit from
queue in order to access the underlying implementation. The CustomerQ class does exactly
that, for the sole purpose of defining an ostream operator<< that can iterate through the
queue and print out its members.

The driver for the simulation is the infinite while loop in main( ). At the beginning of each
pass through the loop, a random number of customers are added, with random service times.
Both the number of tellers and the queue contents are displayed so you can see the state of the
system. After running each teller, the display is repeated. At this point, the system adapts by
comparing the number of customers and the number of tellers; if the line is too long another
teller is added and if it is short enough a teller can be removed. It is in this adaptation section
of the program that you can experiment with policies regarding the optimal addition and
removal of tellers. If this is the only section that you’re modifying, you may want to
encapsulate policies inside of different objects.



Chapter 15: Multiple Inheritance
670

Priority queues
When you push( ) an object onto a priority_queue, that object is sorted into the queue
according to a function or function object (you can allow the default less template to supply
this, or provide one of your own). The priority_queue ensures that when you look at the
top( ) element it will be the one with the highest priority. When you’re done with it, you call
pop( ) to remove it and bring the next one into place. Thus, the priority_queue has nearly the
same interface as a stack, but it behaves differently.

Like stack and queue, priority_queue is an adapter which is built on top of one of the basic
sequences – the default is vector.

It’s trivial to make a priority_queue that works with ints:

//: C20:PriorityQueue1.cpp
#include <iostream>
#include <queue>
#include <cstdlib>
#include <ctime>
using namespace std;

int main() {
  priority_queue<int> pqi;
  srand(time(0)); // Seed random number generator
  for(int i = 0; i < 100; i++)
    pqi.push(rand() % 25);
  while(!pqi.empty()) {
    cout << pqi.top() << ' ';
    pqi.pop();
  }
} ///:~

This pushes into the priority_queue 100 random values from 0 to 24. When you run this
program you’ll see that duplicates are allowed, and the highest values appear first. To show
how you can change the ordering by providing your own function or function object, the
following program gives lower-valued numbers the highest priority:

//: C20:PriorityQueue2.cpp
// Changing the priority
#include <iostream>
#include <queue>
#include <cstdlib>
#include <ctime>
using namespace std;



Chapter 15: Multiple Inheritance
671

struct Reverse {
  bool operator()(int x, int y) {
    return y < x;
  }
};

int main() {
  priority_queue<int, vector<int>, Reverse> pqi;
  // Could also say:
  // priority_queue<int, vector<int>,
  //   greater<int> > pqi;
  srand(time(0));
  for(int i = 0; i < 100; i++)
    pqi.push(rand() % 25);
  while(!pqi.empty()) {
    cout << pqi.top() << ' ';
    pqi.pop();
  }
} ///:~

Although you can easily use the Standard Library greater template to produce the predicate, I
went to the trouble of creating Reverse so you could see how to do it in case you have a more
complex scheme for ordering your objects.

If you look at the description for priority_queue, you see that the constructor can be handed a
«Compare» object, as shown above. If you don’t use your own «Compare» object, the default
template behavior is to use the default constructor. You might think (as I did) that it would
make sense to leave the template instantiation as priority_queue<int>, thus using the default
template arguments of vector<int> and less<int>. Then you could inherit a new class from
less<int>, redefine operator( ) and hand an object of that type to the priority_queue
constructor. I tried this, and got it to compile, but the resulting program produced the same old
less<int> behavior. The answer lies in the less< > template:

template <class T>
struct less : binary_function<T, T, bool> {
  // Other stuff...
  bool operator()(const T& x, const T& y) const {
    return x < y;
  }
};

The operator( ) is not virtual, so even though the constructor takes your subclass of
less<int> by reference (thus it doesn’t slice it down to a plain less<int>), when operator( ) is
called, it is the base-class version that is used. While it is generally reasonable to expect
ordinary classes to behave polymorphically, you cannot make this assumption when using the
STL.



Chapter 15: Multiple Inheritance
672

Of course, a priority_queue of int is trivial. A more interesting problem is a to-do list, where
each object contains a string and a primary and secondary priority value:

//: C20:PriorityQueue3.cpp
// A more complex use of priority_queue
#include <iostream>
#include <queue>
#include <string>
using namespace std;

class ToDoItem {
  char primary;
  int secondary;
  string item;
public:
  ToDoItem(string td, char pri ='A', int sec =1)
    : item(td), primary(pri), secondary(sec) {}
  friend bool operator<(
    const ToDoItem& x, const ToDoItem& y) {
    if(x.primary > y.primary)
      return true;
    if(x.primary == y.primary)
      if(x.secondary > y.secondary)
        return true;
    return false;
  }
  friend ostream&
  operator<<(ostream& os, const ToDoItem& td) {
    return os << td.primary << td.secondary
      << ": " << td.item;
  }
};

int main() {
  priority_queue<ToDoItem> toDoList;
  toDoList.push(ToDoItem("Empty trash", 'C', 4));
  toDoList.push(ToDoItem("Feed dog", 'A', 2));
  toDoList.push(ToDoItem("Feed bird", 'B', 7));
  toDoList.push(ToDoItem("Mow lawn", 'C', 3));
  toDoList.push(ToDoItem("Water lawn", 'A', 1));
  toDoList.push(ToDoItem("Feed cat", 'B', 1));
  while(!toDoList.empty()) {
    cout << toDoList.top() << endl;
    toDoList.pop();



Chapter 15: Multiple Inheritance
673

  }
} ///:~

ToDoItem’s operator< must be a non-member function for it to work with less< >. Other
than that, everything happens automatically. The output is:

A1: Water lawn
A2: Feed dog
B1: Feed cat
B7: Feed bird
C3: Mow lawn
C4: Empty trash

Note that you cannot iterate through a priority_queue. However, it is possible to emulate the
behavior of a priority_queue using a vector, thus allowing you access to that vector. You
can do this by looking at the implementation of priority_queue, which uses make_heap( ),
push_heap( ) and pop_heap( ) (these won’t be described in detail until the next chapter but
they are the soul of the priority_queue; in fact you could say that the heap is the priority
queue and priority_queue is just a wrapper around it). This turns out to be reasonably
straightforward, but you might think that a shortcut is possible. Since the container used by
priority_queue is protected (and has the identifier, according to the Standard C++
specification, named c) you can inherit a new class which provides access to the underlying
implementation:

//: C20:PriorityQueue4.cpp
// Manipulating the underlying implementation
#include <iostream>
#include <queue>
#include <cstdlib>
#include <ctime>
using namespace std;

class PQI : public priority_queue<int> {
public:
  vector<int>& impl() { return c; }
};

int main() {
  PQI pqi;
  srand(time(0));
  for(int i = 0; i < 100; i++)
    pqi.push(rand() % 25);
  copy(pqi.impl().begin(), pqi.impl().end(),
    ostream_iterator<int>(cout, " "));
  cout << endl;



Chapter 15: Multiple Inheritance
674

  while(!pqi.empty()) {
    cout << pqi.top() << ' ';
    pqi.pop();
  }
} ///:~

However, if you run this program you’ll discover that the vector doesn’t contain the items in
the descending order that you get when you call pop( ), the order that you want from the
priority queue. It would seem that if you want to create a vector that is a priority queue, you
have to do it by hand, like this:

//: C20:PriorityQueue5.cpp
// Building your own priority queue
#include <iostream>
#include <queue>
#include <cstdlib>
#include <ctime>
using namespace std;

template<class T, class Compare>
class PQV : public vector<T> {
  Compare comp;
public:
  PQV(Compare cmp = Compare()) : comp(cmp) {
    make_heap(begin(), end(), comp);
  }
  const T& top() { return front(); }
  void push(const T& x) {
    push_back(x);
    push_heap(begin(), end(), comp);
  }
  void pop() {
    pop_heap(begin(), end(), comp);
    pop_back();
  }
};

int main() {
  PQV<int, less<int> > pqi;
  srand(time(0));
  for(int i = 0; i < 100; i++)
    pqi.push(rand() % 25);
  copy(pqi.begin(), pqi.end(),
    ostream_iterator<int>(cout, " "));



Chapter 15: Multiple Inheritance
675

  cout << endl;
  while(!pqi.empty()) {
    cout << pqi.top() << ' ';
    pqi.pop();
  }
} ///:~

But this program behaves in the same way as the previous one! What you are seeing in the
underlying vector is called a heap. This heap represents the tree of the priority queue (stored
in the linear structure of the vector), but when you iterate through it you do not get a linear
priority-queue order. You might think that you can simply call sort_heap( ), but that only
works once, and then you don’t have a heap anymore, but instead a sorted list. This means
that to go back to using it as a heap the user must remember to call make_heap( ) first. This
can be encapsulated into your custom priority queue:

//: C20:PriorityQueue6.cpp
#include <iostream>
#include <queue>
#include <cstdlib>
#include <ctime>
using namespace std;

template<class T, class Compare>
class PQV : public vector<T> {
  Compare comp;
  bool sorted;
  void assureHeap() {
    if(sorted) {
      // Turn it back into a heap:
      make_heap(begin(), end(), comp);
      sorted = false;
    }
  }
public:
  PQV(Compare cmp = Compare()) : comp(cmp) {
    make_heap(begin(), end(), comp);
    sorted = false;
  }
  const T& top() {
    assureHeap();
    return front();
  }
  void push(const T& x) {
    assureHeap();



Chapter 15: Multiple Inheritance
676

    // Put it at the end:
    push_back(x);
    // Re-adjust the heap:
    push_heap(begin(), end(), comp);
  }
  void pop() {
    assureHeap();
    // Move the top element to the last position:
    pop_heap(begin(), end(), comp);
    // Remove that element:
    pop_back();
  }
  void sort() {
    if(!sorted) {
      sort_heap(begin(), end(), comp);
      reverse(begin(), end());
      sorted = true;
    }
  }
};

int main() {
  PQV<int, less<int> > pqi;
  srand(time(0));
  for(int i = 0; i < 100; i++) {
    pqi.push(rand() % 25);
    copy(pqi.begin(), pqi.end(),
      ostream_iterator<int>(cout, " "));
    cout << "\n-----\n";
  }
  pqi.sort();
  copy(pqi.begin(), pqi.end(),
    ostream_iterator<int>(cout, " "));
  cout << "\n-----\n";
  while(!pqi.empty()) {
    cout << pqi.top() << ' ';
    pqi.pop();
  }
} ///:~

If sorted is true, then the vector is not organized as a heap, but instead as a sorted sequence.
assureHeap( ) guarantees that it’s put back into heap form before performing any heap
operations on it.



Chapter 15: Multiple Inheritance
677

The first for loop in main( ) now has the additional quality that it displays the heap as it’s
being built.

The only drawback to this solution is that the user must remember to call sort( ) before
viewing it as a sorted sequence (although one could concievably override all the methods that
produce iterators so that they guarantee sorting). Another solution is to build a priority queue
that is not a vector, but will build you a vector whenever you want one:

//: C20:PriorityQueue7.cpp
// A priority queue that will hand you a vector
#include <iostream>
#include <queue>
#include <cstdlib>
#include <ctime>
using namespace std;

template<class T, class Compare>
class PQV {
  vector<T> v;
  Compare comp;
public:
  // Don't need to call make_heap(); it's empty:
  PQV(Compare cmp = Compare()) : comp(cmp) {}
  void push(const T& x) {
    // Put it at the end:
    v.push_back(x);
    // Re-adjust the heap:
    push_heap(v.begin(), v.end(), comp);
  }
  void pop() {
    // Move the top element to the last position:
    pop_heap(v.begin(), v.end(), comp);
    // Remove that element:
    v.pop_back();
  }
  const T& top() { return v.front(); }
  bool empty() const { return v.empty(); }
  int size() const { return v.size(); }
  typedef vector<T> TVec;
  TVec vector() {
    TVec r(v.begin(), v.end());
    // It’s already a heap
    sort_heap(r.begin(), r.end(), comp);
    // Put it into priority-queue order:



Chapter 15: Multiple Inheritance
678

    reverse(r.begin(), r.end());
    return r;
  }
};

int main() {
  PQV<int, less<int> > pqi;
  srand(time(0));
  for(int i = 0; i < 100; i++)
    pqi.push(rand() % 25);
  vector<int>& v = pqi.vector();
  copy(v.begin(), v.end(),
    ostream_iterator<int>(cout, " "));
  cout << "\n-----------\n";
  while(!pqi.empty()) {
    cout << pqi.top() << ' ';
    pqi.pop();
  }
} ///:~

PQV follows the same form as the STL’s priority_queue, but has the additional member
vector( ), which creates a new vector that’s a copy of the one in PQV (which means that it’s
already a heap), then sorts it (thus it leave’s PQV’s vector untouched), then reverses the order
so that traversing the new vector produces the same effect as popping the elements from the
priority queue.

You may observe that the approach of inheriting from priority_queue used in
PriorityQueue4.cpp could be used with the above technique to produce more succinct code:

//: C20:PriorityQueue8.cpp
// A more compact version of PriorityQueue7.cpp
#include <iostream>
#include <queue>
#include <cstdlib>
#include <ctime>
using namespace std;

template<class T>
class PQV : public priority_queue<T> {
public:
  typedef vector<T> TVec;
  TVec vector() {
    TVec r(c.begin(), c.end());
    // c is already a heap
    sort_heap(r.begin(), r.end(), comp);



Chapter 15: Multiple Inheritance
679

    // Put it into priority-queue order:
    reverse(r.begin(), r.end());
    return r;
  }
};

int main() {
  PQV<int> pqi;
  srand(time(0));
  for(int i = 0; i < 100; i++)
    pqi.push(rand() % 25);
  vector<int>& v = pqi.vector();
  copy(v.begin(), v.end(),
    ostream_iterator<int>(cout, " "));
  cout << "\n-----------\n";
  while(!pqi.empty()) {
    cout << pqi.top() << ' ';
    pqi.pop();
  }
} ///:~

The brevity of this solution makes it the simplest and most desirable, plus it’s guaranteed that
the user will not have a vector in the unsorted state. The only potential problem is that the
vector( ) member function returns the vector<T> by value, which might cause some
overhead issues with complex values of the parameter type T.

Holding bits
Most of my computer education was in hardware-level design and programming, and I spent
my first few years doing embedded systems development. Because C was a language that
purported to be «close to the hardware,» I have always found it dismaying that there was no
native binary representation for numbers. Decimal, of course, and hexadecimal (tolerable only
because it’s easier to group the bits in your mind), but octal? Ugh. Whenever you read specs
for chips you’re trying to program, they don’t describe the chip registers in octal, or even
hexadecimal – they use binary. And yet C won’t let you say 0b0101101, which is the obvious
solution for a language close to the hardware.

Although there’s still no native binary representation in C++, things have improved with the
addition of two classes: bitset and vector<bool>, both of which are designed to manipulate a
group of on-off values. The primary differences between these types are:

1. The bitset holds a fixed number of bits. You establish the quantity of bits in the bitset
template argument. The vector<bool> can, like a regular vector, expand dynamically to
hold any number of bool values.



Chapter 15: Multiple Inheritance
680

2. The bitset is explicitly designed for performance when manipulating bits, not to be a
«regular» container. As such, it has no iterators and it’s most storage-efficient when it
contains an integral number of long values. The vector<bool>, on the other hand, is a
specialization of a vector, and so has all the operations of a normal vector – the
specialization is just designed to be space-efficient for bool.

There is no trivial conversion between a bitset and a vector<bool>, which implies that the
two are for very different purposes.

bitset<n>
The template for bitset accepts an integral template argument which is the number of bits to
represent. Thus, bitset<10> is a different type than bitset<20>, and you cannot perform
comparisons, assignments, etc. between the two.

A bitset provides virtually any bit operation that you could ask for, in a very efficient form.
However, each bitset is made up of an integral number of longs (typically 32 bits), so even
though it uses no more space than it needs, it always uses at least the size of a long. This
means you’ll use space most efficiently if you increase the size of your bitsets in chunks of
the number of bits in a long. In addition, the only conversion from a bitset to a numerical
value is to an unsigned long, which means that 32 bits (if your long is the typical size) is the
most flexible form of a bitset.

The following example tests almost all the functionality of the bitset (the missing operations
are redundant or trivial). You’ll see the description of each of the bitset outputs to the right of
the output so that the bits all line up and you can compare them to the source values. If you
still don’t understand bitwise operations, running this program should help.

//: C20:BitSet.cpp
// Exercising the bitset class
#include <iostream>
#include <bitset>
#include <cstdlib>
#include <ctime>
#include <string>
using namespace std;
const int sz = 32;
typedef bitset<sz> BS;

template<int bits>
bitset<bits> randBitset() {
  bitset<bits> r(rand());
  for(int i = 0; i < bits/16 - 1; i++) {
    r <<= 16;
    // "OR" together with a new lower 16 bits:
    r |= bitset<bits>(rand());



Chapter 15: Multiple Inheritance
681

  }
  return r;
}

int main() {
  srand(time(0));
  cout << "sizeof(bitset<16>) = "
    << sizeof(bitset<16>) << endl;
  cout << "sizeof(bitset<32>) = "
    << sizeof(bitset<32>) << endl;
  cout << "sizeof(bitset<48>) = "
    << sizeof(bitset<48>) << endl;
  cout << "sizeof(bitset<64>) = "
    << sizeof(bitset<64>) << endl;
  cout << "sizeof(bitset<65>) = "
    << sizeof(bitset<65>) << endl;
  BS a(randBitset<sz>()), b(randBitset<sz>());
  // Converting from a bitset:
  unsigned long ul = a.to_ulong();
  string s = b.to_string();
  // Converting a string to a bitset:
  char* cbits = "111011010110111";
  cout << "char* cbits = " << cbits <<endl;
  cout << BS(cbits) << " [BS(cbits)]" << endl;
  cout << BS(cbits, 2)
    << " [BS(cbits, 2)]" << endl;
  cout << BS(cbits, 2, 11)
    << " [BS(cbits, 2, 11)]" << endl;
  cout << a << " [a]" << endl;
  cout << b << " [b]"<< endl;
  // Bitwise AND:
  cout << (a & b) << " [a & b]" << endl;
  cout << (BS(a) &= b) << " [a &= b]" << endl;
  // Bitwise OR:
  cout << (a | b) << " [a | b]" << endl;
  cout << (BS(a) |= b) << " [a |= b]" << endl;
  // Exclusive OR:
  cout << (a ^ b) << " [a ^ b]" << endl;
  cout << (BS(a) ^= b) << " [a ^= b]" << endl;
  cout << a << " [a]" << endl; // For reference
  // Logical left shift (fill with zeros):
  cout << (BS(a) <<= sz/2)
    << " [a <<= (sz/2)]" << endl;



Chapter 15: Multiple Inheritance
682

  cout << (a << sz/2) << endl;
  cout << a << " [a]" << endl; // For reference
  // Logical right shift (fill with zeros):
  cout << (BS(a) >>= sz/2)
    << " [a >>= (sz/2)]" << endl;
  cout << (a >> sz/2) << endl;
  cout << a << " [a]" << endl; // For reference
  cout << BS(a).set() << " [a.set()]" << endl;
  for(int i = 0; i < sz; i++)
    if(!a.test(i)) {
      cout << BS(a).set(i)
        << " [a.set(" << i <<")]" << endl;
      break; // Just do one example of this
    }
  cout << BS(a).reset() << " [a.reset()]"<< endl;
  for(int j = 0; j < sz; j++)
    if(a.test(j)) {
      cout << BS(a).reset(j)
        << " [a.reset(" << j <<")]" << endl;
      break; // Just do one example of this
    }
  cout << BS(a).flip() << " [a.flip()]" << endl;
  cout << ~a << " [~a]" << endl;
  cout << a << " [a]" << endl; // For reference
  cout << BS(a).flip(1) << " [a.flip(1)]"<< endl;
  BS c;
  cout << c << " [c]" << endl;
  cout << "c.count() = " << c.count() << endl;
  cout << "c.any() = "
    << (c.any() ? "true" : "false") << endl;
  cout << "c.none() = "
    << (c.none() ? "true" : "false") << endl;
  c[1].flip(); c[2].flip();
  cout << c << " [c]" << endl;
  cout << "c.count() = " << c.count() << endl;
  cout << "c.any() = "
    << (c.any() ? "true" : "false") << endl;
  cout << "c.none() = "
    << (c.none() ? "true" : "false") << endl;
  // Array indexing operations:
  c.reset();
  for(int k = 0; k < c.size(); k++)
    if(k % 2 == 0)



Chapter 15: Multiple Inheritance
683

      c[k].flip();
  cout << c << " [c]" << endl;
  c.reset();
  // Assignment to bool:
  for(int ii = 0; ii < c.size(); ii++)
    c[ii] = (rand() % 100) < 25;
  cout << c << " [c]" << endl;
  // bool test:
  if(c[1] == true)
    cout << "c[1] == true";
  else
    cout << "c[1] == false" << endl;
} ///:~

To generate interesting random bitsets, the randBitset( ) function is created. The Standard C
rand( ) function only generates an int, so this function demonstrates operator<<= by shifting
each 16 random bits to the left until the bitset (which is templated in this function for size) is
full. The generated number and each new 16 bits is combined using the operator|=.

The first thing demonstrated in main( ) is the unit size of a bitset. If it is less than 32 bits,
sizeof produces 4 (4 bytes = 32 bits), which is the size of a single long on most
implementations. If it’s between 32 and 64, it requires two longs, greater than 64 requires 3
longs, etc. Thus you make the best use of space if you use a bit quantity that fits in an integral
number of longs. However, notice there’s no extra overhead for the object – it’s as if you
were hand-coding to use a long.

Another clue that bitset is optimized for longs is that there is a to_ulong( ) member function
that produces the value of the bitset as an unsigned long. There are no other numerical
conversions from bitset, but there is a to_string( ) conversion that produces a string
containing ones and zeros, and this can be as long as the actual bitset. However, using
bitset<32> may make your life simpler because of to_ulong( ).

There’s still no primitive format for binary values, but the next best thing is supported by
bitset: a string of ones and zeros with the least-significant bit (lsb) on the right. The three
constructors demonstrated show taking the entire string (the char array is automatically
converted to a string), the string starting at character 2, and the string from character 2
through 11. You can write to an ostream from a bitset using operator<< and it comes out as
ones and zeros. You can also read from an istream using operator>> (not shown here).

You’ll notice that bitset only has three non-member operators: AND (&), OR (|) and
EXCLUSIVE-OR (^).  Each of these create a new bitset as their return value. All of the
member operators opt for the more efficient &=, |=, etc. form where a temporary is not
created. However, these forms actually change their lvalue (which is a in most of the tests in
the above example). To prevent this, I created a temporary to be used as the lvalue by
invoking the copy-constructor on a; this is why you see the form BS(a). The result of each
test is printed out, and occasionally a is reprinted so you can easily look at it for reference.



Chapter 15: Multiple Inheritance
684

The rest of the example should be self-explanatory when you run it; if not you can find the
details in your compiler’s documentation or the other documentation mentioned earlier in this
chapter.

vector<bool>
vector<bool> is a specialization of the vector template. A normal bool variable requires at
least one byte, but since a bool only has two values the ideal implementation of vector<bool>
is such that each bool value only requires one bit. This means the iterator must be specially-
defined, and cannot be a bool*:

The bit-manipulation functions for vector<bool> are much more limited than those of bitset.
The only member function that was added to those already in vector is flip( ), to invert all the
bits; there is no set( ) or reset( ) as in bitset. When you use operator[ ], you get back an
object of type vector<bool>::reference, which also has a flip( ) to invert that individual bit.

//: C20:VectorOfBool.cpp
// Demonstrate the vector<bool> specialization
#include <iostream>
#include <sstream>
#include <vector>
#include <bitset>
#include <iterator>
using namespace std;

int main() {
  vector<bool> vb(10, true);
  vector<bool>::iterator it;
  for(it = vb.begin(); it != vb.end(); it++)
    cout << *it;
  cout << endl;
  vb.push_back(false);
  ostream_iterator<bool> out (cout, "");
  copy(vb.begin(), vb.end(), out);
  cout << endl;
  bool ab[] = { true, false, false, true, true,
    true, true, false, false, true };
  // There's a similar constructor:
  vb.assign(ab, ab + sizeof(ab)/sizeof(bool));
  copy(vb.begin(), vb.end(), out);
  cout << endl;
  vb.flip(); // Flip all bits
  copy(vb.begin(), vb.end(), out);
  cout << endl;



Chapter 15: Multiple Inheritance
685

  for(int i = 0; i < vb.size(); i++)
    vb[i] = 0; // (Equivalent to "false")
  vb[4] = true;
  vb[5] = 1;
  vb[7].flip(); // Invert one bit
  copy(vb.begin(), vb.end(), out);
  cout << endl;
  // Convert to a bitset:
  ostringstream os;
  copy(vb.begin(), vb.end(),
    ostream_iterator<bool>(os, ""));
  bitset<10> bs(os.str());
  cout << "Bitset:\n" << bs << endl;
} ///:~

The last part of this example takes a vector<bool> and converts it to a bitset by first turning it
into a string of ones and zeros. Of course, you must know the size of the bitset at compile-
time. You can see that this conversion is not the kind of operation you’ll want to do on a
regular basis.

Associative containers
The set, map, multiset and multimap are called associative containers because they
associate keys with values. Well, at least maps and multimaps associate keys to values, but
you can look at sets as maps that have no values, only keys (and they can in fact be
implemented this way), and the same for the relationship between multisets and multimaps.
So, because of the structural similarity sets and multisets are lumped in with associative
containers.

The most important basic operations with associative containers are putting things in, and in
the case of a set, seeing if something is in the set. In the case of a map, you want to first see if
a key is in the map, and if it exists you want the associated value for that key to be returned.
Of course, there are many variations on this theme but that’s the fundamental concept. The
following example shows these basics:

//: C20:AssociativeBasics.cpp
// Basic operations with sets and maps
#include <iostream>
#include <set>
#include <map>
#include "Noisy.h"
using namespace std;

int main() {



Chapter 15: Multiple Inheritance
686

  Noisy na[] = { Noisy(), Noisy(), Noisy(),
    Noisy(), Noisy(), Noisy(), Noisy() };
  // Add elements via constructor:
  set<Noisy> ns(na,na+ sizeof(na)/sizeof(Noisy));
  // Ordinary insertion:
  Noisy n;
  ns.insert(n);
  cout << endl;
  // Check for set membership:
  cout << "ns.count(n)= " << ns.count(n) << endl;
  if(ns.find(n) != ns.end())
    cout << "n(" << n << ") found in ns" << endl;
  // Print elements:
  copy(ns.begin(), ns.end(),
    ostream_iterator<Noisy>(cout, " "));
  cout << endl;
  cout << "\n-----------\n";
  map<int, Noisy> nm;
  for(int i = 0; i < 10; i++)
    nm[i]; // Automatically makes pairs
  cout << "\n-----------\n";
  for(int j = 0; j < nm.size(); j++)
    cout << "nm[" << j <<"] = " << nm[j] << endl;
  cout << "\n-----------\n";
  nm[10] = n;
  cout << "\n-----------\n";
  nm.insert(make_pair(47, n));
  cout << "\n-----------\n";
  cout << endl << "nm.count(10)= "
    << nm.count(10) << endl;
  cout << "nm.count(11)= "
    << nm.count(11) << endl;
  map<int, Noisy>::iterator it = nm.find(6);
  if(it != nm.end())
    cout << "value:" << (*it).second
      << " found in nm at location 6" << endl;
  for(it = nm.begin(); it != nm.end(); it++)
    cout << (*it).first << ":"
      << (*it).second << ", ";
  cout << "\n-----------\n";
} ///:~



Chapter 15: Multiple Inheritance
687

The set<Noisy> object ns is created using two iterators into an array of Noisy objects, but
there is also a default constructor and a copy-constructor, and you can pass in an object that
provides an alternate scheme for doing comparisons. Both sets and maps have an insert( )
member function to put things in, and there are a couple of different ways to check to see if an
object is already in an associative container: count( ), when given a key, will tell you how
many times that key occurs (this can only be zero or one in a set or map, but it can be more
than one with a multiset or multimap). The find( ) member function will produce an iterator
indicating the first occurrence (with set and map, the only occurrence) of the key that you
give it, or the past-the-end iterator if it can’t find the key. The count( ) and find( ) member
functions exist for all the associative containers, which makes sense. The associative
containers also have member functions lower_bound( ), upper_bound( ) and
equal_range( ), which actually only make sense for multiset and multimap, as you shall see
(but don’t try to figure out how they would be useful for set and map, since they are designed
for dealing with a range of duplicate keys, which those containers don’t allow).

Designing an operator[ ] always produces a little bit of a dillema because it’s intended to be
treated as an array-indexing operation, so people don’t tend to think about performing a test
before they use it. But what happens if you decide to index out of the bounds of the array?
One option, of course, is to throw an exception, but with a map «indexing out of the array»
could mean that you want an entry there, and that’s the way the STL map treats it. The first
for loop after the creation of the map<int, Noisy> nm just «looks up» objects using the
operator[ ], but this is actually creating new Noisy objects! The map creates a new key-value
pair (using the default constructor for the value) if you look up a value with operator[ ] and it
isn’t there. This means that if you really just want to look something up and not create a new
entry, you must use count( ) (to see if it’s there) or find( ) (to get an iterator to it).

The for loop that prints out the values of the container using operator[ ] has a number of
problems. First, it requires integral keys (which we happen to have in this case). Next and
worse, if all the keys are not sequential, you’ll end up counting from 0 to the size of the
container, and if there are some spots which don’t have key-value pairs you’ll automatically
create them, and miss some of the higher values of the keys. Finally, if you look at the output
from the for loop you’ll see that things are very busy, and it’s quite puzzling at first why there
are so many constructions and destructions for what appears to be a simple lookup. The
answer only becomes clear when you look at the code in the map template for operator[ ],
which will be something like this:

mapped_type& operator[] (const key_type& k) {
  value_type tmp(k,T());
  return (*((insert(tmp)).first)).second;
}

Following the trail, you’ll find that map::value_type is:

typedef pair<const Key, T> value_type;

Now you need to know what a pair is, which can be found in <utility>:

template <class T1, class T2>



Chapter 15: Multiple Inheritance
688

struct pair {
  typedef T1 first_type;
  typedef T2 second_type;
  T1 first;
  T2 second;
  pair();
  pair(const T1& x, const T2& y)
    : first(x), second(y) {}
  // Templatized copy-constructor:
  template<class U, class V>
   pair(const pair<U, V> &p);
};

It turns out this is a very important (albeit simple) struct which is used quite a bit in the STL.
All it really does it package together two objects, but it’s very useful, especially when you
want to return two objects from a function (since a return statement only takes one object).
There’s even a shorthand for creating a pair called make_pair( ), which is used further down
in AssociativeBasics.cpp.

So to retrace the steps, map::value_type is a pair of the key and the value of the map –
actually, it’s a single entry for the map. But notice that pair packages its objects by value,
which means that copy-constructions are necessary to get the objects into the pair. Thus, the
creation of tmp in map::operator[ ] will involve at least a copy-constructor call and
destructor call for each object in the pair. Here, we’re getting off easy because the key is an
int. But if you want to really see what kind of activity can result from map::operator[ ], try
running this:

//: C20:NoisyMap.cpp
// Mapping Noisy to Noisy
#include <map>
#include "Noisy.h"
using namespace std;

int main() {
  map<Noisy, Noisy> mnn;
  Noisy n1, n2;
  cout << "\n--------\n";
  mnn[n1] = n2;
  cout << "\n--------\n";
  cout << mnn[n1] << endl;
  cout << "\n--------\n";
} ///:~

You’ll see that both the insertion and lookup generate a lot of extra objects, and that’s because
of the creation of the tmp object. If you look back up at map::operator[ ] you’ll see that the
second line calls insert( ) passing it tmp – that is, operator[ ] does an insertion every time.



Chapter 15: Multiple Inheritance
689

The return value of insert( ) is a different kind of pair, where first is an iterator pointing to
the key-value pair that was just inserted, and second is a bool indicating whether the
insertion took place. You can see that operator[ ] grabs first (the iterator), dereferences it to
produce the pair, and then returns the second which is the value at that location.

So on the upside, map has this fancy «make a new entry if one isn’t there» behavior, but the
downside is that you always get a lot of extra object creations and destructions when you use
map::operator[ ]. Fortunately, AssociativeBasics.cpp also demonstrates how to reduce the
overhead of insertions and deletions, by not using operator[ ] if you don’t have to. The
insert( ) member function is slightly more efficient than operator[ ]. With a set you only hold
one object, but with a map you hold key-value pairs, so insert( ) requires a pair as its
argument. Here’s where make_pair( ) comes in handy, as you can see.

For looking objects up in a map, you can use count( ) to see whether a key is in the map, or
you can use find( ) to produce an iterator pointing directly at the key-value pair. Again, since
the map contains pairs that’s what the iterator produces when you dereference it, so you have
to select first and second. When you run AssociativeBasics.cpp you’ll notice that the iterator
approach involves no extra object creations or destructions at all. It’s not as easy to write or
read, though.

If you use a map with large, complex objects and discover there’s too much overhead when
doing lookups and insertions (don’t assume this from the beginning – take the easy approach
first and use a profiler to discover bottlenecks), then you can use the counted-handle approach
shown in Chapter XX so that you are only passing around small, lightweight objects.

Of course, you can also iterate through a set or map and operate on each of its objects. This
will be demonstrated in later examples.

Generators and fillers
for associative containers

You’ve seen how useful the fill( ), fill_n( ), generate( ) and generate_n( ) function templates
in <algorithm> have been for filling the sequential containers (vector, list and deque) with
data. However, these are implemented by using operator= to assign values into the sequential
containers, and the way that you add objects to associative containers is with their respective
insert( ) member functions. Thus the «fill» and «generate» functions do not work with
associative containers.

It would be useful to have functions like these for the associative containers, if for no other
use than testing. It turns out that only the fill_n( ) and generate_n( ) functions can be
duplicated (fill( ) and generate( ) copy in between two iterators, which doesn’t make sense
with associative containers), but the job is fairly easy, since you have the <algorithm> header
file to work from (and since it contains templates, all the source code is there):

//: C20:assocGen.h
// The fill_n() and generate_n() equivalents



Chapter 15: Multiple Inheritance
690

// for associative containers.
#ifndef ASSOCGEN_H_
#define ASSOCGEN_H_

template<class Assoc, class Count, class T>
void
assocFill_n(Assoc& a, Count n, const T& val) {
  for (; 0 < n; --n)
    a.insert(val);
}

template<class Assoc, class Count, class Gen>
void assocGen_n(Assoc& a, Count n, Gen g) {
  for (; 0 < n; --n)
    a.insert(g());
}
#endif // ASSOCGEN_H_ ///:~

You can see that instead of using iterators, the container class itself is passed (by reference, of
course, since you wouldn’t want to make a local copy, fill it, and then have it discarded at the
end of the scope). Now you can fill an associative container with a value or using a generator.

This demonstrates a valuable lesson: if the algorithms don’t do what you want, copy the
nearest thing and modify it. You have the example at hand in the STL header, so most of the
work has already been done.

The magic of maps
An ordinary array uses an integral value to index into a sequential set of elements of some
type. A map is an associative array, which means you associate one object with another in an
array-like fashion, but instead of selecting an array element with a number as you do with an
ordinary array, you look it up with an object! The example which follows counts the words in
a text file, so the index is the string object representing the word, and the value being looked
up is the object that keeps count of the strings.

In a single-item container like a vector or list, there’s only one thing being held. But in a
map, you’ve got two things: the key (what you look up by, as in mapname[key]) and the
value that results from the lookup with the key. This is fine as long as you’re using an array-
style lookup, but what if you simply want to move through the entire map and list each key-
value pair? Of course you use an iterator, like everything else in the STL, but since there are
two items – the key and the value – which one should the iterator produce? Dereferencing a
map iterator produces both items, packaged together into a single pair object (since a
function can only return a single value). As a reminder, you access the members of a pair by
selecting first or second.



Chapter 15: Multiple Inheritance
691

This same philosophy of packaging two items together is also used to insert elements into the
map, but the pair is created as part of the instantiated map and is called value_type,
containing the key and the value. So one option for inserting a new element is to create a
value_type object, loading it with the appropriate objects and then calling the insert( )
member function for the map. Instead, the following example makes use of the
aforementioned special feature of map: if you’re trying to find an object by passing in a key
to operator[ ] and that object doesn’t exist, operator[ ] will automatically insert a new key-
value pair for you, using the default constructor for the value object. With that in mind,
consider an implementation of a word counting program:

//: C20:WordCount.cpp
//{L} StreamTokenizer
// Count occurrences of words using a map
#include <string>
#include <map>
#include <iostream>
#include <fstream>
#include "../require.h"
#include "StreamTokenizer.h"
using namespace std;

class Count {
  int i;
public:
  Count() : i(0) {}
  void operator++(int) { i++; } // Post-increment
  int& val() { return i; }
};

typedef map<string, Count> WordMap;
typedef WordMap::iterator WMIter;

main(int argc, char* argv[]) {
  requireArgs(argc, 2);
  ifstream in(argv[1]);
  assure(in, argv[1]);
  StreamTokenizer words(in);
  WordMap wordmap;
  string word;
  while((word = words.next()).size() != 0)
    wordmap[word]++;
  for(WMIter w = wordmap.begin();
      w != wordmap.end(); w++)
    cout << (*w).first << ": "



Chapter 15: Multiple Inheritance
692

      << (*w).second.val() << endl;
} ///:~

The need for the Count class is to contain an int that’s automatically initialized to zero. This
is necessary because of the crucial line:

wordmap[string(word)]++;

This finds the word that has been produced by StreamTokenizer and increments the Count
object associated with that word, which is fine as long as there is a key-value pair for that
string. If there isn’t, the map automatically inserts a key for the word you’re looking up, and a
Count object, which is initialized to zero by the default constructor. Thus, when it’s
incremented the Count becomes 1.

Printing the entire list requires traversing it with an iterator (there’s no copy( ) shortcut for a
map unless you want to write an operator<< for the pair in the map). As previously
mentioned, dereferencing this iterator produces a pair object, with the first member the key
and the second member the value. In this case second is a Count object, so it’s val( ) member
must be called to produce the actual word count.

If you want to find the count for a particular word, you can use the array index operator, like
this:

cout << "the: " << wordmap["the"].val() << endl;

The STL map is a powerful tool; you’ll see it used in numerous places throughout the rest of
this book.

Multimaps and duplicate keys
A multimap is a map that can contain duplicate keys. At first this may seem like a strange
idea, but it can occur surprisingly often. A phone book, for example, can have many entries
with the same name. Another example that uses a multimap is the ExtractCode.cpp program
in Chapter XX.

Suppose you are monitoring wildlife, and you want to keep track of where and when each
type of animal is spotted. Thus, you may see many animals of the same kind, all in different
locations and at different times. So if the type of animal is the key, you’ll need a multimap.
Here’s what it looks like:

//: C20:WildLifeMonitor.cpp
#include <vector>
#include <map>
#include <string>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <ctime>



Chapter 15: Multiple Inheritance
693

#include "assocGen.h"
using namespace std;

class DataPoint {
  int x, y; // Location coordinates
  time_t time; // Time of Sighting
public:
  DataPoint() : x(0), y(0), time(0) {}
  DataPoint(int xx, int yy, time_t tm) :
    x(xx), y(yy), time(tm) {}
  // Synthesized operator=, copy-constructor OK
  int getX() { return x; }
  int getY() { return y; }
  time_t* getTime() { return &time; }
};

string animal[] = {
  "chipmunk", "beaver", "marmot", "weasel",
  "squirrel", "ptarmigan", "bear", "eagle",
  "hawk", "vole", "deer", "otter", "hummingbird",
};
const int asz = sizeof animal/sizeof *animal;
vector<string> animals(animal, animal + asz);

// All the information is contained in a
// "Sighting," which can be sent to an ostream:
typedef pair<string, DataPoint> Sighting;

ostream& operator<<(ostream& os, Sighting s) {
  return os << s.first << " sighted at x= " <<
    s.second.getX() << ", y= " << s.second.getY()
    << ", time = " << ctime(s.second.getTime());
}

// A generator for Sightings:
class SightingGen {
  vector<string>& animals;
  static const int d = 100;
public:
  SightingGen(vector<string>& an) :
    animals(an) { srand(time(0)); }
  Sighting operator()() {
    Sighting result;



Chapter 15: Multiple Inheritance
694

    int select = rand() % animals.size();
    result.first = animals[select];
    result.second = DataPoint(
      rand() % d, rand() % d, time(0));
    return result;
  }
};

typedef multimap<string, DataPoint> DataMap;
typedef DataMap::iterator DMIter;

int main() {
  DataMap sightings;
  assocGen_n(sightings,50,SightingGen(animals));
  // Print everything:
  copy(sightings.begin(), sightings.end(),
    ostream_iterator<Sighting>(cout, ""));
  // Print sightings for selected animal:
  while(true) {
    cout << "select an animal or 'q' to quit: ";
    for(int i = 0; i < animals.size(); i++)
      cout <<'['<< i <<']'<< animals[i] << ' ';
    cout << endl;
    string reply;
    cin >> reply;
    if(reply.at(0) == 'q') return 0;
    istringstream r(reply);
    int i;
    r >> i; // Converts to int
    i %= animals.size();
    // Iterators in "range" denote begin, one
    // past end of matching range:
    pair<DMIter, DMIter> range =
      sightings.equal_range(animals[i]);
    copy(range.first, range.second,
      ostream_iterator<Sighting>(cout, ""));
  }
} ///:~

All the data about a sighting is encapsulated into the class DataPoint, which is simple enough
that it can rely on the synthesized assignment and copy-constructor. It uses the Standard C
library time functions to record the time of the sighting.



Chapter 15: Multiple Inheritance
695

In the array of string animal, notice that the char* constructor is automatically used during
initialization, which makes initializing an array of string quite convenient. Since it’s easier to
use the animal names in a vector, the length of the array is calculated and a vector<string> is
initialized using the vector(iterator, iterator) constructor.

The key-value pairs that make up a Sighting are the string which names the type of animal,
and the DataPoint that says where and when it was sighted. The standard pair template
combines these two types and is typedefed to produce the Sighting type. Then an ostream
operator<< is created for Sighting; this will allow you to iterate through a map or multimap
of Sightings and print it out.

SightingGen generates random sightings at random data points to use for testing. It has the
usual operator( ) necessary for a function object, but it also has a constructor to capture and
store a reference to a vector<string>, which is where the aforementioned animal names are
stored.

A DataMap is a multimap of string-DataPoint pairs, which means it stores Sightings. It is
filled with 50 Sightings using assocGen_n( ), and printed out (notice that because there is an
operator<< that takes a Sighting, an ostream_iterator can be created). At this point the user
is asked to select an animal; this is the one they want to see all the sightings for. If you press
‘q’ the program will quite, but if you select an animal number, then the equal_range( )
member function is invoked. This returns an iterator (DMIter) to the beginning of the set of
matching pairs, and one indicating past-the-end of the set. Since only one object can be
returned from a function, the equal_range makes use of pair. Since the range pair has the
beginning and ending iterators of the matching set, those iterators can be used in copy( ) to
print out all the sightings for a particular type of animal.

Multisets
You’ve seen the set, which only allows one object of each value to be inserted. The multiset
is odd by comparison since it allows more than one object of each value to be inserted. This
seems to go against the whole idea of «setness,» where you can ask «is ‘it’ in this set?» If
there can be more than one of ‘it’, then what does that question mean?

With some thought, you can see that it makes no sense to have more than one object of the
same value in a set if those duplicate objects are exactly the same (with the possible exception
of counting occurrences of objects, but as seen earlier in this chapter that can be handled in an
alternative, more elegant fashion). Thus each duplicate object will have something that makes
it unique from the other duplicates – most likely different state information that is not used in
the calculation of the value during the comparison. That is, to the comparison operation, the
objects look the same but they actually contain some differing internal state.

Like any STL container that must order its elements, the multiset template uses the less
template by default to determine element ordering. This uses the contained classes’
operator<, but you may of course substitute your own comparison function.



Chapter 15: Multiple Inheritance
696

Consider a simple class that contains one element that is used in the comparison, and another
that is not:

//: C20:MultiSet1.cpp
// Demonstration of multiset behavior
#include <iostream>
#include <set>
#include <ctime>
#include "assocGen.h"
using namespace std;

class X {
  char c; // Used in comparison
  int i; // Not used in comparison
  // Don't need default constructor and operator=
  X();
  X& operator=(const X&);
  // Usually need a copy-constructor (but the
  // synthesized version works here)
public:
  X(char cc, int ii) : c(cc), i(ii) {}
  // Notice no operator== is required
  friend bool operator<(const X& x, const X& y) {
    return x.c < y.c;
  }
  friend ostream& operator<<(ostream& os, X x) {
    return os << x.c << ":" << x.i;
  }
};

class Xgen {
  static int i;
  // Number of characters to select from:
  static const int span = 6;
public:
  Xgen() { srand(time(0)); }
  X operator()() {
    char c = 'A' + rand() % span;
    return X(c, i++);
  }
};

int Xgen::i = 0;



Chapter 15: Multiple Inheritance
697

typedef multiset<X> Xmset;
typedef Xmset::const_iterator Xmit;

int main() {
  Xmset mset;
  // Fill it with X's:
  assocGen_n(mset, 25, Xgen());
  // Initialize a regular set from mset:
  set<X> unique(mset.begin(), mset.end());
  copy(unique.begin(), unique.end(),
    ostream_iterator<X>(cout, " "));
  cout << "\n----\n";
  // Iterate over the unique values:
  for(set<X>::iterator i = unique.begin();
      i != unique.end(); i++) {
    pair<Xmit, Xmit> p = mset.equal_range(*i);
    copy(p.first, p.second,
      ostream_iterator<X>(cout, " "));
    cout << endl;
  }
} ///:~

In X, all the comparisons are made with the char c. The comparison is performed with
operator<, which is all that is necessary for the multiset, since in this example the default
less comparison object is used. The class Xgen is used to randomly generate X objects, but
the comparison value is restricted to the span from ‘A’ to ‘E’. In main( ), a multiset<X> is
created and filled with 25 X objects using Xgen, guaranteeing that there will be duplicate
keys. So that we know what the unique values are, a regular set<X> is created from the
multiset (using the iterator, iterator constructor). These values are displayed, then each one
is used to produce the equal_range( ) in the multiset (equal_range( ) has the same meaning
here as it does with multimap: all the elements with matching keys). Each set of matching
keys is then printed.

In the end, is this really a «set,» or should it be called something else? An alternative is the
generic «bag» that has been defined in some container libraries, since a bag holds anything at
all without discrimination – including duplicate objects. This is close, but it doesn’t quite fit
since a bag has no specification about how elements should be ordered, while a multiset is
even more restrictive than a set (which could use a hashing function to order its elements, in
which case they would not be in sorted order), since multiset requires that all duplicate
elements be adjacent to each other. Besides, if you wanted to store a bunch of objects without
any special criterions, you’d probably just use a vector, deque or list.



Chapter 15: Multiple Inheritance
698

Combining STL containers
When using a thesaurus, you have a word and you want to know all the words that are similar.
When you look up a word, then, you want a list of words as the result. Here, the «multi»
containers (multimap or multiset) are not appropriate. The solution is to combine containers,
which is easily done using the STL. Here, we need a tool that turns out to be a powerful
general concept, which is a map of vector:

//: C20:Thesaurus.cpp
// A map of vectors
#include <map>
#include <vector>
#include <string>
#include <iostream>
#include <ctime>
#include "assocGen.h"
using namespace std;

typedef map<string, vector<string> > Thesaurus;
typedef pair<string, vector<string> > TEntry;
typedef Thesaurus::iterator TIter;

ostream& operator<<(ostream& os, TEntry t) {
  os << t.first << ": ";
  vector<string>& v = t.second;
  for(int i = 0; i < v.size(); i++)
    os << v[i] << " ";
  return os;
}

// A generator for thesaurus test entries:
class ThesaurusGen {
  static const string letters;
  static int count;
public:
  int maxSize() { return letters.size(); }
  ThesaurusGen() { srand(time(0)); }
  TEntry operator()() {
    TEntry result;
    if(count >= maxSize()) count = 0;
    result.first = letters[count++];
    int entries = (rand() % 5) + 2;



Chapter 15: Multiple Inheritance
699

    for(int i = 0; i < entries; i++) {
      int choice = rand() % maxSize();
      char cbuf[2] = { 0 };
      cbuf[0] = letters[choice];
      result.second.push_back(cbuf);
    }
    return result;
  }
};

int ThesaurusGen::count = 0;
const string ThesaurusGen::letters("ABCDEFGHIJKL"
  "MNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");

int main() {
  Thesaurus thesaurus;
  // Fill with 10 entries:
  assocGen_n(thesaurus, 10, ThesaurusGen());
  // Print everything:
  copy(thesaurus.begin(), thesaurus.end(),
    ostream_iterator<TEntry>(cout, "\n"));
  // Ask for a "word" to look up:
  while(true) {
    cout << "Select a \"word\", 0 to quit: ";
    for(TIter it = thesaurus.begin();
      it != thesaurus.end(); it++)
      cout << (*it).first << ' ';
    cout << endl;
    string reply;
    cin >> reply;
    if(reply.at(0) == '0') return 0; // Quit
    if(thesaurus.find(reply) == thesaurus.end())
      continue; // Not in list, try again
    vector<string>& v = thesaurus[reply];
    copy(v.begin(), v.end(),
      ostream_iterator<string>(cout, " "));
    cout << endl;
  }
} ///:~

A Thesaurus maps a string (the word) to a vector<string> (the synonyms). A TEntry is a
single entry in a Thesaurus. By creating an ostream operator<< for a TEntry, a single entry
from the Thesaurus can easily be printed (and the whole Thesaurus can easily be printed
with copy( )). The ThesaurusGen creates «words» (which are just single letters) and



Chapter 15: Multiple Inheritance
700

«synonyms» for those words (which are just other randomly-chosen single letters) to be used
as thesaurus entries. It randomly chooses the number of synonym entries to make, but there
must be at least two. All the letters are chosen by indexing into a static string that is part of
ThesaurusGen.

In main( ), a Thesaurus is created, filled with 10 entries and printed using the copy( )
algorithm. Then the user is requested to choose a «word» to look up by typing the letter of
that word. The find( ) member function is used to find whether the entry exists in the map
(remmber, you don’t want to use operator[ ] or it will automatically make a new entry if it
doesn’t find a match!). If so, operator[ ] is used to fetch out the vector<string> which is
displayed.

Because templates make the expression of powerful concepts easy, you can take this concept
much further, creating a map of vectors containing maps, etc. For that matter, you can
combine any of the STL containers this way.

Cleaning up
containers of pointers

In Stlshape.cpp, the pointers did not clean themselves up automatically. It would be
convenient to be able to do this easily, rather than writing out the code each time. Here is a
function template that will clean up the pointers in any sequence container; note that it is
placed in the book’s root directory for easy access:

//: :purge.h
// Delete pointers in an STL sequence container
#ifndef PURGE_H_
#define PURGE_H_
#include <algorithm>

template<class Seq> void purge(Seq& c) {
  typename Seq::iterator It;
  for(It i = c.begin(); i != c.end(); i++) {
    delete *i;
    *i = 0;
  }
}

// Iterator version:
template<class InpIt>
void purge(InpIt begin, InpIt end) {
  while(begin != end) {



Chapter 15: Multiple Inheritance
701

    delete *begin;
    *begin = 0;
    begin++;
  }
}
#endif // PURGE_H_ ///:~

Here is Stlshape.cpp, modified to use the purge( ) function:

//: C20:Stlshape2.cpp
// Stlshape.cpp with the purge() function
#include <vector>
#include <iostream>
#include "../purge.h"
using namespace std;

class Shape {
public:
  virtual void draw() = 0;
  virtual ~Shape() {};
};

class Circle : public Shape {
public:
  void draw() { cout << "Circle::draw\n"; }
  ~Circle() { cout << "~Circle\n"; }
};

class Triangle : public Shape {
public:
  void draw() { cout << "Triangle::draw\n"; }
  ~Triangle() { cout << "~Triangle\n"; }
};

class Square : public Shape {
public:
  void draw() { cout << "Square::draw\n"; }
  ~Square() { cout << "~Square\n"; }
};

typedef std::vector<Shape*> Container;
typedef Container::iterator Iter;

int main() {



Chapter 15: Multiple Inheritance
702

  Container shapes;
  shapes.push_back(new Circle);
  shapes.push_back(new Square);
  shapes.push_back(new Triangle);
  for(Iter i = shapes.begin();
      i != shapes.end(); i++)
    (*i)->draw();
  purge(shapes);
} ///:~

When using purge( ), you must be careful to consider ownership issues – if an object pointer
is held in more than one container, then you must be sure not to delete it twice. Purging the
same container twice is not a problem, because purge( ) sets the pointer to zero once it deletes
that pointer, and calling delete for a zero pointer is a safe operation.

Creating your own containers
With the STL as a foundation, it’s possible to create your own containers. Assuming you
follow the same model of providing iterators, your new container will behave as if it were a
built-in STL container.

Consider the «ring» data structure, which is a circular sequence container. If you reach the
end, it just wraps around to the beginning. This can be implemented on top of a list as
follows:

//: C20:Ring.cpp
// Making a "ring" data structure from the STL
#include <iostream>
#include <list>
#include <string>
using namespace std;

template<class T>
class Ring {
  list<T> lst;
public:
  // Declaration necessary so the following
  // 'friend' statement sees this 'iterator'
  // instead of std::iterator:
  class iterator;
  friend class iterator;
  class iterator: public std::iterator<
    std::bidirectional_iterator_tag,T,ptrdiff_t>{
    list<T>::iterator it;



Chapter 15: Multiple Inheritance
703

    list<T>* r;
  public:
    // "typename" necessary to resolve nesting:
    iterator(list<T>& lst,
      const typename list<T>::iterator& i)
      : r(&lst), it(i) {}
    bool operator==(const iterator& x) const {
      return it == x.it;
    }
    bool operator!=(const iterator& x) const {
      return !(*this == x);
    }
    list<T>::reference operator*() const {
      return *it;
    }
    iterator& operator++() {
      ++it;
      if(it == r->end())
        it = r->begin();
      return *this;
    }
    iterator operator++(int) {
      iterator tmp = *this;
      ++*this;
      return tmp;
    }
    iterator& operator--() {
      if(it == r->begin())
        it = r->end();
      --it;
      return *this;
    }
    iterator operator--(int) {
      iterator tmp = *this;
      --*this;
      return tmp;
    }
    iterator insert(const T& x){
      return iterator(*r, r->insert(it, x));
    }
    iterator erase() {
      return iterator(*r, r->erase(it));
    }



Chapter 15: Multiple Inheritance
704

  };
  void push_back(const T& x) {
    lst.push_back(x);
  }
  iterator begin() {
    return iterator(lst, lst.begin());
  }
 int size() { return lst.size(); }
};

int main() {
  Ring<string> rs;
  rs.push_back("one");
  rs.push_back("two");
  rs.push_back("three");
  rs.push_back("four");
  rs.push_back("five");
  Ring<string>::iterator it = rs.begin();
  it++; it++;
  it.insert("six");
  it = rs.begin();
  // Twice around the ring:
  for(int i = 0; i < rs.size() * 2; i++)
    cout << *it++ << endl;
} ///:~

You can see that the iterator is where most of the coding is done. The Ring iterator must
know how to loop back to the beginning, so it must keep a reference to the list its «parent»
Ring object in order to know if it’s at the end and how to get back to the beginning.

You’ll notice that the interface for Ring is quite limited; in particular there is no end( ), since
a ring just keeps looping. This means that you won’t be able to use a Ring in any STL
algorithms that require a past-the-end iterator – which is many of them. (It turns out that
adding this feature is a non-trivial exercise). Although this can seem limiting, consider stack,
queue and priority_queue, which don’t produce any iterators at all!

Freely-available
STL extensions

Although the STL containers may provide all the functionality you’ll ever need, they are not
complete. For example, the standard implementations of set and map use trees, and although
these are reasonably fast they may not be fast enough for your needs. In the C++ Standards



Chapter 15: Multiple Inheritance
705

Committee it was generally agreed that hashed implementations of set and map should have
been included in Standard C++, however there was not considered to be enough time to add
these components, and thus they were left out.

Fortunately, there are freely-available alternatives. One of the nice things about the STL is
that it establishes a basic model for creating STL-like classes, so anything built using the
same model is easy to understand if you are already familiar with the STL.

The SGI STL (freely available at http://www.sgi.com/Technology/STL/) is one of the most
robust implementations of the STL, and can be used to replace your compiler’s STL if that is
found wanting. In addition they’ve added a number of extensions including hash_set,
hash_multiset, hash_map, hash_multimap, slist (a singly-linked list) and rope (a variant of
string optimized for very large strings and fast concatenation and substring operations).

Let’s consider a performance comparison between a tree-based map and the SGI hash_map.
To keep things simple, the mappings will be from int to int:

//: C20:MapVsHashMap.cpp
// The hash_map header is not part of the
// Standard C++ STL. It is an extension that
// is only available as part of the SGI STL:
#include <hash_map>
#include <iostream>
#include <map>
#include <ctime>
using namespace std;

int main(){
  hash_map<int, int> hm;
  map<int, int> m;
  clock_t ticks = clock();
  for(int i = 0; i < 100; i++)
    for(int j = 0; j < 1000; j++)
      m.insert(make_pair(j,j));
  cout << "map insertions: "
    << clock() - ticks << endl;
  ticks = clock();
  for(int i = 0; i < 100; i++)
    for(int j = 0; j < 1000; j++)
      hm.insert(make_pair(j,j));
  cout << "hash_map insertions: "
    << clock() - ticks << endl;
  ticks = clock();
  for(int i = 0; i < 100; i++)
    for(int j = 0; j < 1000; j++)



Chapter 15: Multiple Inheritance
706

      m[j];
  cout << "map::operator[] lookups: "
    << clock() - ticks << endl;
  ticks = clock();
  for(int i = 0; i < 100; i++)
    for(int j = 0; j < 1000; j++)
      hm[j];
  cout << "hash_map::operator[] lookups: "
    << clock() - ticks << endl;
  ticks = clock();
  for(int i = 0; i < 100; i++)
    for(int j = 0; j < 1000; j++)
      m.find(j);
  cout << "map::find() lookups: "
    << clock() - ticks << endl;
  ticks = clock();
  for(int i = 0; i < 100; i++)
    for(int j = 0; j < 1000; j++)
      hm.find(j);
  cout << "hash_map::find() lookups: "
    << clock() - ticks << endl;
} ///:~

The performance test I ran showed a speed improvement of roughly 4:1 for the hash_map
over the map in all operations (and as expected, find( ) is slightly faster than operator[ ] for
lookups for both types of map). If a profiler shows a bottleneck in your map, you should
consider a hash_map.

Summary
The goal of this chapter was not just to introduce the STL containers in some considerable
depth (of course, not every detail could be covered here, but you should have enough now that
you can look up further information in the other resources). My higher hope is that this
chapter has made you grasp the incredible power available in the STL, and shown you how
much faster and more efficient your programming activities can be by using and
understanding the STL.

The fact that I could not escape from introducing some of the STL algorithms in this chapter
suggests how useful they can be. In the next chapter you’ll get a much more focused look at
the algorithms.



Chapter 15: Multiple Inheritance
707

Error messages
One of the greatest weaknesses of the STL, or more appropriately of C++ templates, will be
shown to you when you try to write STL code and start getting compile-time error messages.
When you’re not used to it, the quantity of inscrutable text that will be barfed at you by the
compiler will be quite overwhelming. After a while you’ll adapt (although it always feels a bit
barbaric), and if it’s any consolation, C++ compilers have actually gotten a lot better about
this – previously they would only give the line where you tried to instantiate the template, and
most of them now go to the line in the template definition that caused the problem.

The issue is that a template implies an interface. That is, even though the template keyword
says «I’ll take any type,» the code in a template definition actually requires that certain
operators and member functions be supported – that’s the interface. So in reality, a template
definition is saying «I’ll take any type that supports this interface.» Things would be much
nicer if the compiler could simply say «hey, this type that you’re trying to instantiate the
template with doesn’t support that interface – can’t do it.» The Java language has a feature
called interface that would be a perfect match for this (Java, however, has no parameterized
type mechanism), but it will be many years, if ever, before you will see such a thing in C++
(at this writing the C++ Standard has only just been accepted and it will be a while before all
the compilers even achieve compliance). Compilers can only get so good at reporting
template instantiation errors, so you’ll have to grit your teeth, go to the first line reported as an
error and figure it out.

Exercises
 1.  Change StlShape.cpp so that it uses a deque instead of a vector.
 2.  Modify BankTeller.cpp so that the policy that decides when a teller is added

or removed is encapsulated inside a class.
 3.  Rewrite Ring.cpp so it uses a deque instead of a list for its underlying

implementation.
 4.  Modify Ring.cpp so that the underlying implementation can be chosen

using a template argument (let that template argument default to list).
 5.  [[ More needed ]]





709

21: STL
Algorithms

The other half of the STL is the algorithms, which are
templatized functions designed to work with the containers
(or, as you will see, anything that can behave like a
container, including arrays and string objects).

The STL was originally designed around the algorithms. The goal was that you use algorithms
for almost every piece of code that you write. In this sense it was a bit of an experiment, and
only time will tell how well it works. The real test will be in how easy or difficult it is for the
average programmer to adapt. At the end of this chapter you’ll be able to decide for yourself
whether you find the algorithms addictive or too confusing to remember.

[[ Chuck: I’d like to use generators and generate_n( ) or assocGen_n( ) as much as possible
since they keep the examples small and focused on what you do with the algorithm rather than
getting distracted on how you fill the container. So I’ve created the Bicycle example to be
used throughout the rest of the chapter as the objects, along with a generator – these will both
need to be modified to make them appropriate to work with all the examples (and to make
them more interesting than what I have here) but what I have here should give you the basic
idea. Let me know if you have questions. ]]

[[Chuck: note the organization by «what the reader wants to do» rather than «how the STL
designer thought about the way things are implemented]]

Algorithms are succinct
In the previous chapter you saw an example of the STL algorithms in copy( ), which was used
in many of the programs in that chapter to send information to cout. Here, for example, a
container of string objects is sent to cout, separated by newlines:

copy(container.begin(), countainer.end(),
  ostream_iterator<string>(cout, "\n"));

One of the appealing things about the STL algorithms is that they are very expressive – you
can say a lot in a very few lines of code.



Chapter 15: Multiple Inheritance
710

For example, consider the problem introduced in last chapter’s Stlshape.cpp. Since all the
objects were created on the heap using new, when you were done with them you had to
explicitly clean them all up:

  for(Iter i = shapes.begin();
      i != shapes.end(); i++)
    delete *i;

This can be tedious, and so you might prefer to use an algorithm that will automatically
traverse your container and delete all the objects. Stroustrup3 (pg 531) provides the solution
(which is different than the one shown here). You must first create a template class that
contains an operator( ) to perform the deletion:

template<class T> class DeletePtr {
public:
  T* operator()(T* p) { delete p; return 0; }
};

The reason the return value is 0 is so it can be assigned back into the pointer that was deleted
(so if delete is accedentally called more than once for that pointer, it is safe – remember that
delete 0 doesn’t do anything bad). The cleanup is then accomplished with the STL
transform( ) algorithm:

std::transform(shapes.begin(), shapes.end(),
    shapes.begin(), DeletePtr<shape>());

The modified Stlshape.cpp then becomes:

//: C19:Stlshape2.cpp
// Cleanup of pointers using transform()
#include <vector>
#include <algorithm>
#include <iostream.h>

class shape {
public:
  virtual void draw() = 0;
  virtual ~shape() {};
};

class circle : public shape {
public:
  void draw() { cout << "circle::draw\n"; }
  ~circle() { cout << "~circle\n"; }
};

class triangle : public shape {



Chapter 15: Multiple Inheritance
711

public:
  void draw() { cout << "triangle::draw\n"; }
  ~triangle() { cout << "~triangle\n"; }
};

class square : public shape {
public:
  void draw() { cout << "square::draw\n"; }
  ~square() { cout << "~square\n"; }
};

typedef std::vector<shape*> container;
typedef container::iterator iter;

template<class T> class DeletePtr {
public:
  T* operator()(T* p) { delete p; return 0; }
};

int main() {
  container shapes;
  shapes.push_back(new circle);
  shapes.push_back(new square);
  shapes.push_back(new triangle);
  for(iter i = shapes.begin();
      i != shapes.end(); i++)
    (*i)->draw();
  // ... sometime later:
  std::transform(shapes.begin(), shapes.end(),
    shapes.begin(), DeletePtr<shape>());
} ///:~

You could argue that this is actually more code because of the additional function template,
but that’s a reusable tool so it could be placed in a header file and included. However, you
could also argue that transform( ) is less clear than simply creating an iterator and stepping
through the container. This is part of the conundrum of using the algorithms – they are often
so small that it might be clearer and simpler for your purposes just to write out the code rather
than calling the algorithm. You’ll need to make this decision yourself.

Filling a container
The «generate» algorithms were used frequently in the previous chapter. The fill( ), fill_n( ),
generate( ) and generate_n( ) algorithms automatically insert objects into any sequence



Chapter 15: Multiple Inheritance
712

container (vector, list or deque – how about the stack, queue and priority_queue which are
based on them?). The difference is that the «fill» functions insert a single value multiple times
into the container, while the «generate» functions use an object called a generator to create
the values to insert into the container.

There are four interesting cases that effectively cover the kinds of things you’ll probably
encounter in your day-to-day programming:

 1.  A container of strings (that is, a container of a library-defined type).
 2.  A container of objects of a user-defined type. This demonstrates the

operations your type must support in order to be used with the STL
containers and algorithms.

 3.  An array of strings. This demonstrates that an array can be treated by the
STL algorithms as if it were a container (because array pointers can be
treated as iterators).

 4.  A string. Since a string can produce begin( ) and end( ) iterators, it can be
treated as a container of char (or w_char).

The following example shows the «fill» and «generate» algorithms demonstrated with these
four cases:

//: C21:FillAndGenerate.cpp
//{L} ../C20/StreamTokenizer
//{T} FillAndGenerate.cpp
// Demonstrate "fill" and "generate" algorithms
#include <string>
#include <vector>
#include <iostream>
#include <fstream>
#include <algorithm>
#include <ctime>
#include "../require.h"
#include "../C20/StreamTokenizer.h"
using namespace std;

/* What I'd like to do, no compiler handles it:
template <class T, class Container>
void print(Container c) {
  copy(c.begin(), c.end(),
    ostream_iterator<T>(cout, "\n"));
  cout << "--------" << endl;
} */

template <class Iter>
void printStrings(Iter begin, Iter end) {
  copy(begin, end,



Chapter 15: Multiple Inheritance
713

    ostream_iterator<string>(cout, "\n"));
  cout << "--------" << endl;
}

class StringGenerator {
  StreamTokenizer words;
public:
  StringGenerator(istream& in) : words(in) {}
  string operator()() { return words.next(); }
};

class CharGenerator {
  static const char* source;
  static const int len;
public:
  CharGenerator() { srand(time(0)); }
  char operator()() {
    return source[rand() % len];
  }
};
const char* CharGenerator::source = "ABCDEFGHIJK"
  "LMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
const int CharGenerator::len = strlen(source);

// Friends & reference matching
// are broken in BC++ 5.3:
class UserDefined;
ostream& operator<<(ostream& os, UserDefined ud);

class UserDefined {
  int i;
public:
  UserDefined() : i(0) {}
  UserDefined(int ii) : i(ii) {}
  friend ostream&
  operator<<(ostream& os, UserDefined ud) {
    return os << "UserDefined i = " << ud.i;
  }
};

// Tried to create a template for this, but the
// compilers kept failing me:
void print(vector<UserDefined> c) {



Chapter 15: Multiple Inheritance
714

  copy(c.begin(), c.end(),
    ostream_iterator<UserDefined>(cout, "\n"));
  cout << "--------" << endl;
}

class UDGenerator {
  static int i;
public:
  UserDefined operator()() {
    return UserDefined(i++);
  }
};
int UDGenerator::i = 0;

int main(int argc, char* argv[]) {
  requireArgs(argc, 2);
  ifstream in(argv[1]);
  assure(in, argv[1]);
  cout << ">>>> Filling STL containers" << endl;
  vector<string> wordvec;
  fill_n(back_inserter(wordvec), 5, "Yowza!");
  printStrings(wordvec.begin(), wordvec.end());
  StringGenerator gen(in);
  generate_n(back_inserter(wordvec), 5, gen);
  printStrings(wordvec.begin(), wordvec.end());
  generate(wordvec.begin(), wordvec.end(), gen);
  printStrings(wordvec.begin(), wordvec.end());
  fill(wordvec.begin(), wordvec.end(),
   "A Yellow Submarine!");
  printStrings(wordvec.begin(), wordvec.end());
  cout << ">>>> A vector of UserDefined" << endl;
  vector<UserDefined> udvec;
  fill_n(back_inserter(udvec), 5,UserDefined(0));
  print(udvec);
  fill(udvec.begin(),udvec.end(),UserDefined(1));
  print(udvec);
  UDGenerator udg;
  generate_n(back_inserter(udvec), 5, udg);
  print(udvec);
  generate(udvec.begin(), udvec.end(), udg);
  print(udvec);
  cout << ">>>> Filling arrays" << endl;
  const int sz = 7;



Chapter 15: Multiple Inheritance
715

  string astr[sz];
  fill(astr, astr + sz, "Astounding!");
  printStrings(astr, astr + sz);
  generate_n(astr, 6, gen);
  printStrings(astr, astr + sz);
  generate(astr, astr + sz, gen);
  printStrings(astr, astr + sz);
  cout << ">>>> Filling strings" << endl;
  string s("          ");
  fill_n(s.begin(), s.size(), 'A');
  cout << s << endl;
  fill(s.begin(), s.end(), 'Z');
  cout << s << endl;
  string s2("          ");
  CharGenerator cgen;
  generate_n(s2.begin(), s.size(), cgen);
  cout << s2 << endl;
  generate(s2.begin(), s2.end(), cgen);
  cout << s2 << endl;
} ///:~

The first thing you see is a function template which is only created as a shorthand to reduce
repetitive coding. It takes any pair of iterators to containers of strings and sends the contents
to cout. [[Note: I hope to be able to use a more general function template whenever some
compiler supports it!]].

Next there are two generators to be used with the «generate» algorithms. The first generates
strings, and uses the StreamTokenizer developed in the last chapter. The second generates
chars and is used to fill up a string (when treating a string as a sequence container). You’ll
note that the one member function that any generator implements is operator( ) (with no
arguments). This is what is called by the «generate» functions.

The UserDefined class is meant to represent a simple example of a user-defined type. Here,
the synthesized copy-constructor and operator= are used, but note that they are necessary.
Also, this is the simplest possible case, and you’ll soon see that a user-defined type will
generally have to be more complete in order to be used with the STL algorithms.

The print( ) function simply provides a shorthand for printing a vector of UserDefined.

The UDGenerator is for use with a «generate» algorithm. Again, it’s quite simple, creating
UserDefined objects with ascending index numbers.

main( ) is divided into four parts, one for each demonstration. The first fills a vector<string>.
Notice the use of back_inserter( ) in the call to fill_n( ). It is important to create this iterator
because otherwise fill_n would try to insert at the front, which isn’t legal for a vector. Since
generate_n( ) also uses a back_inserter( ), its values will be appended to the end and you’ll
have a vector with 10 elements. The call to generate( ) overwrites those 10 values, and so



Chapter 15: Multiple Inheritance
716

does the call to fill( ). When you run the program you can see the results and verify these
behaviors.

The rest of the example repeats these operations with different types of containers. The
vector<UserDefined> is a mirror of the vector<string>, but the array looks a bit different
since the «iterators» are created using pointer arithmetic. The function template doesn’t care;
all it wants is something it can dereference and move forward using operator++, and the
array pointers fit the requirements.

The string object can also fit these requirements by producing iterators to its begin and end.
Other than that, it looks like any other container.

Because the «fill» and «generate» functions do not extend to the associative containers (set,
multiset, map and multimap) the assocFill_n( ) and assocGen_n( ) functions were created
and demonstrated in the previous chapter. Those functions, in the header file
../C20/assocGen.h, shall also come in handy in this chapter.

A test framework for the
examples in this chapter

For general demonstrations of all the algorithms, the previous example has some drawbacks:

 1.  It’s bulky, and would use up too much paper if repeated across all the
examples.

 2.  It’s distracting, since most of the code is involved with setting up the
example or printing the results, rather than using the algorithms.

 3.  The UserDefined class is not really typical of what you’ll generally have to
create to use it with the STL algorithms.

In this section, a framework will be created to automatically fill the appropriate containers, to
minimize the space and distraction of the previous example. This framework will be used with
the rest of the examples in this chapter, and will define a new user-defined class to
demonstrate the level of completeness necessary for such a class to be used with the STL
algorithms. So instead of demonstrating the simplest possible examples, such as an array of
int, the examples in the rest of the chapter will show the most general case, which is
containers of a user-defined type. They will also demonstrate the operations your classes must
support in order to be used with the various STL algorithms.

Keep in mind, however, that all the algorithms may be applied as shown in the previous
example: to containers of string, to arrays of any type, and to string objects themselves,
treating the string as a container of characters.

The class which will be created as the example will be reasonably complex: it’s a bicycle
which can have a choice of parts. In addition, you can change the parts during the lifetime of a
Bicycle object; this includes the ability to add new parts or to upgrade from standard-quality



Chapter 15: Multiple Inheritance
717

parts to «fancy» parts. The BicyclePart class is a base class with many different types, and
the Bicycle class contains a vector<BicyclePart*> to hold the various combination of parts
that may be attached to a Bicycle:

//: C21:Bicycle.h
// Interesting class for use with STL algorithms
#ifndef BICYCLE_H_
#define BICYCLE_H_
#include <vector>
#include <iostream>

class BicyclePart {
  class LeakChecker {
    int count;
  public:
    LeakChecker() : count(0) {}
    ~LeakChecker() {
      std::cout << count << endl;
    }
    void operator++(int) { count++; }
    void operator--(int) { count++; }
  };
  static LeakChecker lc;
public:
  BicyclePart() { lc++; }
  virtual BicyclePart* clone() = 0;
  virtual ~BicyclePart() { lc--; }
  friend ostream&
  operator<<(ostream& os, BicyclePart* bp) {
    return os << typeid(*bp).name();
  }
};

class Frame : public BicyclePart {
public:
  BicyclePart* clone() { return new Frame; }
};

class Wheels : public BicyclePart {
public:
  BicyclePart* clone() { return new Wheels; }
};

class Seat : public BicyclePart {



Chapter 15: Multiple Inheritance
718

public:
  BicyclePart* clone() { return new Seat; }
};

class HandleBars : public BicyclePart {
public:
  BicyclePart* clone() { return new HandleBars; }
};

class Sprockets : public BicyclePart {
public:
  BicyclePart* clone() { return new Sprockets; }
};

class FancySprockets : public Sprockets {
public:
  BicyclePart*
  clone() { return new FancySprockets; }
};

class Deraileur : public BicyclePart {
public:
  BicyclePart* clone() { return new Deraileur; }
};

class FancyDeraileur : public Deraileur {
public:
  BicyclePart*
  clone() { return new FancyDeraileur; }
};

class Shocks : public BicyclePart {
public:
  BicyclePart* clone() { return new Shocks; }
};

class Bicycle {
public:
  typedef std::vector<BicyclePart*> VBP;
  Bicycle();
  Bicycle(const Bicycle& old);
  Bicycle& operator=(const Bicycle& old);
  // [Chuck: other operators as needed go here:]



Chapter 15: Multiple Inheritance
719

  // [...]
  // [...]
  ~Bicycle();
  // So you can change parts on a bike (but be
  // careful: you must clean up any objects you
  // remove from the bicycle!)
  VBP& bikeParts() { return parts; }
  friend std::ostream&
  operator<<(std::ostream& os, Bicycle b);
  static void print(vector<Bicycle>& vb,
    std::ostream& os = std::cout);
private:
  VBP parts;
};

class BicycleGenerator {
public:
  Bicycle operator()();
};
#endif // BICYCLE_H_ ///:~

The operator<< for ostream and Bicycle moves through and calls the operator<< for each
BicyclePart, and that prints out the class name of the part so you can see what a Bicycle
contains. The BicyclePart::clone( ) member function is necessary in the copy-constructor of
Bicycle, since it just has a vector<BicyclePart*> and wouldn’t otherwise know how to copy
the BicycleParts correctly. The cloning process, of course, will be more involved when there
are data members in a BicyclePart.

BicyclePart::partcount is used to keep track of the number of parts created and destroyed
(so you can detect memory leaks). It is incremented every time a new BicyclePart is created
and decremented when one is destroyed; also, when partcount goes to zero this is reported
and if it goes below zero there will be an assert( ) failure.

If you want to change BicycleParts on a Bicycle, you just call Bicycle::bikeParts( ) to get
the vector<BicyclePart*> which you can then modify. But whenever you remeove a part
from a Bicycle, you must call delete for that pointer, otherwise it won’t get cleaned up.

Here’s the implementation:

//: C21:Bicycle.cpp {O}
// Bicycle implementation
#include <algorithm>
#include <cassert>
#include "../purge.h"
#include "Bicycle.h"
using namespace std;



Chapter 15: Multiple Inheritance
720

LeakChecker BicyclePart::lc;

Bicycle::Bicycle() {
  BicyclePart *bp[] = { new Frame, new Wheels,
    new Seat, new HandleBars, new Sprockets,
    new Deraileur, };
  const int bplen = sizeof bp / sizeof *bp;
  parts = VBP(bp, bp + bplen);
}

Bicycle::Bicycle(const Bicycle& old)
  : parts(old.parts.begin(), old.parts.end()) {
  for(int i = 0; i < parts.size(); i++)
    parts[i] = parts[i]->clone();
}

Bicycle& Bicycle::operator=(const Bicycle& old) {
  purge(parts);
  parts.resize(old.parts.size());
  copy(old.parts.begin(),
    old.parts.end(), parts.begin());
  for(int i = 0; i < parts.size(); i++)
    parts[i] = parts[i]->clone();
  return *this;
}

Bicycle::~Bicycle() { purge(parts); }

ostream& operator<<(ostream& os, Bicycle b) {
  copy(b.parts.begin(), b.parts.end(),
    ostream_iterator<BicyclePart*>(os, "\n"));
  os << "--------" << endl;
  return os;
}

void Bicycle::print(vector<Bicycle>& vb,
  ostream& os) {
  copy(vb.begin(), vb.end(),
    ostream_iterator<Bicycle>(os, "\n"));
  cout << "--------" << endl;
}



Chapter 15: Multiple Inheritance
721

// Chuck: obviously, both the Bicycle and the
// generator should provide more variety than
// this. But I hope you get the idea.
Bicycle BicycleGenerator::operator()() {
  return Bicycle();
} ///:~

Here’s a test:

//: C21:BikeTest.cpp
//{L} Bicycle
#include "Bicycle.h"
using namespace std;

int main() {
  vector<Bicycle> bikes;
  BicycleGenerator bg;
  generate_n(back_inserter(bikes), 12, bg);
  Bicycle::print(bikes);
} ///:~

[[ Chuck: of course, these can be changed and will probably require more explanation. I’m
stuck on the LeakChecker, can you see where I’ve missed something? ]]

Applying an operation to each
element in a container

for_each( )

transform( )

accumulate( )

++++++

 [[ Pulled from previous material, needs significant changes or possibly should be discarded.
The specific references to compilers should be removed, for example. ]]

As an example, consider the for_each( ) algorithm. You hand this two iterators for the
starting and ending points, and a pointer to a function that takes an argument of the same type
that your iterators produce. for_each( ) will sweep from the beginning to the end, pull out
each element and pass it as an argument while it dereferences your function pointer. So



Chapter 15: Multiple Inheritance
722

for_each( ) actually performs the operations that have been explicitly written out in most of
the examples in this chapter. In STLSHAPE.CPP, for example:

for(Iter j = shapes.begin();
      j != shapes.end(); j++)
    delete *j;

You can see this clearly if you look at the template describing for_each( ):

template <class InputIterator, class Function>
Function for_each(InputIterator first,
                  InputIterator last,
                  Function f) {
    while (first != last) f(*first++);
    return f;
}

The first impression of this seems fairly simple: Function must be a pointer to a function
which takes, as an argument, an object of whatever InputIterator selects. However, the
following example shows that there are actually a number of different ways this template can
be expanded:

//: C21:ForEach.cpp
// Use of STL for_each() algorithm
#include <iostream>
#include <vector>
#include <algorithm>
#include "../purge.h"
using namespace std;

class Foo {
  static int count;
  char * id;
public:
  Foo(char * ID) : id(ID) { count++; }
  ~Foo() {
    cout << id << " count = " << --count << endl;
  }
};

int Foo::count = 0;

class FooVector : public vector<Foo*> {
public:
  FooVector(char* ID) {
    for(int i = 0; i < 5; i++)



Chapter 15: Multiple Inheritance
723

      push_back(new Foo(ID));
  }
};

// (1) Simple function
void Destroy(Foo* fp) { delete fp; }

// (2) Template class w/ operator()()
template<class T>
class DestroyT {
public:
  void operator()(T x) { delete x; }
};

// (3) Template function
template <class T>
void wipe(T* x) { delete x; }

int main() {
  FooVector A("one");
  for_each(A.begin(), A.end(), Destroy);

  FooVector B("two");
  for_each(B.begin(), B.end(), DestroyT<Foo*>());

  FooVector C("three");
  for_each(C.begin(), C.end(), wipe<Foo*>);

  // Also compiles correctly:
  FooVector D("four");
  for_each(D.begin(), D.end(), wipe);

  FooVector E("five");
  purge(E.begin(), E.end());
} ///:~

The class Foo keeps a static count of how many Foo objects have been created, and tells you
as they are destroyed. In addition, each Foo keeps a char* identifier to make tracking the
output easier.

The FooVector is inherited from instantiated vector<Foo*>, and in the constructor it creates
some Foo objects, handing each one your desired char*. The FooVector makes testing quite
simple, as you’ll see.



Chapter 15: Multiple Inheritance
724

The commented numbers next to the approaches for destruction correspond to the strings used
to create the corresponding FooVector in main( ). Approach one is the simple pointer-to-
function, which works but has the drawback that you must write a new Destroy function for
each different type. The obvious solution is to make a template, but approach two shows that
a template with an overloaded operator( ) will also work.

On the other hand, approach three also makes sense: why not use a template function?

Since this is obviously something you might want to do a lot, why not create an algorithm to
delete all the pointers in a container? This was accomplished with the purge( ) template
produced in the previous chapter.

Summary
Much of the time you will find yourself making relatively simple use of the STL. Either you’ll
just create containers of objects (as shown earlier, string is probably the most popular
candidate), or you’ll create containers of pointers to base classes to support polymorphic calls
on groups of objects. The convenience, efficiency and reliability of the STL for these
activities will certainly improve your programming productivity.

However, the STL has powerful implications as a tool with which to create other tools, as was
briefly shown in the STREDIT and FILELIST tools. It’s as if the STL has turned C++ into a
«Very High Level Language» by moving you away from the low level details. As a result,
people are beginning to create some very potent tools.

When you step into this realm you must begin to understand much more of the underlying
structure of the STL; the learning curve from relatively simple usage to creating sophisticated
tools is rather steep and shouldn’t be taken lightly.

Other good resources are

Exercises



725

Part 3: Advanced
Topics



726

22: Multiple
inheritance

The basic concept of multiple inheritance (MI) sounds
simple enough.

[[[Notes:

1. Demo of use of MI, using Greenhouse example and different company's greenhouse
controller equipment.

2. Introduce concept of interfaces; toys and «tuckable» interface

]]]

You create a new type by inheriting from more than one base class. The syntax is exactly
what you’d expect, and as long as the inheritance diagrams are simple, MI is simple as well.

However, MI can introduce a number of ambiguities and strange situations, which are covered
in this chapter. But first, it helps to get a perspective on the subject.

Perspective
Before C++, the most successful object-oriented language was Smalltalk. Smalltalk was
created from the ground up as an OO language. It is often referred to as pure, whereas C++,
because it was built on top of C, is called hybrid. One of the design decisions made with
Smalltalk was that all classes would be derived in a single hierarchy, rooted in a single base
class (called Object — this is the model for the object-based hierarchy). You cannot create a
new class in Smalltalk without inheriting it from an existing class, which is why it takes a
certain amount of time to become productive in Smalltalk — you must learn the class library
before you can start making new classes. So the Smalltalk class hierarchy is always a single
monolithic tree.

Classes in Smalltalk usually have a number of things in common, and always have some
things in common (the characteristics and behaviors of Object), so you almost never run into
a situation where you need to inherit from more than one base class. However, with C++ you
can create as many hierarchy trees as you want. Therefore, for logical completeness the



Chapter 15: Multiple Inheritance
727

language must be able to combine more than one class at a time — thus the need for multiple
inheritance.

However, this was not a crystal-clear case of a feature that no one could live without, and
there was (and still is) a lot of disagreement about whether MI is really essential in C++. MI
was added in AT&T cfront release 2.0 and was the first significant change to the language.
Since then, a number of other features have been added (notably templates) that change the
way we think about programming and place MI in a much less important role. You can think
of MI as a «minor» language feature that shouldn’t be involved in your daily design decisions.

One of the most pressing issues that drove MI involved containers. Suppose you want to
create a container that everyone can easily use. One approach is to use void* as the type
inside the container, as with PStash and Stack. The Smalltalk approach, however, is to make
a container that holds Objects. (Remember that Object is the base type of the entire Smalltalk
hierarchy.) Because everything in Smalltalk is ultimately derived from Object, any container
that holds Objects can hold anything, so this approach works nicely.

Now consider the situation in C++. Suppose vendor A creates an object-based hierarchy that
includes a useful set of containers including one you want to use called Holder. Now you
come across vendor B’s class hierarchy that contains some other class that is important to
you, a BitImage class, for example, which holds graphic images. The only way to make a
Holder of BitImages is to inherit a new class from both Object, so it can be held in the
Holder, and BitImage:

O b j e c t

h o l d e r
( Con t a i n s  O b j e c t s )

B i t I m a g e

O B i t I m a g e

This was seen as an important reason for MI, and a number of class libraries were built on this
model. However, as you saw in Chapter 14, the addition of templates has changed the way
containers are created, so this situation isn’t a driving issue for MI.

The other reason you may need MI is logical, related to design. Unlike the above situation,
where you don’t have control of the base classes, in this one you do, and you intentionally use
MI to make the design more flexible or useful. (At least, you may believe this to be the case.)
An example of this is in the original iostream library design:



Chapter 15: Multiple Inheritance
728

i o s

i s t r e a m o s t r e a m

i o s t r e a m

Both istream and ostream are useful classes by themselves, but they can also be inherited
into a class that combines both their characteristics and behaviors.

Regardless of what motivates you to use MI, a number of problems arise in the process, and
you need to understand them to use it.

Duplicate subobjects
When you inherit from a base class, you get a copy of all the data members of that base class
in your derived class. This copy is referred to as a subobject. If you multiply inherit from class
d1 and class d2 into class mi, class mi contains one subobject of d1 and one of d2. So your
mi object looks like this:

d 1 d 2

m i

d 1

d 2

Now consider what happens if d1 and d2 both inherit from the same base class, called Base:



Chapter 15: Multiple Inheritance
729

m i

base

d 1

b a s e

d 2

b a s e

d 1

b a s e

d 2

b a s e

In the above diagram, both d1 and d2 contain a subobject of Base, so mi contains two
subobjects of Base. Because of the path produced in the diagram, this is sometimes called a
«diamond» in the inheritance hierarchy. Without diamonds, multiple inheritance is quite
straightforward, but as soon as a diamond appears, trouble starts because you have duplicate
subobjects in your new class. This takes up extra space, which may or may not be a problem
depending on your design. But it also introduces an ambiguity.

Ambiguous upcasting
What happens, in the above diagram, if you want to cast a pointer to an mi to a pointer to a
Base? There are two subobjects of type Base, so which address does the cast produce? Here’s
the diagram in code:

//: C22:MultipleInheritance1.cpp
// MI & ambiguity
#include <iostream>
#include <vector>
#include "../purge.h"
using namespace std;

class Base {
public:
  virtual char* vf() const = 0;
  virtual ~Base() {}



Chapter 15: Multiple Inheritance
730

};

class D1 : public Base {
public:
  char* vf() const { return "D1"; }
};

class D2 : public Base {
public:
  char* vf() const { return "D2"; }
};

// Causes error: ambiguous override of vf():
//! class MI : public D1, public D2 {};

int main() {
  vector<Base*> b;
  b.push_back(new D1);
  b.push_back(new D2);
  // Cannot upcast: which subobject?:
//!  b.push_back(new mi);
  for(int i = 0; i < b.size(); i++)
    cout << b[i]->vf() << endl;
  purge(b);
} ///:~

Two problems occur here. First, you cannot even create the class mi because doing so would
cause a clash between the two definitions of vf( ) in D1 and D2.

Second, in the array definition for b[ ] this code attempts to create a new mi and upcast the
address to a Base*. The compiler won’t accept this because it has no way of knowing whether
you want to use D1’s subobject Base or D2’s subobject Base for the resulting address.

virtual base classes
To solve the first problem, you must explicitly disambiguate the function vf( ) by writing a
redefinition in the class mi.

The solution to the second problem is a language extension: The meaning of the virtual
keyword is overloaded. If you inherit a base class as virtual, only one subobject of that class
will ever appear as a base class. Virtual base classes are implemented by the compiler with
pointer magic in a way suggesting the implementation of ordinary virtual functions.



Chapter 15: Multiple Inheritance
731

Because only one subobject of a virtual base class will ever appear during multiple
inheritance, there is no ambiguity during upcasting. Here’s an example:

//: C22:MultipleInheritance2.cpp
// Virtual base classes
#include <iostream>
#include <vector>
#include "../purge.h"
using namespace std;

class Base {
public:
  virtual char* vf() const = 0;
  virtual ~Base() {}
};

class D1 : virtual public Base {
public:
  char* vf() const { return "D1"; }
};

class D2 : virtual public Base {
public:
  char* vf() const { return "D2"; }
};

// MUST explicitly disambiguate vf():
class MI : public D1, public D2 {
public:
  char* vf() const { return D1::vf();}
};

int main() {
  vector<Base*> b;
  b.push_back(new D1);
  b.push_back(new D2);
  b.push_back(new MI); // OK
  for(int i = 0; i < b.size(); i++)
    cout << b[i]->vf() << endl;
  purge(b);

} ///:~

The compiler now accepts the upcast, but notice that you must still explicitly disambiguate the
function vf( ) in MI; otherwise the compiler wouldn’t know which version to use.



Chapter 15: Multiple Inheritance
732

The "most derived" class and virtual
base initialization

The use of virtual base classes isn’t quite as simple as that. The above example uses the
(compiler-synthesized) default constructor. If the virtual base has a constructor, things
become a bit strange. To understand this, you need a new term: most-derived class.

The most-derived class is the one you’re currently in, and is particularly important when
you’re thinking about constructors. In the previous example, Base is the most-derived class
inside the Base constructor. Inside the D1 constructor, D1 is the most-derived class, and
inside the MI constructor, MI is the most-derived class.

When you are using a virtual base class, the most-derived constructor is responsible for
initializing that virtual base class. That means any class, no matter how far away it is from the
virtual base, is responsible for initializing it. Here’s an example:

//: C22:MultipleInheritance3.cpp
// Virtual base initialization
// Virtual base classes must always be
// Intialized by the "most-derived" class
#include <iostream>
#include <vector>
#include "../purge.h"
using namespace std;

class Base {
public:
  Base(int) {}
  virtual char* vf() const = 0;
  virtual ~Base() {}
};

class D1 : virtual public Base {
public:
  D1() : Base(1) {}
  char* vf() const { return "D1"; }
};

class D2 : virtual public Base {
public:
  D2() : Base(2) {}
  char* vf() const { return "D2"; }
};



Chapter 15: Multiple Inheritance
733

class MI : public D1, public D2 {
public:
  MI() : Base(3) {}
  char* vf() const {
    return D1::vf(); // MUST disambiguate
  }
};

class X : public MI {
public:
  // You must ALWAYS init the virtual base:
  X() : Base(4) {}
};

int main() {
  vector<Base*> b;
  b.push_back(new D1);
  b.push_back(new D2);
  b.push_back(new MI); // OK
  b.push_back(new X);
  for(int i = 0; i < b.size(); i++)
    cout << b[i]->vf() << endl;
  purge(b);

} ///:~

As you would expect, both D1 and D2 must initialize Base in their constructor. But so must
MI and X, even though they are more than one layer away! That’s because each one in turn
becomes the most-derived class. The compiler can’t know whether to use D1’s initialization
of Base or to use D2’s version. Thus you are always forced to do it in the most-derived class.
Note that only the single selected virtual base constructor is called.

"Tying off" virtual bases with a default
constructor

Forcing the most-derived class to initialize a virtual base that may be buried deep in the class
hierarchy can seem like a tedious and confusing task to put upon the client programmer of
your class. It’s better to make this invisible, which is done by creating a default constructor
for the virtual base class, like this:

//: C22:MultipleInheritance4.cpp
// "Tying off" virtual bases
// so you don't have to worry about them
// in derived classes



Chapter 15: Multiple Inheritance
734

#include <iostream>
#include <vector>
#include "../purge.h"
using namespace std;

class Base {
public:
 // Default constructor removes responsibility:
  Base(int = 0) {}
  virtual char* vf() const = 0;
  virtual ~Base() {}
};

class D1 : virtual public Base {
public:
  D1() : Base(1) {}
  char* vf() const { return "D1"; }
};

class D2 : virtual public Base {
public:
  D2() : Base(2) {}
  char* vf() const { return "D2"; }
};

class MI : public D1, public D2 {
public:
  MI() {} // Calls default constructor for Base
  char* vf() const {
    return D1::vf(); // MUST disambiguate
  }
};

class X : public MI {
public:
  X() {} // Calls default constructor for Base
};

int main() {
  vector<Base*> b;
  b.push_back(new D1);
  b.push_back(new D2);
  b.push_back(new MI); // OK



Chapter 15: Multiple Inheritance
735

  b.push_back(new X);
  for(int i = 0; i < b.size(); i++)
    cout << b[i]->vf() << endl;
  purge(b);
} ///:~

If you can always arrange for a virtual Base class to have a default constructor, you’ll make
things much easier for anyone who inherits from that class.

Overhead
The term «pointer magic» has been used to describe the way virtual inheritance is
implemented. You can see the physical overhead of virtual inheritance with the following
program:

//: C22:Overhead.cpp
// Virtual Base class overhead
#include <fstream>
using namespace std;
ofstream out("overhead.out");

class Base {
public:
  virtual void f() const {};
  virtual ~Base() {}
};

class NonVirtualInheritance
  : public Base {};

class VirtualInheritance
  : virtual public Base {};

class VirtualInheritance2
  : virtual public Base {};

class MI
  : public VirtualInheritance,
    public VirtualInheritance2 {};

#define WRITE(arg) \
out << #arg << " = " << arg << endl;



Chapter 15: Multiple Inheritance
736

int main() {
  Base b;
  WRITE(sizeof(b));
  NonVirtualInheritance nonv_inheritance;
  WRITE(sizeof(nonv_inheritance));
  VirtualInheritance v_inheritance;
  WRITE(sizeof(v_inheritance));
  MI mi;
  WRITE(sizeof(mi));
} ///:~

Each of these classes only contains a single byte, and the «core size» is that byte. Because all
these classes contain virtual functions, you expect the object size to be bigger than the core
size by a pointer (at least — your compiler may also pad extra bytes into an object for
alignment). The results are a bit surprising (these are from one particular compiler; yours may
do it differently):

sizeof(b) = 2
sizeof(nonv_inheritance) = 2
sizeof(v_inheritance) = 6
sizeof(MI) = 12

Both b and nonv_inheritance contain the extra pointer, as expected. But when virtual
inheritance is added, it would appear that the VPTR plus two extra pointers are added! By the
time the multiple inheritance is performed, the object appears to contain five extra pointers
(however, one of these is probably a second VPTR for the second multiply inherited
subobject).

The curious can certainly probe into your particular implementation and look at the assembly
language for member selection to determine exactly what these extra bytes are for, and the
cost of member selection with multiple inheritance62. The rest of you have probably seen
enough to guess that quite a bit more goes on with virtual multiple inheritance, so it should be
used sparingly (or avoided) when efficiency is an issue.

Upcasting
When you embed subobjects of a class inside a new class, whether you do it by creating
member objects or through inheritance, each subobject is placed within the new object by the
compiler. Of course, each subobject has its own this pointer, and as long as you’re dealing
with member objects, everything is quite straightforward. But as soon as multiple inheritance

                                                       

62 See also Jan Gray, «C++ Under the Hood», a chapter in Black Belt C++ (edited by Bruce
Eckel, M&T Press, 1995).



Chapter 15: Multiple Inheritance
737

is introduced, a funny thing occurs: An object can have more than one this pointer because
the object represents more than one type during upcasting. The following example
demonstrates this point:

//: C22:Mithis.cpp
// MI and the "this" pointer
#include <fstream>
using namespace std;
ofstream out("mithis.out");

class Base1 {
  char c[0x10];
public:
  void printthis1() {
    out << "Base1 this = " << this << endl;
  }
};

class Base2 {
  char c[0x10];
public:
  void printthis2() {
    out << "Base2 this = " << this << endl;
  }
};

class Member1 {
  char c[0x10];
public:
  void printthism1() {
    out << "Member1 this = " << this << endl;
  }
};

class Member2 {
  char c[0x10];
public:
  void printthism2() {
    out << "Member2 this = " << this << endl;
  }
};

class MI : public Base1, public Base2 {
  Member1 m1;



Chapter 15: Multiple Inheritance
738

  Member2 m2;
public:
  void printthis() {
    out << "MI this = " << this << endl;
    printthis1();
    printthis2();
    m1.printthism1();
    m2.printthism2();
  }
};

int main() {
  MI mi;
  out << "sizeof(mi) = "
    << hex << sizeof(mi) << " hex" << endl;
  mi.printthis();
  // A second demonstration:
  Base1* b1 = &mi; // Upcast
  Base2* b2 = &mi; // Upcast
  out << "Base 1 pointer = " << b1 << endl;
  out << "Base 2 pointer = " << b2 << endl;
} ///:~

The arrays of bytes inside each class are created with hexadecimal sizes, so the output
addresses (which are printed in hex) are easy to read. Each class has a function that prints its
this pointer, and these classes are assembled with both multiple inheritance and composition
into the class MI, which prints its own address and the addresses of all the other subobjects.
This function is called in main( ). You can clearly see that you get two different this pointers
for the same object. The address of the MI object is taken and upcast to the two different
types. Here’s the output:63

sizeof(mi) = 40 hex
mi this = 0x223e
base1 this = 0x223e
Base2 this = 0x224e
Member1 this = 0x225e
Member2 this = 0x226e
Base 1 pointer = 0x223e
Base 2 pointer = 0x224e

                                                       

63 For easy readability the code was generated for a small-model Intel processor.



Chapter 15: Multiple Inheritance
739

Although object layouts vary from compiler to compiler and are not specified in Standard
C++, this one is fairly typical. The starting address of the object corresponds to the address of
the first class in the base-class list. Then the second inherited class is placed, followed by the
member objects in order of declaration.

When the upcast to the Base1 and Base2 pointers occur, you can see that, even though they’re
ostensibly pointing to the same object, they must actually have different this pointers, so the
proper starting address can be passed to the member functions of each subobject. The only
way things can work correctly is if this implicit upcasting takes place when you call a member
function for a multiply inherited subobject.

Persistence
Normally this isn’t a problem, because you want to call member functions that are concerned
with that subobject of the multiply inherited object. However, if your member function needs
to know the true starting address of the object, multiple inheritance causes problems.
Ironically, this happens in one of the situations where multiple inheritance seems to be useful:
persistence.

The lifetime of a local object is the scope in which it is defined. The lifetime of a global
object is the lifetime of the program. A persistent object lives between invocations of a
program: You can normally think of it as existing on disk instead of in memory. One
definition of an object-oriented database is «a collection of persistent objects.»

To implement persistence, you must move a persistent object from disk into memory in order
to call functions for it, and later store it to disk before the program expires. Four issues arise
when storing an object on disk:

 4.  The object must be converted from its representation in memory to a series
of bytes on disk.

 5.  Because the values of any pointers in memory won’t have meaning the next
time the program is invoked, these pointers must be converted to something
meaningful.

 6.  What the pointers point to must also be stored and retrieved.

 7.  When restoring an object from disk, the virtual pointers in the object must
be respected.

Because the object must be converted back and forth between a layout in memory and a serial
representation on disk, the process is called serialization (to write an object to disk) and
deserialization (to restore an object from disk). Although it would be very convenient, these
processes require too much overhead to support directly in the language. Class libraries will
often build in support for serialization and deserialization by adding special member functions
and placing requirements on new classes. (Usually some sort of serialize( ) function must be



Chapter 15: Multiple Inheritance
740

written for each new class.) Also, persistence is generally not automatic; you must usually
explicitly write and read the objects.

MI-based persistence
Consider sidestepping the pointer issues for now and creating a class that installs persistence
into simple objects using multiple inheritance. By inheriting the persistence class along with
your new class, you automatically create classes that can be read from and written to disk.
Although this sounds great, the use of multiple inheritance introduces a pitfall, as seen in the
following example.

//: C22:Persist1.cpp
// Simple persistence with MI
#include <iostream>
#include <fstream>
#include "../require.h"
using namespace std;

class Persistent {
  int objSize; // Size of stored object
public:
  Persistent(int sz) : objSize(sz) {}
  void write(ostream& out) const {
    out.write((char*)this, objSize);
  }
  void read(istream& in) {
    in.read((char*)this, objSize);
  }
};

class Data {
  float f[3];
public:
  Data(float f0 = 0.0, float f1 = 0.0,
    float f2 = 0.0) {
    f[0] = f0;
    f[1] = f1;
    f[2] = f2;
  }
  void print(const char* msg = "") const {
    if(*msg) cout << msg << "   ";
    for(int i = 0; i < 3; i++)
      cout << "f[" << i << "] = "
           << f[i] << endl;



Chapter 15: Multiple Inheritance
741

  }
};

class WData1 : public Persistent, public Data {
public:
  WData1(float f0 = 0.0, float f1 = 0.0,
    float f2 = 0.0) : Data(f0, f1, f2),
    Persistent(sizeof(WData1)) {}
};

class WData2 : public Data, public Persistent {
public:
  WData2(float f0 = 0.0, float f1 = 0.0,
    float f2 = 0.0) : Data(f0, f1, f2),
    Persistent(sizeof(WData2)) {}
};

int main() {
  {
    ofstream f1("f1.dat"), f2("f2.dat");
    assure(f1, "f1.dat"); assure(f2, "f2.dat");
    WData1 d1(1.1, 2.2, 3.3);
    WData2 d2(4.4, 5.5, 6.6);
    d1.print("d1 before storage");
    d2.print("d2 before storage");
    d1.write(f1);
    d2.write(f2);
  } // Closes files
  ifstream f1("f1.dat"), f2("f2.dat");
  assure(f1, "f1.dat"); assure(f2, "f2.dat");
  WData1 d1;
  WData2 d2;
  d1.read(f1);
  d2.read(f2);
  d1.print("d1 after storage");
  d2.print("d2 after storage");
} ///:~

In this very simple version, the Persistent::read( ) and Persistent::write( ) functions take the
this pointer and call iostream read( ) and write( ) functions. (Note that any type of iostream
can be used). A more sophisticated Persistent class would call a virtual write( ) function for
each subobject.



Chapter 15: Multiple Inheritance
742

With the language features covered so far in the book, the number of bytes in the object
cannot be known by the Persistent class so it is inserted as a constructor argument. (In
Chapter 17, run-time type identification shows how you can find the exact type of an object
given only a base pointer; once you have the exact type you can find out the correct size with
the sizeof operator.)

The Data class contains no pointers or VPTR, so there is no danger in simply writing it to
disk and reading it back again. And it works fine in class WData1 when, in main( ), it’s
written to file F1.DAT and later read back again. However, when Persistent is put second in
the inheritance list in class WData1, the this pointer for Persistent is offset to the end of the
object, so it reads and writes past the end of the object. This not only produces garbage when
reading the object from the file, it’s dangerous because it walks over any storage that occurs
after the object.

This problem occurs in multiple inheritance any time a class must produce the this pointer for
the actual object from a subobject’s this pointer. Of course, if you know your compiler always
lays out objects in order of declaration in the inheritance list, you can ensure that you always
put the critical class at the beginning of the list (assuming there’s only one critical class).
However, such a class may exist in the inheritance hierarchy of another class and you may
unwittingly put it in the wrong place during multiple inheritance. Fortunately, using run-time
type identification (the subject of Chapter 17) will produce the proper pointer to the actual
object, even if multiple inheritance is used.

Improved persistence
A more practical approach to persistence, and one you will see employed more often, is to
create virtual functions in the base class for reading and writing and then require the creator of
any new class that must be streamed to redefine these functions. The argument to the function
is the stream object to write to or read from.64 Then the creator of the class, who knows best
how the new parts should be read or written, is responsible for making the correct function
calls. This doesn’t have the «magical» quality of the previous example, and it requires more
coding and knowledge on the part of the user, but it works and doesn’t break when pointers
are present:

//: C22:Persist2.cpp
// Improved MI persistence
#include <iostream>
#include <fstream>
#include <cstring>
#include "../require.h"
using namespace std;

                                                       

64 Sometimes there’s only a single function for streaming, and the argument contains
information about whether you’re reading or writing.



Chapter 15: Multiple Inheritance
743

class Persistent {
public:
  virtual void write(ostream& out) const = 0;
  virtual void read(istream& in) = 0;
  virtual ~Persistent() {}
};

class Data {
protected:
  float f[3];
public:
  Data(float f0 = 0.0, float f1 = 0.0,
    float f2 = 0.0) {
    f[0] = f0;
    f[1] = f1;
    f[2] = f2;
  }
  void print(const char* msg = "") const {
    if(*msg) cout << msg << endl;
    for(int i = 0; i < 3; i++)
      cout << "f[" << i << "] = "
           << f[i] << endl;
  }
};

class WData1 : public Persistent, public Data {
public:
  WData1(float f0 = 0.0, float f1 = 0.0,
    float f2 = 0.0) : Data(f0, f1, f2) {}
  void write(ostream& out) const {
    out << f[0] << " " << f[1] << " " << f[2];
  }
  void read(istream& in) {
    in >> f[0] >> f[1] >> f[2];
  }
};

class WData2 : public Data, public Persistent {
public:
  WData2(float f0 = 0.0, float f1 = 0.0,
    float f2 = 0.0) : Data(f0, f1, f2) {}
  void write(ostream& out) const {
    out << f[0] << " " << f[1] << " " << f[2];



Chapter 15: Multiple Inheritance
744

  }
  void read(istream& in) {
    in >> f[0] >> f[1] >> f[2];
  }
};

class Conglomerate : public Data,
public Persistent {
  char* name; // Contains a pointer
  WData1 d1;
  WData2 d2;
public:
  Conglomerate(const char* nm = "",
    float f0 = 0.0, float f1 = 0.0,
    float f2 = 0.0, float f3 = 0.0,
    float f4 = 0.0, float f5 = 0.0,
    float f6 = 0.0, float f7 = 0.0,
    float f8= 0.0) : Data(f0, f1, f2),
    d1(f3, f4, f5), d2(f6, f7, f8) {
    name = new char[strlen(nm) + 1];
    strcpy(name, nm);
  }
  void write(ostream& out) const {
    int i = strlen(name) + 1;
    out << i << " "; // Store size of string
    out << name << endl;
    d1.write(out);
    d2.write(out);
    out << f[0] << " " << f[1] << " " << f[2];
  }
  // Must read in reverse order as write:
  void read(istream& in) {
    delete []name; // Remove old storage
    int i;
    in >> i >> ws; // Get int, strip whitespace
    name = new char[i];
    in.getline(name, i);
    d1.read(in);
    d2.read(in);
    in >> f[0] >> f[1] >> f[2];
  }
  void print() const {
    Data::print(name);



Chapter 15: Multiple Inheritance
745

    d1.print();
    d2.print();
  }
};

int main() {
  {
    ofstream data("data.dat");
    assure(data, "data.dat");
    Conglomerate C("This is Conglomerate C",
      1.1, 2.2, 3.3, 4.4, 5.5,
      6.6, 7.7, 8.8, 9.9);
    cout << "C before storage" << endl;
    C.print();
    C.write(data);
  } // Closes file
  ifstream data("data.dat");
  assure(data, "data.dat");
  Conglomerate C;
  C.read(data);
  cout << "after storage: " << endl;
  C.print();
} ///:~

The pure virtual functions in Persistent must be redefined in the derived classes to perform
the proper reading and writing. If you already knew that Data would be persistent, you could
inherit directly from Persistent and redefine the functions there, thus eliminating the need for
multiple inheritance. This example is based on the idea that you don’t own the code for Data,
that it was created elsewhere and may be part of another class hierarchy so you don’t have
control over its inheritance. However, for this scheme to work correctly you must have access
to the underlying implementation so it can be stored; thus the use of protected.

The classes WData1 and WData2 use familiar iostream inserters and extractors to store and
retrieve the protected data in Data to and from the iostream object. In write( ), you can see
that spaces are added after each floating point number is written; these are necessary to allow
parsing of the data on input.

The class Conglomerate not only inherits from Data, it also has member objects of type
WData1 and WData2, as well as a pointer to a character string. In addition, all the classes
that inherit from Persistent also contain a VPTR, so this example shows the kind of problem
you’ll actually encounter when using persistence.

When you create write( ) and read( ) function pairs, the read( ) must exactly mirror what
happens during the write( ), so read( ) pulls the bits off the disk the same way they were
placed there by write( ). Here, the first problem that’s tackled is the char*, which points to a
string of any length. The size of the string is calculated and stored on disk as an int (followed



Chapter 15: Multiple Inheritance
746

by a space to enable parsing) to allow the read( ) function to allocate the correct amount of
storage.

When you have subobjects that have read( ) and write( ) member functions, all you need to
do is call those functions in the new read( ) and write( ) functions. This is followed by direct
storage of the members in the base class.

People have gone to great lengths to automate persistence, for example, by creating modified
preprocessors to support a «persistent» keyword to be applied when defining a class. One can
imagine a more elegant approach than the one shown here for implementing persistence, but it
has the advantage that it works under all implementations of C++, doesn’t require special
language extensions, and is relatively bulletproof.

Avoiding MI
The need for multiple inheritance in PERSIST2.CPP is contrived, based on the concept that
you don’t have control of some of the code in the project. Upon examination of the example,
you can see that MI can be easily avoided by using member objects of type Data, and putting
the virtual read( )and write( ) members inside Data or WData1 and WData2 rather than in a
separate class. There are many situations like this one where multiple inheritance may be
avoided; the language feature is included for unusual, special-case situations that would
otherwise be difficult or impossible to handle. But when the question of whether to use
multiple inheritance comes up, you should ask two questions:

 1.  Do I need to show the public interfaces of both these classes, or could one
class be embedded with some of its interface produced with member
functions in the new class?

 2.  Do I need to upcast to both of the base classes? (This applies when you
have more than two base classes, of course.)

If you can’t answer «no» to both questions, you can avoid using MI and should probably do
so.

One situation to watch for is when one class only needs to be upcast as a function argument.
In that case, the class can be embedded and an automatic type conversion operator provided in
your new class to produce a reference to the embedded object. Any time you use an object of
your new class as an argument to a function that expects the embedded object, the type
conversion operator is used. However, type conversion can’t be used for normal member
selection; that requires inheritance.

Repairing an interface
One of the best arguments for multiple inheritance involves code that’s out of your control.
Suppose you’ve acquired a library that consists of a header file and compiled member



Chapter 15: Multiple Inheritance
747

functions, but no source code for member functions. This library is a class hierarchy with
virtual functions, and it contains some global functions that take pointers to the base class of
the library; that is, it uses the library objects polymorphically. Now suppose you build an
application around this library, and write your own code that uses the base class
polymorphically.

Later in the development of the project or sometime during its maintenance, you discover that
the base-class interface provided by the vendor is incomplete: A function may be nonvirtual
and you need it to be virtual, or a virtual function is completely missing in the interface, but
essential to the solution of your problem. If you had the source code, you could go back and
put it in. But you don’t, and you have a lot of existing code that depends on the original
interface. Here, multiple inheritance is the perfect solution.

For example, here’s the header file for a library you acquire:

//: C22:Vendor.h
// Vendor-suppplied class header
// You only get this & the compiled VENDOR.OBJ
#ifndef VENDOR_H_
#define VENDOR_H_

class Vendor {
public:
  virtual void v() const;
  void f() const;
  ~Vendor();
};

class Vendor1 : public Vendor {
public:
  void v() const;
  void f() const;
  ~Vendor1();
};

void A(const Vendor&);
void B(const Vendor&);
// Etc.
#endif // VENDOR_H_ ///:~

Assume the library is much bigger, with more derived classes and a larger interface. Notice
that it also includes the functions A( ) and B( ), which take a base pointer and treat it
polymorphically. Here’s the implementation file for the library:

//: C22:Vendor.cpp {O}
// Implementation of VENDOR.H



Chapter 15: Multiple Inheritance
748

// This is compiled and unavailable to you
#include <fstream>
#include "Vendor.h"
using namespace std;

extern ofstream out; // For trace info

void Vendor::v() const {
  out << "Vendor::v()\n";
}

void Vendor::f() const {
  out << "Vendor::f()\n";
}

Vendor::~Vendor() {
  out << "~Vendor()\n";
}

void Vendor1::v() const {
  out << "Vendor1::v()\n";
}

void Vendor1::f() const {
  out << "Vendor1::f()\n";
}

Vendor1::~Vendor1() {
  out << "~Vendor1()\n";
}

void A(const Vendor& V) {
  // ...
  V.v();
  V.f();
  //..
}

void B(const Vendor& V) {
  // ...
  V.v();
  V.f();
  //..



Chapter 15: Multiple Inheritance
749

} ///:~

In your project, this source code is unavailable to you. Instead, you get a compiled file as
VENDOR.OBJ or VENDOR.LIB (or the equivalent for your system).

The problem occurs in the use of this library. First, the destructor isn’t virtual. This is actually
a design error on the part of the library creator. In addition, f( ) was not made virtual; assume
the library creator decided it wouldn’t need to be. And you discover that the interface to the
base class is missing a function essential to the solution of your problem. Also suppose
you’ve already written a fair amount of code using the existing interface (not to mention the
functions A( ) and B( ), which are out of your control), and you don’t want to change it.

To repair the problem, create your own class interface and multiply inherit a new set of
derived classes from your interface and from the existing classes:

//: C22:Paste.cpp
//{L} Vendor
// Fixing a mess with MI
#include <fstream>
#include "Vendor.h"
using namespace std;

ofstream out("paste.out");

class MyBase { // Repair Vendor interface
public:
  virtual void v() const = 0;
  virtual void f() const = 0;
  // New interface function:
  virtual void g() const = 0;
  virtual ~MyBase() { out << "~MyBase()\n"; }
};

class Paste1 : public MyBase, public Vendor1 {
public:
  void v() const {
    out << "Paste1::v()\n";
    Vendor1::v();
  }
  void f() const {
    out << "Paste1::f()\n";
    Vendor1::f();
  }
  void g() const {
    out << "Paste1::g()\n";



Chapter 15: Multiple Inheritance
750

  }
  ~Paste1() { out << "~Paste1()\n"; }
};

int main() {
  Paste1& p1p = *new Paste1;
  MyBase& mp = p1p; // Upcast
  out << "calling f()\n";
  mp.f();  // Right behavior
  out << "calling g()\n";
  mp.g(); // New behavior
  out << "calling A(p1p)\n";
  A(p1p); // Same old behavior
  out << "calling B(p1p)\n";
  B(p1p);  // Same old behavior
  out << "delete mp\n";
  // Deleting a reference to a heap object:
  delete &mp; // Right behavior
} ///:~

In MyBase (which does not use MI), both f( ) and the destructor are now virtual, and a new
virtual function g( ) has been added to the interface. Now each of the derived classes in the
original library must be recreated, mixing in the new interface with MI. The functions
Paste1::v( ) and Paste1::f( )need to call only the original base-class versions of their
functions. But now, if you upcast to MyBase as in main( )

MyBase* mp = p1p; // Upcast

any function calls made through mp will be polymorphic, including delete. Also, the new
interface function g( ) can be called through mp. Here’s the output of the program:

calling f()
Paste1::f()
Vendor1::f()
calling g()
Paste1::g()
calling A(p1p)
Paste1::v()
Vendor1::v()
Vendor::f()
calling B(p1p)
Paste1::v()
Vendor1::v()
Vendor::f()
delete mp



Chapter 15: Multiple Inheritance
751

~Paste1()
~Vendor1()
~Vendor()
~MyBase()

The original library functions A( ) and B( ) still work the same (assuming the new v( ) calls its
base-class version). The destructor is now virtual and exhibits the correct behavior.

Although this is a messy example, it does occur in practice and it’s a good demonstration of
where multiple inheritance is clearly necessary: You must be able to upcast to both base
classes.

Summary
The reason MI exists in C++ and not in other OOP languages is that C++ is a hybrid language
and couldn’t enforce a single monolithic class hierarchy the way Smalltalk does. Instead, C++
allows many inheritance trees to be formed, so sometimes you may need to combine the
interfaces from two or more trees into a new class.

If no «diamonds» appear in your class hierarchy, MI is fairly simple (although identical
function signatures in base classes must be resolved). If a diamond appears, then you must
deal with the problems of duplicate subobjects by introducing virtual base classes. This not
only adds confusion, but the underlying representation becomes more complex and less
efficient.

Multiple inheritance has been called the «goto of the 90’s».65 This seems appropriate because,
like a goto, MI is best avoided in normal programming, but can occasionally be very useful.
It’s a «minor» but more advanced feature of C++, designed to solve problems that arise in
special situations. If you find yourself using it often, you may want to take a look at your
reasoning. A good Occam’s Razor is to ask, «Must I upcast to all of the base classes?» If not,
your life will be easier if you embed instances of all the classes you don’t need to upcast to.

Exercises
 1.  These exercises will take you step-by-step through the traps of MI. Create a

base class X with a single constructor that takes an int argument and a
member function f( ), that takes no arguments and returns void. Now inherit
X into Y and Z, creating constructors for each of them that takes a single
int argument. Now multiply inherit Y and Z into A. Create an object of

                                                       

65 A phrase coined by Zack Urlocker.



Chapter 15: Multiple Inheritance
752

class A, and call f( ) for that object. Fix the problem with explicit
disambiguation.

 2.  Starting with the results of exercise 1, create a pointer to an X called px,
and assign to it the address of the object of type A you created before. Fix
the problem using a virtual base class. Now fix X so you no longer have to
call the constructor for X inside A.

 3.  Starting with the results of exercise 2, remove the explicit disambiguation
for f( ), and see if you can call f( ) through px. Trace it to see which
function gets called. Fix the problem so the correct function will be called
in a class hierarchy.



753

23: Exception
handling

Improved error recovery is one of the most powerful ways
you can increase the robustness of your code.

Unfortunately, it’s almost accepted practice to ignore error conditions, as if we’re in a state of
denial about errors. Some of the reason is no doubt the tediousness and code bloat of checking
for many errors. For example, printf( ) returns the number of arguments that were
successfully printed, but virtually no one checks this value. The proliferation of code alone
would be disgusting, not to mention the difficulty it would add in reading the code.

The problem with C’s approach to error handling could be thought of as one of coupling —
the user of a function must tie the error-handling code so closely to that function that it
becomes too ungainly and awkward to use.

One of the major features in C++ is exception handling, which is a better way of thinking
about and handling errors. With exception handling,

 4.  Error-handling code is not nearly so tedious to write, and it doesn't become
mixed up with your "normal" code. You write the code you want to happen;
later in a separate section you write the code to cope with the problems. If
you make multiple calls to a function, you handle the errors from that
function once, in one place.

 5.  Errors cannot be ignored. If a function needs to send an error message to the
caller of that function, it «throws» an object representing that error out of
the function. If the caller doesn’t «catch» the error and handle it, it goes to
the next enclosing scope, and so on until someone catches the error.

This chapter examines C’s approach to error handling (such as it is), why it did not work very
well for C, and why it won’t work at all for C++. Then you’ll learn about try, throw, and
catch, the C++ keywords that support exception handling.



Chapter 16: Exception Handling
754

Error handling in C
Until Chapter 7, this book used the Standard C library assert( ) macro as a shorthand for error
handling. After Chapter 7, assert( ) was used as it was intended: for debugging during
development with code that could be disabled with #define NDEBUG for the shipping
product. For run-time error checking, assert( ) was replaced by the require( ) functions and
macros developed in Chapter 10. These were convenient to say, «There’s a problem here
you’ll probably want to handle with some more sophisticated code, but you don’t need to be
distracted by it in this example.» The require( ) functions may be enough for small programs,
but for complicated products you may need to write more sophisticated error-handling code.

Error handling is quite straightforward in situations where you check some condition and you
know exactly what to do because you have all the necessary information in that context. Of
course, you just handle the error at that point. These are ordinary errors and not the subject of
this chapter.

The problem occurs when you don’t have enough information in that context, and you need to
pass the error information into a larger context where that information does exist. There are
three typical approaches in C to handle this situation.

 6.  Return error information from the function or, if the return value cannot be
used this way, set a global error condition flag. (Standard C provides errno
and perror( ) to support this.) As mentioned before, the programmer may
simply ignore the error information because tedious and obfuscating error
checking must occur with each function call. In addition, returning from a
function that hits an exceptional condition may not make sense.

 7.  Use the little-known Standard C library signal-handling system,
implemented with the signal( ) function (to determine what happens when
the event occurs) and raise( ) (to generate an event). Again, this has high
coupling because it requires the user of any library that generates signals to
understand and install the appropriate signal-handling mechanism; also in
large projects the signal numbers from different libraries may clash with
each other.

 8.  Use the nonlocal goto functions in the Standard C library: setjmp( ) and
longjmp( ). With setjmp( ) you save a known good state in the program,
and if you get into trouble, longjmp( ) will restore that state. Again, there is
high coupling between the place where the state is stored and the place
where the error occurs.

When considering error-handling schemes with C++, there’s an additional very critical
problem: The C techniques of signals and setjmp/longjmp do not call destructors, so objects
aren’t properly cleaned up. This makes it virtually impossible to effectively recover from an



Chapter 16: Exception Handling
755

exceptional condition because you’ll always leave objects behind that haven’t been cleaned
up and that can no longer be accessed. The following example demonstrates this with
setjmp/longjmp:

//: C23:Nonlocal.cpp
// setjmp() & longjmp()
#include <iostream>
#include <setjmp.h>
using namespace std;

class Rainbow {
public:
  Rainbow() { cout << "Rainbow()" << endl; }
  ~Rainbow() { cout << "~Rainbow()" << endl; }
};

jmp_buf kansas;

void oz() {
  Rainbow rb;
  for(int i = 0; i < 3; i++)
    cout << "there's no place like home\n";
  longjmp(kansas, 47);
}

int main() {
  if(setjmp(kansas) == 0) {
    cout << "tornado, witch, munchkins...\n";
    oz();
  } else {
    cout << "Auntie Em! "
         << "I had the strangest dream..."
         << endl;
  }
} ///:~

setjmp( ) is an odd function because if you call it directly, it stores all the relevant
information about the current processor state in the jmp_buf and returns zero. In that case it
has the behavior of an ordinary function. However, if you call longjmp( ) using the same
jmp_buf, it’s as if you’re returning from setjmp( ) again — you pop right out the back end of
the setjmp( ). This time, the value returned is the second argument to longjmp( ), so you can
detect that you’re actually coming back from a longjmp( ). You can imagine that with many
different jmp_bufs, you could pop around to many different places in the program. The



Chapter 16: Exception Handling
756

difference between a local goto (with a label) and this nonlocal goto is that you can go
anywhere with setjmp/longjmp (with some restrictions not discussed here).

The problem with C++ is that longjmp( ) doesn’t respect objects; in particular it doesn’t call
destructors when it jumps out of a scope.66 Destructor calls are essential, so this approach
won’t work with C++.

Throwing an exception
If you encounter an exceptional situation in your code — that is, one where you don’t have
enough information in the current context to decide what to do — you can send information
about the error into a larger context by creating an object containing that information and
«throwing» it out of your current context. This is called throwing an exception. Here’s what it
looks like:

throw myerror(«something bad happened»);

myerror is an ordinary class, which takes a char* as its argument. You can use any type
when you throw (including built-in types), but often you’ll use special types created just for
throwing exceptions.

The keyword throw causes a number of relatively magical things to happen. First it creates an
object that isn’t there under normal program execution, and of course the constructor is called
for that object. Then the object is, in effect, «returned» from the function, even though that
object type isn’t normally what the function is designed to return. A simplistic way to think
about exception handling is as an alternate return mechanism, although you get into trouble if
you take the analogy too far — you can also exit from ordinary scopes by throwing an
exception. But a value is returned, and the function or scope exits.

Any similarity to function returns ends there because where you return to is someplace
completely different than for a normal function call. (You end up in an appropriate exception
handler that may be miles away from where the exception was thrown.) In addition, only
objects that were successfully created at the time of the exception are destroyed (unlike a
normal function return that assumes all the objects in the scope must be destroyed). Of course,
the exception object itself is also properly cleaned up at the appropriate point.

In addition, you can throw as many different types of objects as you want. Typically, you’ll
throw a different type for each different type of error. The idea is to store the information in
the object and the type of object, so someone in the bigger context can figure out what to do
with your exception.

                                                       

66 You may be surprised when you run the example — some C++ compilers have extended
longjmp( ) to clean up objects on the stack. This is nonportable behavior.



Chapter 16: Exception Handling
757

Catching an exception
If a function throws an exception, it must assume that exception is caught and dealt with. As
mentioned before, one of the advantages of C++ exception handling is that it allows you to
concentrate on the problem you’re actually trying to solve in one place, and then deal with the
errors from that code in another place.

The try block
If you’re inside a function and you throw an exception (or a called function throws an
exception), that function will exit in the process of throwing. If you don’t want a throw to
leave a function, you can set up a special block within the function where you try to solve
your actual programming problem (and potentially generate exceptions). This is called the try
block because you try your various function calls there. The try block is an ordinary scope,
preceded by the keyword try:

try {
  // Code that may generate exceptions
}

If you were carefully checking for errors without using exception handling, you’d have to
surround every function call with setup and test code, even if you call the same function
several times. With exception handling, you put everything in a try block without error
checking. This means your code is a lot easier to write and easier to read because the goal of
the code is not confused with the error checking.

Exception handlers
Of course, the thrown exception must end up someplace. This is the exception handler, and
there’s one for every exception type you want to catch. Exception handlers immediately
follow the try block and are denoted by the keyword catch:

try {
// code that may generate exceptions
} catch(type1 id1) {
  // handle exceptions of type1
} catch(type2 id2) {
  // handle exceptions of type2
}
// etc...

Each catch clause (exception handler) is like a little function that takes a single argument of
one particular type. The identifier (id1, id2, and so on) may be used inside the handler, just



Chapter 16: Exception Handling
758

like a function argument, although sometimes there is no identifier because it’s not needed in
the handler — the exception type gives you enough information to deal with it.

The handlers must appear directly after the try block. If an exception is thrown, the exception-
handling mechanism goes hunting for the first handler with an argument that matches the type
of the exception. Then it enters that catch clause, and the exception is considered handled.
(The search for handlers stops once the catch clause is finished.) Only the matching catch
clause executes; it’s not like a switch statement where you need a break after each case to
prevent the remaining ones from executing.

Notice that, within the try block, a number of different function calls might generate the same
exception, but you only need one handler.

Termination vs. resumption
There are two basic models in exception-handling theory. In termination (which is what C++
supports) you assume the error is so critical there’s no way to get back to where the exception
occurred. Whoever threw the exception decided there was no way to salvage the situation, and
they don’t want to come back.

The alternative is called resumption. It means the exception handler is expected to do
something to rectify the situation, and then the faulting function is retried, presuming success
the second time. If you want resumption, you still hope to continue execution after the
exception is handled, so your exception is more like a function call — which is how you
should set up situations in C++ where you want resumption-like behavior (that is, don’t throw
an exception; call a function that fixes the problem). Alternatively, place your try block inside
a while loop that keeps reentering the try block until the result is satisfactory.

Historically, programmers using operating systems that supported resumptive exception
handling eventually ended up using termination-like code and skipping resumption. So
although resumption sounds attractive at first, it seems it isn’t quite so useful in practice. One
reason may be the distance that can occur between the exception and its handler; it’s one thing
to terminate to a handler that’s far away, but to jump to that handler and then back again may
be too conceptually difficult for large systems where the exception can be generated from
many points.

The exception specification
You’re not required to inform the person using your function what exceptions you might
throw. However, this is considered very uncivilized because it means he cannot be sure what
code to write to catch all potential exceptions. Of course, if he has your source code, he can
hunt through and look for throw statements, but very often a library doesn’t come with
sources. C++ provides a syntax to allow you to politely tell the user what exceptions this
function throws, so the user may handle them. This is the exception specification and it’s part
of the function declaration, appearing after the argument list.



Chapter 16: Exception Handling
759

The exception specification reuses the keyword throw, followed by a parenthesized list of all
the potential exception types. So your function declaration may look like

void f() throw(toobig, toosmall, divzero);

With exceptions, the traditional function declaration

void f();

means that any type of exception may be thrown from the function. If you say

void f() throw();

it means that no exceptions are thrown from a function.

For good coding policy, good documentation, and ease-of-use for the function caller, you
should always use an exception specification when you write a function that throws
exceptions.

unexpected( )
If your exception specification claims you’re going to throw a certain set of exceptions and
then you throw something that isn’t in that set, what’s the penalty? The special function
unexpected( ) is called when you throw something other than what appears in the exception
specification.

set_unexpected( )
unexpected( ) is implemented with a pointer to a function, so you can change its behavior.
You do so with a function called set_unexpected( ) which, like set_new_handler( ), takes
the address of a function with no arguments and void return value. Also, it returns the
previous value of the unexpected( ) pointer so you can save it and restore it later. To use
set_unexpected( ), you must include the header file EXCEPT.H. Here’s an example that
shows a simple use of all the features discussed so far in the chapter:

//: C23:Except.cpp
// Basic exceptions
// Exception specifications & unexpected()
#include <except>
#include <iostream>
#include <cstdlib>
#include <cstring>
using namespace std;

class Up {};
class Fit {};
void g();

void f(int i) throw (Up, Fit) {



Chapter 16: Exception Handling
760

  switch(i) {
    case 1: throw Up();
    case 2: throw Fit();
  }
  g();
}

// void g() {} // Version 1
void g() { throw 47; } // Version 2
// (Can throw built-in types)

void my_unexpected() {
  cout << "unexpected exception thrown";
  exit(1);
}

int main() {
  set_unexpected(my_unexpected);
  // (ignores return value)
  for(int i = 1; i <=3; i++)
    try {
      f(i);
    } catch(Up) {
      cout << "Up caught" << endl;
    } catch(Fit) {
      cout << "Fit caught" << endl;
    }
} ///:~

The classes Up and Fit are created solely to throw as exceptions. Often exception classes will
be this small, but sometimes they contain additional information so that the handlers can
query them.

f( ) is a function that promises in its exception specification to throw only exceptions of type
Up and Fit, and from looking at the function definition this seems plausible. Version one of
g( ), called by f( ), doesn’t throw any exceptions so this is true. But then someone changes g( )
so it throws exceptions and the new g( ) is linked in with f( ). Now f( ) begins to throw a new
exception, unbeknown to the creator of f( ). Thus the exception specification is violated.

The my_unexpected( ) function has no arguments or return value, following the proper form
for a custom unexpected( ) function. It simply prints a message so you can see it has been
called, then exits the program. Your new unexpected( ) function must not return (that is, you
can write the code that way but it’s an error). However, it can throw another exception (you
can even rethrow the same exception), or call exit( ) or abort( ). If unexpected( ) throws an



Chapter 16: Exception Handling
761

exception, the search for the handler starts at the function call that threw the unexpected
exception. (This behavior is unique to unexpected( ).)

Although the new_handler( ) function pointer can be null and the system will do something
sensible, the unexpected( ) function pointer should never be null. The default value is
terminate( ) (mentioned later), but whenever you use exceptions and specifications you
should write your own unexpected( ) to log the error and either rethrow it, throw something
new, or terminate the program.

In main( ), the try block is within a for loop so all the possibilities are exercised. Note that
this is a way to achieve something like resumption — nest the try block inside a for, while,
do, or if and cause any exceptions to attempt to repair the problem; then attempt the try block
again.

Only the Up and Fit exceptions are caught because those are the only ones the programmer of
f( ) said would be thrown. Version two of g( ) causes my_unexpected( ) to be called because
f( ) then throws an int. (You can throw any type, including a built-in type.)

In the call to set_unexpected( ), the return value is ignored, but it can also be saved in a
pointer to function and restored later.

Better exception specifications?
You may feel the existing exception specification rules aren’t very safe, and that

void f();

should mean that no exceptions are thrown from this function. If the programmer wants to
throw any type of exception, you may think she should have to say

void f() throw(...); // Not in C++

This would surely be an improvement because function declarations would be more explicit.
Unfortunately you can’t always know by looking at the code in a function whether an
exception will be thrown — it could happen because of a memory allocation, for example.
Worse, existing functions written before exception handling was introduced may find
themselves inadvertently throwing exceptions because of the functions they call (which may
be linked into new, exception-throwing versions). Thus, the ambiguity, so

void f();

means «Maybe I’ll throw an exception, maybe I won’t.» This ambiguity is necessary to avoid
hindering code evolution.

Catching any exception
As mentioned, if your function has no exception specification, any type of exception can be
thrown. One solution to this problem is to create a handler that catches any type of exception.
You do this using the ellipses in the argument list (á la C):



Chapter 16: Exception Handling
762

catch(...) {
  cout << "an exception was thrown" << endl;
}

This will catch any exception, so you’ll want to put it at the end of your list of handlers to
avoid pre-empting any that follow it.

The ellipses give you no possibility to have an argument or to know anything about the type
of the exception. It’s a catch-all.

Rethrowing an exception
Sometimes you’ll want to rethrow the exception that you just caught, particularly when you
use the ellipses to catch any exception because there’s no information available about the
exception. This is accomplished by saying throw with no argument:

catch(...) {
  cout << "an exception was thrown" << endl;
  throw;
}

Any further catch clauses for the same try block are still ignored — the throw causes the
exception to go to the exception handlers in the next-higher context. In addition, everything
about the exception object is preserved, so the handler at the higher context that catches the
specific exception type is able to extract all the information from that object.

Uncaught exceptions
If none of the exception handlers following a particular try block matches an exception, that
exception moves to the next-higher context, that is, the function or try block surrounding the
try block that failed to catch the exception. (The location of this higher-context try block is
not always obvious at first glance.) This process continues until, at some level, a handler
matches the exception. At that point, the exception is considered «caught,» and no further
searching occurs.

If no handler at any level catches the exception, it is «uncaught» or «unhandled.» An
uncaught exception also occurs if a new exception is thrown before an existing exception
reaches its handler — the most common reason for this is that the constructor for the
exception object itself causes a new exception.

terminate( )
If an exception is uncaught, the special function terminate( ) is automatically called. Like
unexpected( ), terminate is actually a pointer to a function. Its default value is the Standard C
library function abort( ), which immediately exits the program with no calls to the normal



Chapter 16: Exception Handling
763

termination functions (which means that destructors for global and static objects might not be
called).

No cleanups occur for an uncaught exception; that is, no destructors are called. If you don’t
wrap your code (including, if necessary, all the code in main( )) in a try block followed by
handlers and ending with a default handler (catch(...)) to catch all exceptions, then you will
take your lumps. An uncaught exception should be thought of as a programming error.

set_terminate( )
You can install your own terminate( ) function using the standard set_terminate( ) function,
which returns a pointer to the terminate( ) function you are replacing, so you can restore it
later if you want. Your custom terminate( ) must take no arguments and have a void return
value. In addition, any terminate( ) handler you install must not return or throw an exception,
but instead must call some sort of program-termination function. If terminate( ) is called, it
means the problem is unrecoverable.

Like unexpected( ), the terminate( ) function pointer should never be null.

Here’s an example showing the use of set_terminate( ). Here, the return value is saved and
restored so the terminate( ) function can be used to help isolate the section of code where the
uncaught exception is occurring:

//: C23:Trmnator.cpp
// Use of set_terminate()
// Also shows uncaught exceptions
#include <except>
#include <iostream>
#include <cstdlib>
using namespace std;

void terminator() {
  cout << "I'll be back!" << endl;
  abort();
}

void (*old_terminate)()
  = set_terminate(terminator);

class Botch {
public:
  class Fruit {};
  void f() {
    cout << "Botch::f()" << endl;
    throw Fruit();
  }



Chapter 16: Exception Handling
764

  ~Botch() { throw 'c'; }
};

int main() {
  try{
    Botch b;
    b.f();
  } catch(...) {
    cout << "inside catch(...)" << endl;
  }
} ///:~

The definition of old_terminate looks a bit confusing at first: It not only creates a pointer to a
function, but it initializes that pointer to the return value of set_terminate( ). Even though
you may be familiar with seeing a semicolon right after a pointer-to-function definition, it’s
just another kind of variable and may be initialized when it is defined.

The class Botch not only throws an exception inside f( ), but also in its destructor. This is one
of the situations that causes a call to terminate( ), as you can see in main( ). Even though the
exception handler says catch(...), which would seem to catch everything and leave no cause
for terminate( ) to be called, terminate( ) is called anyway, because in the process of
cleaning up the objects on the stack to handle one exception, the Botch destructor is called,
and that generates a second exception, forcing a call to terminate( ). Thus, a destructor that
throws an exception or causes one to be thrown is a design error.

Cleaning up
Part of the magic of exception handling is that you can pop from normal program flow into
the appropriate exception handler. This wouldn’t be very useful, however, if things weren’t
cleaned up properly as the exception was thrown. C++ exception handling guarantees that as
you leave a scope, all objects in that scope whose constructors have been completed will have
destructors called.

Here’s an example that demonstrates that constructors that aren’t completed don’t have the
associated destructors called. It also shows what happens when an exception is thrown in the
middle of the creation of an array of objects, and an unexpected( ) function that rethrows the
unexpected exception:

//: C23:Cleanup.cpp
// Exceptions clean up objects
#include <fstream>
#include <except>
#include <cstring>
using namespace std;
ofstream out("cleanup.out");



Chapter 16: Exception Handling
765

class Noisy {
  static int i;
  int objnum;
  enum { sz = 40 };
  char name[sz];
public:
  Noisy(const char* nm="array elem") throw(int){
    objnum = i++;
    memset(name, 0, sz);
    strncpy(name, nm, sz - 1);
    out << "constructing Noisy " << objnum
      << " name [" << name << "]" << endl;
    if(objnum == 5) throw int(5);
    // Not in exception specification:
    if(*nm == 'z') throw char('z');
  }
  ~Noisy() {
    out << "destructing Noisy " << objnum
      << " name [" << name << "]" << endl;
  }
  void* operator new[](size_t sz) {
    out << "Noisy::new[]" << endl;
    return ::new char[sz];
  }
  void operator delete[](void* p) {
    out << "Noisy::delete[]" << endl;
    ::delete []p;
  }
};

int Noisy::i = 0;

void unexpected_rethrow() {
  out << "inside unexpected_rethrow()" << endl;
  throw; // Rethrow same exception
}

int main() {
  set_unexpected(unexpected_rethrow);
  try {
    Noisy n1("before array");



Chapter 16: Exception Handling
766

    // Throws exception:
    Noisy* array = new Noisy[7];
    Noisy n2("after array");
  } catch(int i) {
    out << "caught " << i << endl;
  }
  out << "testing unexpected:" << endl;
  try {
    Noisy n3("before unexpected");
    Noisy n4("z");
    Noisy n5("after unexpected");
  } catch(char c) {
    out << "caught " << c << endl;
  }
} ///:~

The class Noisy keeps track of objects so you can trace program progress. It keeps a count of
the number of objects created with a static data member i, and the number of the particular
object with objnum, and a character buffer called name to hold an identifier. This buffer is
first set to zeroes. Then the constructor argument is copied in. (Note that a default argument
string is used to indicate array elements, so this constructor also acts as a default constructor.)
Because the Standard C library function strncpy( )stops copying after a null terminator or the
number of characters specified by its third argument, the number of characters copied in is
one minus the size of the buffer, so the last character is always zero, and a print statement will
never run off the end of the buffer.

There are two cases where a throw can occur in the constructor. The first case happens if this
is the fifth object created (not a real exception condition, but demonstrates an exception
thrown during array construction). The type thrown is int, which is the type promised in the
exception specification. The second case, also contrived, happens if the first character of the
argument string is ‘z’, in which case a char is thrown. Because char is not listed in the
exception specification, this will cause a call to unexpected( ).

The array versions of new and delete are overloaded for the class, so you can see when
they’re called.

The function unexpected_rethrow( ) prints a message and rethrows the same exception. It is
installed as the unexpected( ) function in the first line of main( ). Then some objects of type
Noisy are created in a try block, but the array causes an exception to be thrown, so the object
n2 is never created. You can see the results in the output of the program:

constructing Noisy 0 name [before array]
Noisy::new[]
constructing Noisy 1 name [array elem]
constructing Noisy 2 name [array elem]
constructing Noisy 3 name [array elem]



Chapter 16: Exception Handling
767

constructing Noisy 4 name [array elem]
constructing Noisy 5 name [array elem]
destructing Noisy 4 name [array elem]
destructing Noisy 3 name [array elem]
destructing Noisy 2 name [array elem]
destructing Noisy 1 name [array elem]
Noisy::delete[]
destructing Noisy 0 name [before array]
caught 5
testing unexpected:
constructing Noisy 6 name [before unexpected]
constructing Noisy 7 name [z]
inside unexpected_rethrow()
destructing Noisy 6 name [before unexpected]
caught z

Four array elements are successfully created, but in the middle of the constructor for the fifth
one, an exception is thrown. Because the fifth constructor never completes, only the
destructors for objects 1–4 are called.

The storage for the array is allocated separately with a single call to the global new. Notice
that even though delete is never explicitly called anywhere in the program, the exception-
handling system knows it must call delete to properly release the storage. This behavior
happens only with «normal» versions of operator new. If you use the placement syntax
described in Chapter 11, the exception-handling mechanism will not call delete for that object
because then it might release memory that was not allocated on the heap.

Finally, object n1 is destroyed, but not object n2 because it was never created.

In the section testing unexpected_rethrow( ), the n3 object is created, and the constructor of
n4 is begun. But before it can complete, an exception is thrown. This exception is of type
char, which violates the exception specification, so the unexpected( ) function is called
(which is unexpected_rethrow( ), in this case). This rethrows the same exception, which is
expected this time, because unexpected_rethrow( ) can throw any type of exception. The
search begins right after the constructor for n4, and the char exception handler catches it
(after destroying n3, the only successfully created object). Thus, the effect of
unexpected_rethrow( ) is to take any unexpected exception and make it expected; used this
way it provides a filter to allow you to track the appearance of unexpected exceptions and
pass them through.

Constructors
When writing code with exceptions, it’s particularly important that you always be asking, «If
an exception occurs, will this be properly cleaned up?» Most of the time you’re fairly safe,
but in constructors there’s a problem: If an exception is thrown before a constructor is



Chapter 16: Exception Handling
768

completed, the associated destructor will not be called for that object. This means you must be
especially diligent while writing your constructor.

The general difficulty is allocating resources in constructors. If an exception occurs in the
constructor, the destructor doesn’t get a chance to deallocate the resource. This problem
occurs most often with «naked» pointers. For example,

//: C23:Nudep.cpp
// Naked pointers
#include <fstream>
#include <cstdlib>
using namespace std;
ofstream out("nudep.out");

class Cat {
public:
  Cat() { out << "Cat()" << endl; }
  ~Cat() { out << "~Cat()" << endl; }
};

class Dog {
public:
  void* operator new(size_t sz) {
    out << "allocating an Dog" << endl;
    throw int(47);
    return 0;
  }
  void operator delete(void* p) {
    out << "deallocating an Dog" << endl;
    ::delete p;
  }
};

class UseResources {
  Cat* bp;
  Dog* op;
public:
  UseResources(int count = 1) {
    out << "UseResources()" << endl;
    bp = new Cat[count];
    op = new Dog;
  }
  ~UseResources() {
    out << "~UseResources()" << endl;



Chapter 16: Exception Handling
769

    delete []bp; // Array delete
    delete op;
  }
};

int main() {
  try {
    UseResources ur(3);
  } catch(int) {
    out << "inside handler" << endl;
  }
} ///:~

The output is the following:

UseResources()
Cat()
Cat()
Cat()

allocating an Dog

inside handler

The UseResources constructor is entered, and the Cat constructor is successfully completed
for the array objects. However, inside Dog::operator new, an exception is thrown (as an
example of an out-of-memory error). Suddenly, you end up inside the handler, without the
UseResources destructor being called. This is correct because the UseResources constructor
was unable to finish, but it means the Cat object that was successfully created on the heap is
never destroyed.

Making everything an object
To prevent this, guard against these «raw» resource allocations by placing the allocations
inside their own objects with their own constructors and destructors. This way, each allocation
becomes atomic, as an object, and if it fails, the other resource allocation objects are properly
cleaned up. Templates are an excellent way to modify the above example:

//: C23:Wrapped.cpp
// Safe, atomic pointers
#include <fstream>
#include <cstdlib>
using namespace std;
ofstream out("wrapped.out");

// Simplified. Yours may have other arguments.



Chapter 16: Exception Handling
770

template<class T, int sz = 1> class PWrap {
  T* ptr;
public:
  class RangeError {}; // Exception class
  PWrap() {
    ptr = new T[sz];
    out << "PWrap constructor" << endl;
  }
  ~PWrap() {
    delete []ptr;
    out << "PWrap destructor" << endl;
  }
  T& operator[](int i) throw(RangeError) {
    if(i >= 0 && i < sz) return ptr[i];
    throw RangeError();
  }
};

class Cat {
public:
  Cat() { out << "Cat()" << endl; }
  ~Cat() { out << "~Cat()" << endl; }
  void g() {}
};

class Dog {
public:
  void* operator new[](size_t sz) {
    out << "allocating an Dog" << endl;
    throw int(47);
    return 0;
  }
  void operator delete[](void* p) {
    out << "deallocating an Dog" << endl;
    ::delete p;
  }
};

class UseResources {
  PWrap<Cat, 3> Bonk;
  PWrap<Dog> Og;
public:
  UseResources() : Bonk(), Og() {



Chapter 16: Exception Handling
771

    out << "UseResources()" << endl;
  }
  ~UseResources() {
    out << "~UseResources()" << endl;
  }
  void f() { Bonk[1].g(); }
};

int main() {
  try {
    UseResources ur;
  } catch(int) {
    out << "inside handler" << endl;
  } catch(...) {
    out << "inside catch(...)" << endl;
  }
} ///:~

The difference is the use of the template to wrap the pointers and make them into objects. The
constructors for these objects are called before the body of the UseResources constructor, and
any of these constructors that complete before an exception is thrown will have their
associated destructors called.

The PWrap template shows a more typical use of exceptions than you’ve seen so far: A
nested class called RangeError is created to use in operator[ ] if its argument is out of range.
Because operator[ ] returns a reference it cannot return zero. (There are no null references.)
This is a true exceptional condition — you don’t know what to do in the current context, and
you can’t return an improbable value. In this example, RangeError is very simple and
assumes all the necessary information is in the class name, but you may also want to add a
member that contains the value of the index, if that is useful.

Now the output is

Cat()
Cat()
Cat()
PWrap constructor
allocating a Dog
~Cat()
~Cat()
~Cat()
PWrap destructor
inside handler

Again, the storage allocation for Dog throws an exception, but this time the array of Cat
objects is properly cleaned up, so there is no memory leak.



Chapter 16: Exception Handling
772

Exception matching
When an exception is thrown, the exception-handling system looks through the «nearest»
handlers in the order they are written. When it finds a match, the exception is considered
handled, and no further searching occurs.

Matching an exception doesn’t require a perfect match between the exception and its handler.
An object or reference to a derived-class object will match a handler for the base class.
(However, if the handler is for an object rather than a reference, the exception object is
«sliced» as it is passed to the handler; this does no damage but loses all the derived-type
information.) If a pointer is thrown, standard pointer conversions are used to match the
exception. However, no automatic type conversions are used to convert one exception type to
another in the process of matching. For example,

//: C23:Autoexcp.cpp
// No matching conversions
#include <iostream>
using namespace std;

class Except1 {};
class Except2 {
public:
  Except2(Except1&) {}
};

void f() { throw Except1(); }

int main() {
  try { f();
  } catch (Except2) {
    cout << "inside catch(Except2)" << endl;
  } catch (Except1) {
    cout << "inside catch(Except1)" << endl;
  }
} ///:~

Even though you might think the first handler could be used by converting an Except1 object
into an Except2 using the constructor conversion, the system will not perform such a
conversion during exception handling, and you’ll end up at the Except1 handler.

The following example shows how a base-class handler can catch a derived-class exception:

//: C23:Basexcpt.cpp
// Exception hierarchies
#include <iostream>



Chapter 16: Exception Handling
773

using namespace std;

class X {
public:
  class Trouble {};
  class Small : public Trouble {};
  class Big : public Trouble {};
  void f() { throw Big(); }
};

int main() {
  X x;
  try {
    x.f();
  } catch(X::Trouble) {
    cout << "caught Trouble" << endl;
  // Hidden by previous handler:
  } catch(X::Small) {
    cout << "caught Small Trouble" << endl;
  } catch(X::Big) {
    cout << "caught Big Trouble" << endl;
  }
} ///:~

Here, the exception-handling mechanism will always match a Trouble object, or anything
derived from Trouble, to the first handler. That means the second and third handlers are never
called because the first one captures them all. It makes more sense to catch the derived types
first and put the base type at the end to catch anything less specific (or a derived class
introduced later in the development cycle).

In addition, if Small and Big represent larger objects than the base class Trouble (which is
often true because you regularly add data members to derived classes), then those objects are
sliced to fit into the first handler. Of course, in this example it isn’t important because there
are no additional members in the derived classes and there are no argument identifiers in the
handlers anyway. You’ll usually want to use reference arguments rather than objects in your
handlers to avoid slicing off information.

Standard exceptions
The set of exceptions used with the Standard C++ library are also available for your own use.
Generally it’s easier and faster to start with a standard exception class than to try to define
your own. If the standard class doesn’t do what you need, you can derive from it.

The following tables describe the standard exceptions:



Chapter 16: Exception Handling
774

exception The base class for all the exceptions thrown
by the C++ standard library. You can ask
what( ) and get a result that can be
displayed as a character representation.

logic_error Derived from exception. Reports program
logic errors, which could presumably be
detected before the program executes.

runtime_error Derived from exception. Reports run-time
errors, which can presumably be detected
only when the program executes.

The iostream exception class ios::failure is also derived from exception, but it has no further
subclasses.   

The classes in both of the following tables can be used as they are, or they can act as base
classes to derive your own more specific types of exceptions.

Exception classes derived from logic_error

domain_error Reports violations of a precondition.

invalid_argument Indicates an invalid argument to the
function it’s thrown from.

length_error Indicates an attempt to produce an object
whose length is greater than or equal to
NPOS (the largest representable value of
type size_t).

out_of_range Reports an out-of-range argument.

bad_cast Thrown for executing an invalid
dynamic_cast expression in run-time
type identification (see Chapter 17).

bad_typeid Reports a null pointer p in an expression
typeid(*p). (Again, a run-time type
identification feature in Chapter 17).

Exception classes derived from runtime_error

range_error Reports violation of a postcondition.

overflow_error Reports an arithmetic overflow.

bad_alloc Reports a failure to allocate storage.



Chapter 16: Exception Handling
775

Programming with exceptions
For most programmers, especially C programmers, exceptions are not available in their
existing language and take a bit of adjustment. Here are some guidelines for programming
with exceptions.

When to avoid exceptions
Exceptions aren’t the answer to all problems. In fact, if you simply go looking for something
to pound with your new hammer, you’ll cause trouble. The following sections point out
situations where exceptions are not warranted.

Not for asynchronous events
The Standard C signal( ) system, and any similar system, handles asynchronous events:
events that happen outside the scope of the program, and thus events the program cannot
anticipate. C++ exceptions cannot be used to handle asynchronous events because the
exception and its handler are on the same call stack. That is, exceptions rely on scoping,
whereas asynchronous events must be handled by completely separate code that is not part of
the normal program flow (typically, interrupt service routines or event loops).

This is not to say that asynchronous events cannot be associated with exceptions. But the
interrupt handler should do its job as quickly as possible and then return. Later, at some well-
defined point in the program, an exception might be thrown based on the interrupt.

Not for ordinary error conditions
If you have enough information to handle an error, it’s not an exception. You should take care
of it in the current context rather than throwing an exception to a larger context.

Also, C++ exceptions are not thrown for machine-level events like divide-by-zero. It’s
assumed these are dealt with by some other mechanism, like the operating system or
hardware. That way, C++ exceptions can be reasonably efficient, and their use is isolated to
program-level exceptional conditions.

Not for flow-of-control
An exception looks somewhat like an alternate return mechanism and somewhat like a switch
statement, so you can be tempted to use them for other than their original intent. This is a bad
idea, partly because the exception-handling system is significantly less efficient than normal
program execution; exceptions are a rare event, so the normal program shouldn’t pay for
them. Also, exceptions from anything other than error conditions are quite confusing to the
user of your class or function.



Chapter 16: Exception Handling
776

You’re not forced to use exceptions
Some programs are quite simple, many utilities, for example. You may only need to take
input and perform some processing. In these programs you might attempt to allocate memory
and fail, or try to open a file and fail, and so on. It is acceptable in these programs to use
assert( ) or to print a message and abort( ) the program, allowing the system to clean up the
mess, rather than to work very hard to catch all exceptions and recover all the resources
yourself. Basically, if you don’t need to use exceptions, you don’t have to.

New exceptions, old code
Another situation that arises is the modification of an existing program that doesn’t use
exceptions. You may introduce a library that does use exceptions and wonder if you need to
modify all your code throughout the program. Assuming you have an acceptable error-
handling scheme already in place, the most sensible thing to do here is surround the largest
block that uses the new library (this may be all the code in main( )) with a try block, followed
by a catch(...) and basic error message. You can refine this to whatever degree necessary by
adding more specific handlers, but, in any case, the code you’re forced to add can be minimal.

You can also isolate your exception-generating code in a try block and write handlers to
convert the exceptions into your existing error-handling scheme.

It’s truly important to think about exceptions when you’re creating a library for someone else
to use, and you can’t know how they need to respond to critical error conditions.

Typical uses of exceptions
Do use exceptions to

 9.  Fix the problem and call the function (which caused the exception) again.

 10.  Patch things up and continue without retrying the function.

 11.  Calculate some alternative result instead of what the function was supposed
to produce.

 12.  Do whatever you can in the current context and rethrow the same exception
to a higher context.

 13.  Do whatever you can in the current context and throw a different exception
to a higher context.

 14.  Terminate the program.

 15.  Wrap functions (especially C library functions) that use ordinary error
schemes so they produce exceptions instead.



Chapter 16: Exception Handling
777

 16.  Simplify. If your exception scheme makes things more complicated, then it
is painful and annoying to use.

 17.  Make your library and program safer. This is a short-term investment (for
debugging) and a long-term investment (for application robustness).

Always use exception specifications
The exception specification is like a function prototype: It tells the user to write exception-
handling code and what exceptions to handle. It tells the compiler the exceptions that may
come out of this function.

Of course, you can’t always anticipate by looking at the code what exceptions will arise from
a particular function. Sometimes the functions it calls produce an unexpected exception, and
sometimes an old function that didn’t throw an exception is replaced with a new one that
does, and you’ll get a call to unexpected( ). Anytime you use exception specifications or call
functions that do, you should create your own unexpected( ) function that logs a message and
rethrows the same exception.

Start with standard exceptions
Check out the Standard C++ library exceptions before creating your own. If a standard
exception does what you need, chances are it’s a lot easier for your user to understand and
handle.

If the exception type you want isn’t part of the standard library, try to derive one from an
existing standard exception. It’s nice for your users if they can always write their code to
expect the what( ) function defined in the exception( ) class interface.

Nest your own exceptions
If you create exceptions for your particular class, it’s a very good idea to nest the exception
classes inside your class to provide a clear message to the reader that this exception is used
only for your class. In addition, it prevents the pollution of the namespace.

You can nest your exceptions even if you’re deriving them from C++ standard exceptions.

Use exception hierarchies
Exception hierarchies provide a valuable way to classify the different types of critical errors
that may be encountered with your class or library. This gives helpful information to users,
assists them in organizing their code, and gives them the option of ignoring all the specific
types of exceptions and just catching the base-class type. Also, any exceptions added later by
inheriting from the same base class will not force all existing code to be rewritten — the base-
class handler will catch the new exception.

Of course, the Standard C++ exceptions are a good example of an exception hierarchy, and
one that you can use to build upon.



Chapter 16: Exception Handling
778

Multiple inheritance
You’ll remember from Chapter 14 that the only essential place for MI is if you need to upcast
a pointer to your object into two different base classes — that is, if you need polymorphic
behavior with both of those base classes. It turns out that exception hierarchies are a useful
place for multiple inheritance because a base-class handler from any of the roots of the
multiply inherited exception class can handle the exception.

Catch by reference, not by value
If you throw an object of a derived class and it is caught by value in a handler for an object of
the base class, that object is «sliced» — that is, the derived-class elements are cut off and
you’ll end up with the base-class object being passed. Chances are this is not what you want
because the object will behave like a base-class object and not the derived class object it
really is (or rather, was — before it was sliced). Here’s an example:

//: C23:Catchref.cpp
// Why catch by reference?
#include <iostream>
using namespace std;

class Base {
public:
  virtual void what() {
    cout << "Base" << endl;
  }
};

class Derived : public Base {
public:
  void what() {
    cout << "Derived" << endl;
  }
};

void f() { throw Derived(); }

int main() {
  try {
    f();
  } catch(Base b) {
    b.what();
  }
  try {



Chapter 16: Exception Handling
779

    f();
  } catch(Base& b) {
    b.what();
  }
} ///:~

The output is

Base
Derived

because, when the object is caught by value, it is turned into a Base object (by the copy-
constructor) and must behave that way in all situations, whereas when it’s caught by
reference, only the address is passed and the object isn’t truncated, so it behaves like what it
really is, a Derived in this case.

Although you can also throw and catch pointers, by doing so you introduce more coupling —
the thrower and the catcher must agree on how the exception object is allocated and cleaned
up. This is a problem because the exception itself may have occurred from heap exhaustion. If
you throw exception objects, the exception-handling system takes care of all storage.

Throw exceptions in constructors
Because a constructor has no return value, you’ve previously had two choices to report an
error during construction:

 18.  Set a nonlocal flag and hope the user checks it.

 19.  Return an incompletely created object and hope the user checks it.

This is a serious problem because C programmers have come to rely on an implied guarantee
that object creation is always successful, which is not unreasonable in C where types are so
primitive. But continuing execution after construction fails in a C++ program is a guaranteed
disaster, so constructors are one of the most important places to throw exceptions — now you
have a safe, effective way to handle constructor errors. However, you must also pay attention
to pointers inside objects and the way cleanup occurs when an exception is thrown inside a
constructor.

Don’t cause exceptions in destructors
Because destructors are called in the process of throwing other exceptions, you’ll never want
to throw an exception in a destructor or cause another exception to be thrown by some action
you perform in the destructor. If this happens, it means that a new exception may be thrown
before the catch-clause for an existing exception is reached, which will cause a call to
terminate( ).



Chapter 16: Exception Handling
780

This means that if you call any functions inside a destructor that may throw exceptions, those
calls should be within a try block in the destructor, and the destructor must handle all
exceptions itself. None must escape from the destructor.

Avoid naked pointers
See WRAPPED.CPP (page Erreur! Signet non défini.). A naked pointer usually means
vulnerability in the constructor if resources are allocated for that pointer. A pointer doesn’t
have a destructor, so those resources won’t be released if an exception is thrown in the
constructor.

Overhead
Of course it costs something for this new feature; when an exception is thrown there’s
considerable run-time overhead. This is the reason you never want to use exceptions as part of
your normal flow-of-control, no matter how tempting and clever it may seem. Exceptions
should occur only rarely, so the overhead is piled on the exception and not on the normally
executing code. One of the important design goals for exception handling was that it could be
implemented with no impact on execution speed when it wasn’t used; that is, as long as you
don’t throw an exception, your code runs as fast as it would without exception handling.
Whether or not this is actually true depends on the particular compiler implementation you’re
using.

Exception handling also causes extra information to be put on the stack by the compiler, to aid
in stack unwinding.

Exception objects are properly passed around like any other objects, except that they can be
passed into and out of what can be thought of as a special «exception scope» (which may just
be the global scope). That’s how they go from one place to another. When the exception
handler is finished, the exception objects are properly destroyed.

Summary
Error recovery is a fundamental concern for every program you write, and it’s especially
important in C++, where one of the goals is to create program components for others to use.
To create a robust system, each component must be robust.

The goals for exception handling in C++ are to simplify the creation of large, reliable
programs using less code than currently possible, with more confidence that your application
doesn’t have an unhandled error. This is accomplished with little or no performance penalty,
and with low impact on existing code.



Chapter 16: Exception Handling
781

Basic exceptions are not terribly difficult to learn, and you should begin using them in your
programs as soon as you can. Exceptions are one of those features that provide immediate and
significant benefits to your project.

Exercises
 1.  Create a class with member functions that throw exceptions. Within this

class, make a nested class to use as an exception object. It takes a single
char* as its argument; this represents a description string. Create a member
function that throws this exception. (State this in the function’s exception
specification.) Write a try block that calls this function and a catch clause
that handles the exception by printing out its description string.

 2.  Rewrite the Stash class from Chapter 11 so it throws out-of-range
exceptions for operator[].

 3.  Write a generic main( ) that takes all exceptions and reports them as errors.
 4.  Create a class with its own operator new. This operator should allocate 10

objects, and on the 11th «run out of memory» and throw an exception. Also
add a static member function that reclaims this memory. Now create a
main( ) with a try block and a catch clause that calls the memory-
restoration routine. Put these inside a while loop, to demonstrate recovering
from an exception and continuing execution.

 5.  Create a destructor that throws an exception, and write code to prove to
yourself that this is a bad idea by showing that if a new exception is thrown
before the handler for the existing one is reached, terminate( ) is called.

 6.  Prove to yourself that all exception objects (the ones that are thrown) are
properly destroyed.

 7.  Prove to yourself that if you create an exception object on the heap and
throw the pointer to that object, it will not be cleaned up.

 8.  (Advanced). Track the creation and passing of an exception using a class
with a constructor and copy-constructor that announce themselves and
provide as much information as possible about how the object is being
created (and in the case of the copy-constructor, what object it’s being
created from). Set up an interesting situation, throw an object of your new
type, and analyze the result.





783

24: Run-time type
identification

Run-time type identification (RTTI) lets you find the exact
type of an object when you have only a pointer or reference
to the base type.

This can be thought of as a «secondary» feature in C++, a pragmatism to help out when you
get into messy situations. Normally, you’ll want to intentionally ignore the exact type of an
object and let the virtual function mechanism implement the correct behavior for that type.
But occasionally it’s useful to know the exact type of an object for which you only have a
base pointer. Often this information allows you to perform a special-case operation more
efficiently or prevent a base-class interface from becoming ungainly. It happens enough that
most class libraries contain virtual functions to produce run-time type information. When
exception handling was added to C++, it required the exact type information about objects. It
became an easy next step to build access to that information into the language.

This chapter explains what RTTI is for and how to use it. In addition, it explains the why and
how of the new C++ cast syntax, which has the same appearance as RTTI.

The «Shape» example
This is an example of a class hierarchy that uses polymorphism. The generic type is the base
class Shape, and the specific derived types are Circle, Square, and Triangle:

s q u a r e

s h a p e

c i r c l e t r i a n g le



Chapter 17: Run-Time Type Identification
784

This is a typical class-hierarchy diagram, with the base class at the top and the derived classes
growing downward. The normal goal in object-oriented programming is for the bulk of your
code to manipulate pointers to the base type (Shape, in this case) so if you decide to extend
the program by adding a new class (rhomboid, derived from Shape, for example), the bulk of
the code is not affected. In this example, the virtual function in the Shape interface is draw( ),
so the intent is for the client programmer to call draw( ) through a generic Shape pointer.
draw( ) is redefined in all the derived classes, and because it is a virtual function, the proper
behavior will occur even though it is called through a generic Shape pointer.

Thus, you generally create a specific object (Circle, Square, or Triangle), take its address
and cast it to a Shape* (forgetting the specific type of the object), and use that anonymous
pointer in the rest of the program. Historically, diagrams are drawn as seen above, so the act
of casting from a more derived type to a base type is called upcasting.

What is RTTI?
But what if you have a special programming problem that’s easiest to solve if you know the
exact type of a generic pointer? For example, suppose you want to allow your users to
highlight all the shapes of any particular type by turning them purple. This way, they can find
all the triangles on the screen by highlighting them. Your natural first approach may be to try
a virtual function like TurnColorIfYouAreA( ), which allows enumerated arguments of
some type color and of Shape::Circle, Shape::Square, or Shape::Triangle.

To solve this sort of problem, most class library designers put virtual functions in the base
class to return type information about the specific object at run-time. You may have seen
library member functions with names like isA( ) and typeOf( ). These are vendor-defined
RTTI functions. Using these functions, as you go through the list you can say, «If you’re a
triangle, turn purple.»

When exception handling was added to C++, the implementation required that some run-time
type information be put into the virtual function tables. This meant that with a small language
extension the programmer could also get the run-time type information about an object. All
library vendors were adding their own RTTI anyway, so it was included in the language.

RTTI, like exceptions, depends on type information residing in the virtual function table. If
you try to use RTTI on a class that has no virtual functions, you’ll get unexpected results.

Two syntaxes for RTTI
There are two different ways to use RTTI. The first acts like sizeof( ) because it looks like a
function, but it’s actually implemented by the compiler. typeid( ) takes an argument that’s an
object, a reference, or a pointer and returns a reference to a global const object of type
typeinfo. These can be compared to each other with the operator== and operator!=, and you
can also ask for the name( ) of the type, which returns a string representation of the type
name. Note that if you hand typeid( ) a Shape*, it will say that the type is Shape*, so if you



Chapter 17: Run-Time Type Identification
785

want to know the exact type it is pointing to, you must dereference the pointer. For example,
if s is a Shape*,

cout << typeid(*s).name() << endl;

will print out the type of the object s points to.

You can also ask a typeinfo object if it precedes another typeinfo object in the
implementation-defined «collation sequence,» using before(typeinfo&), which returns true or
false. When you say,

if(typeid(me).before(typeid(you))) // ...

you’re asking if me occurs before you in the collation sequence.

The second syntax for RTTI is called a «type-safe downcast.» The reason for the term
«downcast» is (again) the historical arrangement of the class hierarchy diagram. If casting a
Circle* to a Shape* is an upcast, then casting a Shape* to a Circle* is a downcast. However,
you know a Circle* is also a Shape*,and the compiler freely allows an upcast assignment, but
you don’t know that a Shape* is necessarily a Circle*, so the compiler doesn’t allow you to
perform a downcast assignment without using an explicit cast. You can of course force your
way through using ordinary C-style casts or a C++ static_cast (described at the end of this
chapter), which says, «I hope this is actually a Circle*, and I’m going to pretend it is.»
Without some explicit knowledge that it is in fact a Circle, this is a totally dangerous thing to
do. A common approach in vendor-defined RTTI is to create some function that attempts to
assign (for this example) a Shape* to a Circle*, checking the type in the process. If this
function returns the address, it was successful; if it returns null, you didn’t have a Circle*.

The C++ RTTI typesafe-downcast follows this «attempt-to-cast» function form, but it uses
(very logically) the template syntax to produce the special function dynamic_cast. So the
example becomes

Shape* sp = new Circle;
Circle* cp = dynamic_cast<Circle*>(sp);
if(cp) cout << «cast successful»;

The template argument for dynamic_cast is the type you want the function to produce, and
this is the return value for the function. The function argument is what you are trying to cast
from.

Normally you might be hunting for one type (triangles to turn purple, for instance), but the
following example fragment can be used if you want to count the number of various shapes.

  Circle* cp = dynamic_cast<Circle*>(sh);
  Square* sp = dynamic_cast<Square*>(sh);
  Triangle* tp = dynamic_cast<Triangle*>(sh);

Of course this is contrived — you’d probably put a static data member in each type and
increment it in the constructor. You would do something like that if you had control of the



Chapter 17: Run-Time Type Identification
786

source code for the class and could change it. Here’s an example that counts shapes using
both the static member approach and dynamic_cast:

//: C24:Rtshapes.cpp
// Counting shapes
#include <iostream>
#include <ctime>
#include <typeinfo>
#include <vector>
#include "../purge.h"
using namespace std;

class Shape {
protected:
  static int count;
public:
  Shape() { count++; }
  virtual ~Shape() { count--; }
  virtual void draw() const = 0;
  static int quantity() { return count; }
};

int Shape::count = 0;

class SRectangle : public Shape {
  void operator=(SRectangle&); // Disallow
protected:
  static int count;
public:
  SRectangle() { count++; }
  SRectangle(const SRectangle&) { count++;}
  ~SRectangle() { count--; }
  void draw() const {
    cout << "SRectangle::draw()" << endl;
  }
  static int quantity() { return count; }
};

int SRectangle::count = 0;

class SEllipse : public Shape {
  void operator=(SEllipse&); // Disallow
protected:
  static int count;



Chapter 17: Run-Time Type Identification
787

public:
  SEllipse() { count++; }
  SEllipse(const SEllipse&) { count++; }
  ~SEllipse() { count--; }
  void draw() const {
    cout << "SEllipse::draw()" << endl;
  }
  static int quantity() { return count; }
};

int SEllipse::count = 0;

class SCircle : public SEllipse {
  void operator=(SCircle&); // Disallow
protected:
  static int count;
public:
  SCircle() { count++; }
  SCircle(const SCircle&) { count++; }
  ~SCircle() { count--; }
  void draw() const {
    cout << "SCircle::draw()" << endl;
  }
  static int quantity() { return count; }
};

int SCircle::count = 0;

int main() {
  vector<Shape*> shapes;
  srand(time(0)); // Seed random number generator
  const mod = 12;
  // Create a random quantity of each type:
  for(int i = 0; i < rand() % mod; i++)
    shapes.push_back(new SRectangle);
  for(int j = 0; j < rand() % mod; j++)
    shapes.push_back(new SEllipse);
  for(int k = 0; k < rand() % mod; k++)
    shapes.push_back(new SCircle);
  int Ncircles = 0;
  int Nellipses = 0;
  int Nrects = 0;
  int Nshapes = 0;



Chapter 17: Run-Time Type Identification
788

  for(int u = 0; u < shapes.size(); u++) {
    shapes[u]->draw();
    if(dynamic_cast<SCircle*>(shapes[u]))
      Ncircles++;
    if(dynamic_cast<SEllipse*>(shapes[u]))
      Nellipses++;
    if(dynamic_cast<SRectangle*>(shapes[u]))
      Nrects++;
    if(dynamic_cast<Shape*>(shapes[u]))
      Nshapes++;
  }
  cout << endl << endl
    << "Circles = " << Ncircles << endl
    << "Ellipses = " << Nellipses << endl
    << "Rectangles = " << Nrects << endl
    << "Shapes = " << Nshapes << endl
    << endl
    << "SCircle::quantity() = "
    << SCircle::quantity() << endl
    << "SEllipse::quantity() = "
    << SEllipse::quantity() << endl
    << "SRectangle::quantity() = "
    << SRectangle::quantity() << endl
    << "Shape::quantity() = "
    << Shape::quantity() << endl;
  purge(shapes);

} ///:~

Both types work for this example, but the static member approach can be used only if you
own the code and have installed the static members and functions (or if a vendor provides
them for you). In addition, the syntax for RTTI may then be different from one class to
another.

Syntax specifics
This section looks at the details of how the two forms of RTTI work, and how they differ.

typeid( ) with built-in types
For consistency, the typeid( ) operator works with built-in types. So the following
expressions are true:

typeid(47) == typeid(int)



Chapter 17: Run-Time Type Identification
789

typeid(0) == typeid(int)
int i;
typeid(i) == typeid(int)
typeid(&i) == typeid(int*)

Producing the proper type name
typeid( ) must work properly in all situations. For example, the following class contains a
nested class:

//: C24:Rnest.cpp
// Nesting and RTTI
#include <iostream>
#include <typeinfo>
using namespace std;

class One {
  class Nested {};
  Nested* n;
public:
  One() : n(new Nested) {}
  ~One() { delete n; }
  Nested* nested() { return n; }
};

int main() {
  One o;
  cout << typeid(*o.nested()).name() << endl;
} ///:~

The typeinfo::name( ) member function will still produce the proper class name; the result is
One::Nested.

Nonpolymorphic types
Although typeid( ) works with nonpolymorphic types (those that don’t have a virtual function
in the base class), the information you get this way is dubious. For the following class
hierarchy,

class X {
 int i;
public:
  // ...
};



Chapter 17: Run-Time Type Identification
790

class Y : public X {
  int j;
public:
  // ...
};

If you create an object of the derived type and upcast it,

X* xp = new Y;

The typeid( ) operator will produce results, but not the ones you might expect. Because
there’s no polymorphism, the static type information is used:

typeid(*xp) == typeid(X)
typeid(*xp) != typeid(Y)

RTTI is intended for use only with polymorphic classes.

Casting to intermediate levels
dynamic_cast can detect both exact types and, in an inheritance hierarchy with multiple
levels, intermediate types. For example,

class D1 {
public:
  virtual void foo() {}
  virtual ~D1() {}
};
class D2 {
public:
  virtual void bar() {}
};
class MI : public D1, public D2 { };
class Mi2 : public MI {};

D2* d2 = new Mi2;
Mi2* mi2 = dynamic_cast<Mi2*>(d2);
MI* mi = dynamic_cast<MI*>(d2);

This has the extra complication of multiple inheritance. If you create an mi2 and upcast it to
the root (in this case, one of the two possible roots is chosen), then the dynamic_cast back to
either of the derived levels MI or mi2 is successful.

You can even cast from one root to the other:

  D1* d1 = dynamic_cast<D1*>(d2);



Chapter 17: Run-Time Type Identification
791

This is successful because D2 is actually pointing to an mi2 object, which contains a
subobject of type d1.

Casting to intermediate levels brings up an interesting difference between dynamic_cast and
typeid( ). typeid( ) always produces a reference to a typeinfo object that describes the exact
type of the object. Thus it doesn’t give you intermediate-level information. In the following
expression (which is true), typeid( ) doesn’t see d2 as a pointer to the derived type, like
dynamic_cast does:

typeid(d2) != typeid(Mi2*)

The type of D2 is simply the exact type of the pointer:

typeid(d2) == typeid(D2*)

void pointers
Run-time type identification doesn’t work with void pointers:

//: C24:Voidrtti.cpp
// RTTI & void pointers
#include <iostream>
#include <typeinfo>
using namespace std;

class Stimpy {
public:
  virtual void happy() {}
  virtual void joy() {}
  virtual ~Stimpy() {}
};

int main() {
  void* v = new Stimpy;
  // Error:
//!  Stimpy* s = dynamic_cast<Stimpy*>(v);
  // Error:
//!  cout << typeid(*v).name() << endl;
} ///:~

A void* truly means «no type information at all.»

Using RTTI with templates
Templates generate many different class names, and sometimes you’d like to print out
information about what class you’re in. RTTI provides a convenient way to do this. The



Chapter 17: Run-Time Type Identification
792

following example revisits the code in Chapter 12 to print out the order of constructor and
destructor calls without using a preprocessor macro:

//: C24:Inhorder.cpp
// Order of constructor calls
#include <iostream>
#include <typeinfo>
using namespace std;

template<int id> class Announce {
public:
  Announce() {
    cout << typeid(*this).name()
         << " constructor " << endl;
  }
  ~Announce() {
    cout << typeid(*this).name()
         << " destructor " << endl;
  }
};

class X : public Announce<0> {
  Announce<1> m1;
  Announce<2> m2;
public:
  X() { cout << "X::X()" << endl; }
  ~X() { cout << "X::~X()" << endl; }
};

int main() {
  X x;
} ///:~

The <typeinfo> header must be included to call any member functions for the typeinfo object
returned by typeid( ). The template uses a constant int to differentiate one class from another,
but class arguments will work as well. Inside both the constructor and destructor, RTTI
information is used to produce the name of the class to print. The class X uses both
inheritance and composition to create a class that has an interesting order of constructor and
destructor calls.

This technique is often useful in situations when you’re trying to understand how the
language works.



Chapter 17: Run-Time Type Identification
793

References
RTTI must adjust somewhat to work with references. The contrast between pointers and
references occurs because a reference is always dereferenced for you by the compiler,
whereas a pointer’s type or the type it points to may be examined. Here’s an example:

class B {
public:
  virtual float f() { return 1.0;}
  virtual ~B() {}
};
class D : public B { /* ... */ };
B* p = new D;
B& r = *p;

Whereas the type of pointer that typeid( ) sees is the base type and not the derived type, the
type it sees for the reference is the derived type:

typeid(p) == typeid(B*)
typeid(p) != typeid(D*)
typeid(r) == typeid(D)

Conversely, what the pointer points to is the derived type and not the base type, and taking the
address of the reference produces the base type and not the derived type:

typeid(*p) == typeid(D)
typeid(*p) != typeid(B)
typeid(&r) == typeid(B*)
typeid(&r) != typeid(D*)

Expressions may also be used with the typeid( ) operator because they have a type as well:

typeid(r.f()) == typeid(float)

Exceptions
When you perform a dynamic_cast to a reference, the result must be assigned to a reference.
But what happens if the cast fails? There are no null references, so this is the perfect place to
throw an exception; the Standard C++ exception type is bad_cast, but in the following
example the ellipses are used to catch any exception:

class X {};

MI mi;
d1 & D1 = mi; // Upcast to reference
try {



Chapter 17: Run-Time Type Identification
794

  X& xr = dynamic_cast<X&>(D1);
} catch(...) {
  cout << "dynamic_cast<X&>(D1) failed"
       << endl;
}

The failure, of course, is because D1 doesn’t actually point to an X object. If an exception was
not thrown here, then xr would be unbound, and the guarantee that all objects or references
are constructed storage would be broken.

An exception is also thrown if you try to dereference a null pointer in the process of calling
typeid( ). The Standard C++ exception is called bad_typeid:

B* bp = 0;
try {
  typeid(*bp); // Throws exception
} catch(bad_typeid) {
  cout << "Bad typeid() expression" << endl;
}

Here (unlike the reference example above) you can avoid the exception by checking for a
nonzero pointer value before attempting the operation; this is the preferred practice.

Multiple inheritance
Of course, the RTTI mechanisms must work properly with all the complexities of multiple
inheritance, including virtual base classes:

//: C24:Mirtti.cpp
// MI & RTTI
#include <iostream>
#include <typeinfo>
using namespace std;

class BB {
public:
  virtual void f() {}
  virtual ~BB() {}
};
class B1 : virtual public BB {};
class B2 : virtual public BB {};
class MI : public B1, public B2 {};

int main() {
  BB* bbp = new MI; // Upcast



Chapter 17: Run-Time Type Identification
795

  // Proper name detection:
  cout << typeid(*bbp).name() << endl;
  // Dynamic_cast works properly:
  MI* mip = dynamic_cast<MI*>(bbp);
  // Can't force old-style cast:
  //! MI* mip2 = (MI*)bbp; // Compile error
} ///:~

typeid( ) properly detects the name of the actual object, even through the virtual base class
pointer. The dynamic_cast also works correctly. But the compiler won’t even allow you to
try to force a cast the old way:

MI* mip = (MI*)bbp; // Compile-time error

It knows this is never the right thing to do, so it requires that you use a dynamic_cast.

Sensible uses for RTTI
Because it allows you to discover type information from an anonymous polymorphic pointer,
RTTI is ripe for misuse by the novice because RTTI may make sense before virtual functions
do. For many people coming from a procedural background, it’s very difficult not to organize
their programs into sets of switch statements. They could accomplish this with RTTI and thus
lose the very important value of polymorphism in code development and maintenance. The
intent of C++ is that you use virtual functions throughout your code, and you only use RTTI
when you must.

However, using virtual functions as they are intended requires that you have control of the
base-class definition because at some point in the extension of your program you may
discover the base class doesn’t include the virtual function you need. If the base class comes
from a library or is otherwise controlled by someone else, a solution to the problem is RTTI:
You can inherit a new type and add your extra member function. Elsewhere in the code you
can detect your particular type and call that member function. This doesn’t destroy the
polymorphism and extensibility of the program, because adding a new type will not require
you to hunt for switch statements. However, when you add new code in your main body that
requires your new feature, you’ll have to detect your particular type.

Putting a feature in a base class might mean that, for the benefit of one particular class, all the
other classes derived from that base require some meaningless stub of a virtual function. This
makes the interface less clear and annoys those who must redefine pure virtual functions
when they derive from that base class. For example, suppose that in the WIND5.CPP program
in Chapter 13 (page Erreur! Signet non défini.) you wanted to clear the spit valves of all the
instruments in your orchestra that had them. One option is to put a virtual ClearSpitValve( )
function in the base class Instrument, but this is confusing because it implies that Percussion
and electronic instruments also have spit valves. RTTI provides a much more reasonable



Chapter 17: Run-Time Type Identification
796

solution in this case because you can place the function in the specific class (Wind in this
case) where it’s appropriate.

Finally, RTTI will sometimes solve efficiency problems. If your code uses polymorphism in a
nice way, but it turns out that one of your objects reacts to this general-purpose code in a
horribly inefficient way, you can pick that type out using RTTI and write case-specific code
to improve the efficiency.

Revisiting the trash recycler
Here’s the trash recycling simulation from Chapter 14, rewritten to use RTTI instead of
building the information into the class hierarchy:

//: C24:Recycle2.cpp
// Chapter 14 example w/ RTTI
#include <fstream>
#include <vector>
#include <typeinfo>
#include <cstdlib>
#include <ctime>
#include "../purge.h"
using namespace std;
ofstream out("recycle2.out");

class Trash {
  float Weight;
public:
  Trash(float Wt) : Weight(Wt) {}
  virtual float value() const = 0;
  float weight() const { return Weight; }
  virtual ~Trash() { out << "~Trash()\n"; }
};

class Aluminum : public Trash {
  static float val;
public:
  Aluminum(float Wt) : Trash(Wt) {}
  float value() const { return val; }
  static void value(int newval) {
    val = newval;
  }
};

float Aluminum::val = 1.67;



Chapter 17: Run-Time Type Identification
797

class Paper : public Trash {
  static float val;
public:
  Paper(float Wt) : Trash(Wt) {}
  float value() const { return val; }
  static void value(int newval) {
    val = newval;
  }
};

float Paper::val = 0.10;

class Glass : public Trash {
  static float val;
public:
  Glass(float Wt) : Trash(Wt) {}
  float value() const { return val; }
  static void value(int newval) {
    val = newval;
  }
};

float Glass::val = 0.23;

// Sums up the value of the Trash in a bin:
template<class Container> void
SumValue(Container& bin, ostream& os) {
  Container::iterator tally = bin.begin();
  float val = 0;
  while(tally != bin.end()) {
    val += (*tally)->weight() * (*tally)->value();
    os << "weight of "
        << typeid(*tally).name()
        << " = " << (*tally)->weight() << endl;
    tally++;
  }
  os << "Total value = " << val << endl;
}

int main() {
  srand(time(0)); // Seed random number generator
  vector<Trash*> bin;



Chapter 17: Run-Time Type Identification
798

  // Fill up the Trash bin:
  for(int i = 0; i < 30; i++)
    switch(rand() % 3) {
      case 0 :
        bin.push_back(new Aluminum(rand() % 100));
        break;
      case 1 :
        bin.push_back(new Paper(rand() % 100));
        break;
      case 2 :
        bin.push_back(new Glass(rand() % 100));
        break;
    }
  // Note difference w/ chapter 14: Bins hold
  // exact type of object, not base type:
  vector<Glass*> glassBin;
  vector<Paper*> paperBin;
  vector<Aluminum*> alBin;
  vector<Trash*>::iterator sorter = bin.begin();
  // Sort the Trash:
  while(sorter != bin.end()) {
    Aluminum* ap =
      dynamic_cast<Aluminum*>(*sorter);
    Paper* pp =
      dynamic_cast<Paper*>(*sorter);
    Glass* gp =
      dynamic_cast<Glass*>(*sorter);
    if(ap) alBin.push_back(ap);
    if(pp) paperBin.push_back(pp);
    if(gp) glassBin.push_back(gp);
    sorter++;
  }
  SumValue(alBin, out);
  SumValue(paperBin, out);
  SumValue(glassBin, out);
  SumValue(bin, out);
  purge(bin);
} ///:~

The nature of this problem is that the trash is thrown unclassified into a single bin, so the
specific type information is lost. But later, the specific type information must be recovered to
properly sort the trash, and so RTTI is used. In Chapter 14, an RTTI system was inserted into
the class hierarchy, but as you can see here, it’s more convenient to use C++’s built-in RTTI.



Chapter 17: Run-Time Type Identification
799

Mechanism & overhead of
RTTI

Typically, RTTI is implemented by placing an additional pointer in the VTABLE. This
pointer points to the typeinfo structure for that particular type. (Only one instance of the
typeinfo structure is created for each new class.) So the effect of a typeid( ) expression is
quite simple: The VPTR is used to fetch the typeinfo pointer, and a reference to the resulting
typeinfo structure is produced. Also, this is a deterministic process — you always know how
long it’s going to take.

For a dynamic_cast<destination*>(source_pointer), most cases are quite straightforward:
source_pointer’s RTTI information is retrieved, and RTTI information for the type
destination* is fetched. Then a library routine determines whether source_pointer’s type is
of type destination* or a base class of destination*. The pointer it returns may be slightly
adjusted because of multiple inheritance if the base type isn’t the first base of the derived
class. The situation is (of course) more complicated with multiple inheritance where a base
type may appear more than once in an inheritance hierarchy and where virtual base classes are
used.

Because the library routine used for dynamic_cast must check through a list of base classes,
the overhead for dynamic_cast is higher than typeid( ) (but of course you get different
information, which may be essential to your solution), and it’s nondeterministic because it
may take more time to discover a base class than a derived class. In addition, dynamic_cast
allows you to compare any type to any other type; you aren’t restricted to comparing types
within the same hierarchy. This adds extra overhead to the library routine used by
dynamic_cast.

Creating your own RTTI
If your compiler doesn’t yet support RTTI, you can build it into your class libraries quite
easily. This makes sense because RTTI was added to the language after observing that
virtually all class libraries had some form of it anyway (and it was relatively «free» after
exception handling was added because exceptions require exact knowledge of type
information).

Essentially, RTTI requires only a virtual function to identify the exact type of the class, and a
function to take a pointer to the base type and cast it down to the more derived type; this
function must produce a pointer to the more derived type. (You may also wish to handle
references.) There are a number of approaches to implement your own RTTI, but all require a
unique identifier for each class and a virtual function to produce type information. The
following uses a static member function called dynacast( ) that calls a type information
function dynamic_type( ). Both functions must be defined for each new derivation:



Chapter 17: Run-Time Type Identification
800

//: C24:Selfrtti.cpp
// Your own RTTI system
#include <iostream>
#include <vector>
#include "../purge.h"
using namespace std;

class Security {
protected:
  enum { baseID = 1000 };
public:
  virtual int dynamic_type(int ID) {
    if(ID == baseID) return 1;
    return 0;
  }
};

class Stock : public Security {
protected:
  enum { typeID = baseID + 1 };
public:
  int dynamic_type(int ID) {
    if(ID == typeID) return 1;
    return Security::dynamic_type(ID);
  }
  static Stock* dynacast(Security* s) {
    if(s->dynamic_type(typeID))
      return (Stock*)s;
    return 0;
  }
};

class Bond : public Security {
protected:
  enum { typeID = baseID + 2 };
public:
  int dynamic_type(int ID) {
    if(ID == typeID) return 1;
    return Security::dynamic_type(ID);
  }
  static Bond* dynacast(Security* s) {
    if(s->dynamic_type(typeID))
      return (Bond*)s;



Chapter 17: Run-Time Type Identification
801

    return 0;
  }
};

class Commodity : public Security {
protected:
  enum { typeID = baseID + 3};
public:
  int dynamic_type(int ID) {
    if(ID == typeID) return 1;
    return Security::dynamic_type(ID);
  }
  static Commodity* dynacast(Security* s) {
    if(s->dynamic_type(typeID))
      return (Commodity*)s;
    return 0;
  }
  void special() {
    cout << "special Commodity function\n";
  }
};

class Metal : public Commodity {
protected:
  enum { typeID = baseID + 4};
public:
  int dynamic_type(int ID) {
    if(ID == typeID) return 1;
    return Commodity::dynamic_type(ID);
  }
  static Metal* dynacast(Security* s) {
    if(s->dynamic_type(typeID))
      return (Metal*)s;
    return 0;
  }
};

int main() {
  vector<Security*> portfolio;
  portfolio.push_back(new Metal);
  portfolio.push_back(new Commodity);
  portfolio.push_back(new Bond);
  portfolio.push_back(new Stock);



Chapter 17: Run-Time Type Identification
802

  vector<Security*>::iterator it =
    portfolio.begin();
  while(it != portfolio.end()) {
    Commodity* cm = Commodity::dynacast(*it);
    if(cm) cm->special();
    else cout << "not a Commodity" << endl;
    it++;
  }
  cout << "cast from intermediate pointer:\n";
  Security* sp = new Metal;
  Commodity* cp = Commodity::dynacast(sp);
  if(cp) cout << "it's a Commodity\n";
  Metal* mp = Metal::dynacast(sp);
  if(mp) cout << "it's a Metal too!\n";
  purge(portfolio);
} ///:~

Each subclass must create its own typeID, redefine the virtual dynamic_type( ) function to
return that typeID, and define a static member called dynacast( ), which takes the base
pointer (or a pointer at any level in a deeper hierarchy — in that case, the pointer is simply
upcast).

In the classes derived from Security, you can see that each defines its own typeID
enumeration by adding to baseID. It’s essential that baseID be directly accessible in the
derived class because the enum must be evaluated at compile-time, so the usual approach of
reading private data with an inline function would fail. This is a good example of the need for
the protected mechanism.

The enum baseID establishes a base identifier for all types derived from Security. That way,
if an identifier clash ever occurs, you can change all the identifiers by changing the base
value. (However, because this scheme doesn’t compare different inheritance trees, an
identifier clash is unlikely). In all the classes, the class identifier number is protected, so it’s
directly available to derived classes but not to the end user.

This example illustrates what built-in RTTI must cope with. Not only must you be able to
determine the exact type, you must also be able to find out whether your exact type is derived
from the type you’re looking for. For example, Metal is derived from Commodity, which has
a function called special( ), so if you have a Metal object you can call special( ) for it. If
dynamic_type( ) told you only the exact type of the object, you could ask it if a Metal were a
Commodity, and it would say «no,» which is untrue. Therefore, the system must be set up so
it will properly cast to intermediate types in a hierarchy as well as exact types.

The dynacast( ) function determines the type information by calling the virtual
dynamic_type( ) function for the Security pointer it’s passed. This function takes an
argument of the typeID for the class you’re trying to cast to. It’s a virtual function, so the
function body is the one for the exact type of the object. Each dynamic_type( ) function first



Chapter 17: Run-Time Type Identification
803

checks to see if the identifier it was passed is an exact match for its own type. If that isn’t true,
it must check to see if it matches a base type; this is accomplished by making a call to the
base class dynamic_type( ). Just like a recursive function call, each dynamic_type( ) checks
against its own identifier. If it doesn’t find a match, it returns the result of calling the base
class dynamic_type( ). When the root of the hierarchy is reached, zero is returned to indicate
no match was found.

If dynamic_type( ) returns one (for «true») the object pointed to is either the exact type
you’re asking about or derived from that type, and dynacast( ) takes the Security pointer and
casts it to the desired type. If the return value is false, dynacast( ) returns zero to indicate the
cast was unsuccessful. In this way it works just like the C++ dynamic_cast operator.

The C++ dynamic_cast operator does one more thing the above scheme can’t do: It compares
types from one inheritance hierarchy to another, completely separate inheritance hierarchy.
This adds generality to the system for those unusual cases where you want to compare across
hierarchies, but it also adds some complexity and overhead.

You can easily imagine how to create a DYNAMIC_CAST macro that uses the above scheme
and allows an easier transition to the built-in dynamic_cast operator.

New cast syntax
Whenever you use a cast, you’re breaking the type system. 67 You’re telling the compiler that
even though you know an object is a certain type, you’re going to pretend it is a different
type. This is an inherently dangerous activity, and a clear source of errors.

Unfortunately, each cast is different: the name of the pretender type surrounded by
parentheses. So if you are given a piece of code that isn’t working correctly and you know
you want to examine all casts to see if they’re the source of the errors, how can you guarantee
that you find all the casts? In a C program, you can’t. For one thing, the C compiler doesn’t
always require a cast (it’s possible to assign dissimilar types through a void pointer without
being forced to use a cast), and the casts all look different, so you can’t know if you’ve
searched for every one.

To solve this problem, C++ provides a consistent casting syntax using four reserved words:
dynamic_cast (the subject of the first part of this chapter), const_cast, static_cast, and
reinterpret_cast. This window of opportunity opened up when the need for dynamic_cast
arose — the meaning of the existing cast syntax was already far too overloaded to support any
additional functionality.

By using these casts instead of the (newtype) syntax, you can easily search for all the casts in
any program. To support existing code, most compilers have various levels of error/warning

                                                       

67 See Josée Lajoie , «The new cast notation and the bool data type,» C++ Report, September,
1994 pp. 46-51.



Chapter 17: Run-Time Type Identification
804

generation that can be turned on and off. But if you turn on full errors for the new cast syntax,
you can be guaranteed that you’ll find all the places in your project where casts occur, which
will make bug-hunting much easier.

The following table describes the different forms of casting:

static_cast For «well-behaved» and «reasonably
well-behaved» casts, including things you
might now do without a cast (e.g., an
upcast or automatic type conversion).

const_cast To cast away const and/or volatile.

dynamic_cast For type-safe downcasting (described
earlier in the chapter).

reinterpret_cast To cast to a completely different meaning.
The key is that you’ll need to cast back to
the original type to use it safely. The type
you cast to is typically used only for bit
twiddling or some other mysterious
purpose. This is the most dangerous of all
the casts.

The three new casts will be described more completely in the following sections.

static_cast
A static_cast is used for all conversions that are well-defined. These include «safe»
conversions that the compiler would allow you to do without a cast and less-safe conversions
that are nonetheless well-defined. The types of conversions covered by static_cast include
typical castless conversions, narrowing (information-losing) conversions, forcing a
conversion from a void*, implicit type conversions, and static navigation of class hierarchies:

//: C24:Statcast.cpp
// Examples of static_cast

class Base { /* ... */ };
class Derived : public Base {
public:
  // ...
  // Automatic type conversion:
  operator int() { return 1; }
};

void func(int) {}



Chapter 17: Run-Time Type Identification
805

class Other {};

int main() {
  int i = 0x7fff; // Max pos value = 32767
  long l;
  float f;
  // (1) typical castless conversions:
  l = i;
  f = i;
  // Also works:
  l = static_cast<long>(i);
  f = static_cast<float>(i);

  // (2) narrowing conversions:
  i = l; // May lose digits
  i = f; // May lose info
  // Says "I know," eliminates warnings:
  i = static_cast<int>(l);
  i = static_cast<int>(f);
  char c = static_cast<char>(i);

  // (3) forcing a conversion from void* :
  void* vp = &i;
  // Old way produces a dangerous conversion:
  float* fp = (float*)vp;
  // The new way is equally dangerous:
  fp = static_cast<float*>(vp);

  // (4) implicit type conversions, normally
  // Performed by the compiler:
  Derived d;
  Base* bp = &d; // Upcast: normal and OK
  bp = static_cast<Base*>(&d); // More explicit
  int x = d; // Automatic type conversion
  x = static_cast<int>(d); // More explicit
  func(d); // Automatic type conversion
  func(static_cast<int>(d)); // More explicit

  // (5) Static Navigation of class hierarchies:
  Derived* dp = static_cast<Derived*>(bp);
  // ONLY an efficiency hack. dynamic_cast is
  // Always safer. However:
  // Other* op = static_cast<Other*>(bp);



Chapter 17: Run-Time Type Identification
806

  // Conveniently gives an error message, while
  Other* op2 = (Other*)bp;
  // Does not.
} ///:~

In Section (1), you see the kinds of conversions you’re used to doing in C, with or without a
cast. Promoting from an int to a long or float is not a problem because the latter can always
hold every value that an int can contain. Although it’s unnecessary, you can use static_cast to
highlight these promotions.

Converting back the other way is shown in (2). Here, you can lose data because an int is not
as «wide» as a long or a float — it won’t hold numbers of the same size. Thus these are called
«narrowing conversions.» The compiler will still perform these, but will often give you a
warning. You can eliminate this warning and indicate that you really did mean it using a cast.

Assigning from a void* is not allowed without a cast in C++ (unlike C), as seen in (3). This is
dangerous and requires that a programmer know what he’s doing. The static_cast, at least, is
easier to locate than the old standard cast when you’re hunting for bugs.

Section (4) shows the kinds of implicit type conversions that are normally performed
automatically by the compiler. These are automatic and require no casting, but again
static_cast highlights the action in case you want to make it clear what’s happening or hunt
for it later.

If a class hierarchy has no virtual functions or if you have other information that allows you
to safely downcast, it’s slightly faster to do the downcast statically than with dynamic_cast,
as shown in (5). In addition, static_cast won’t allow you to cast out of the hierarchy, as the
traditional cast will, so it’s safer. However, statically navigating class hierarchies is always
risky and you should use dynamic_cast unless you have a special situation.

const_cast
If you want to convert from a const to a nonconst or from a volatile to a nonvolatile, you use
const_cast. This is the only conversion allowed with const_cast; if any other conversion is
involved it must be done separately or you’ll get a compile-time error.

//: C24:Constcst.cpp
// Const casts

int main() {
  const int i = 0;
  int* j = (int*)&i; // Deprecated form
  j  = const_cast<int*>(&i); // Preferred
  // Can't do simultaneous additional casting:
//! long* l = const_cast<long*>(&i); // Error
  volatile int k = 0;
  int* u = const_cast<int*>(&k);



Chapter 17: Run-Time Type Identification
807

}

class X {
  int i;
// mutable int i; // A better approach
public:
  void f() const {
    // Casting away const-ness:
    (const_cast<X*>(this))->i = 1;
  }
}; ///:~

If you take the address of a const object, you produce a pointer to a const, and this cannot be
assigned to a nonconst pointer without a cast. The old-style cast will accomplish this, but the
const_cast is the appropriate one to use. The same holds true for volatile.

If you want to change a class member inside a const member function, the traditional
approach is to cast away constness by saying (X*)this. You can still cast away constness
using the better const_cast, but a superior approach is to make that particular data member
mutable, so it’s clear in the class definition, and not hidden away in the member function
definitions, that the member may change in a const member function.

reinterpret_cast
This is the least safe of the casting mechanisms, and the one most likely to point to bugs. At
the very least, your compiler should contain switches to allow you to force the use of
const_cast and reinterpret_cast, which will locate the most unsafe of the casts.

A reinterpret_cast pretends that an object is just a bit pattern that can be treated (for some
dark purpose) as if it were an entirely different type of object. This is the low-level bit
twiddling that C is notorious for. You’ll virtually always need to reinterpret_cast back to the
original type before doing anything else with it.

//: C24:Reinterp.cpp
// Reinterpret_cast
// Example depends on VPTR location,
// Which may differ between compilers.
#include <cstring>
#include <fstream>
using namespace std;
ofstream out("reinterp.out");

class X {
  enum { sz = 5 };
  int a[sz];



Chapter 17: Run-Time Type Identification
808

public:
  X() { memset(a, 0, sz * sizeof(int)); }
  virtual void f() {}
  // Size of all the data members:
  int membsize() { return sizeof(a); }
  friend ostream&
    operator<<(ostream& os, const X& x) {
      for(int i = 0; i < sz; i++)
        os << x.a[i] << ' ';
      return os;
  }
  virtual ~X() {}
};

int main() {
  X x;
  out << x << endl; // Initialized to zeroes
  int* xp = reinterpret_cast<int*>(&x);
  xp[1] = 47;
  out << x << endl; // Oops!

  X x2;
  const vptr_size = sizeof(X) - x2.membsize();
  long l = reinterpret_cast<long>(&x2);
  // *IF* the VPTR is first in the object:
  l += vptr_size; // Move past VPTR
  xp = reinterpret_cast<int*>(l);
  xp[1] = 47;
  out << x2 << endl;
} ///:~

The class X contains some data and a virtual member function. In main( ), an X object is
printed out to show that it gets initialized to zero, and then its address is cast to an int* using a
reinterpret_cast. Pretending it’s an int*, the object is indexed into as if it were an array and
(in theory) element one is set to 47. But here’s the output:68

0 0 0 0 0
47 0 0 0 0

Clearly, it’s not safe to assume that the data in the object begins at the starting address of the
object. In fact, this compiler puts the VPTR at the beginning of the object, so if xp[0] had
been selected instead of xp[1], it would have trashed the VPTR.
                                                       

68 For this particular compiler. Yours will probably be different.



Chapter 17: Run-Time Type Identification
809

To fix the problem, the size of the VPTR is calculated by subtracting the size of the data
members from the size of the object. Then the address of the object is cast (again, with
reinterpret_cast) to a long, and the starting address of the actual data is established,
assuming the VPTR is placed at the beginning of the object. The resulting number is cast back
to an int* and the indexing now produces the desired result:

0 47 0 0 0

Of course, this is inadvisable and nonportable programming. That’s the kind of thing that a
reinterpret_cast indicates, but it’s available when you decide you have to use it.

Summary
RTTI is a convenient extra feature, a bit of icing on the cake. Although normally you upcast a
pointer to a base class and then use the generic interface of that base class (via virtual
functions), occasionally you get into a corner where things can be more effective if you know
the exact type of the object pointed to by the base pointer, and that’s what RTTI provides.
Because some form of virtual-function-based RTTI has appeared in almost all class libraries,
this is a useful feature because it means

 1.  You don’t have to build it into your own libraries.
 2.  You don’t have to worry whether it will be built into someone else’s library.
 3.  You don’t have the extra programming overhead of maintaining an RTTI

scheme during inheritance.
 4.  The syntax is consistent, so you don’t have to figure out a new one for each

library.
While RTTI is a convenience, like most features in C++ it can be misused by either a naive or
determined programmer. The most common misuse may come from the programmer who
doesn’t understand virtual functions and uses RTTI to do type-check coding instead. The
philosophy of C++ seems to be to provide you with powerful tools and guard for type
violations and integrity, but if you want to deliberately misuse or get around a language
feature, there’s nothing to stop you. Sometimes a slight burn is the fastest way to gain
experience.

The new cast syntax will be a big help during debugging because casting opens a hole into
your type system and allows errors to slip in. The new cast syntax will allow you to more
easily locate these error entryways.

Exercises
 1.  Use RTTI to assist in program debugging by printing out the exact name of

a template using typeid( ). Instantiate the template for various types and see
what the results are.



Chapter 17: Run-Time Type Identification
810

 2.  Implement the function TurnColorIfYouAreA( ) described earlier in this
chapter using RTTI.

 3.  Modify the Instrument hierarchy from Chapter 13 by first copying
WIND5.CPP to a new location. Now add a virtual ClearSpitValve( )
function to the Wind class, and redefine it for all the classes inherited from
Wind. Instantiate a TStash to hold Instrument pointers and fill it up with
various types of Instrument objects created using new. Now use RTTI to
move through the container looking for objects in class Wind, or derived
from Wind. Call the ClearSpitValve( ) function for these objects. Notice
that it would unpleasantly confuse the Instrument base class if it contained
a ClearSpitValve( ) function.



811

XX: Maintaining
system integrity





813

25: Design patterns
«… describes a problem which occurs over and over again
in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice»  – Christopher Alexander

[[ This is currently just cribbed from the «Thinking in Java»
chapter; it will be converted to C++ and more will be added
]]

This chapter introduces the important and yet non-traditional
«patterns» approach to program design.

Probably the most important step forward in object-oriented design is the «design patterns»
movement, chronicled in Design Patterns, by Gamma, Helm, Johnson & Vlissides (Addison-
Wesley 1995).69 That book shows 23 different solutions to particular classes of problems. In
this chapter, the basic concepts of design patterns will be introduced along with several
examples. This should whet your appetite to read Design Patterns (a source of what has now
become an essential, almost mandatory, vocabulary for OOP programmers).

The latter part of this chapter contains an example of the design evolution process, starting
with an initial solution and moving through the logic and process of evolving the solution to
more appropriate designs. The program shown (a trash sorting simulation) has evolved over
time, and you can look at that evolution as a prototype for the way your own design can start
as an adequate solution to a particular problem and evolve into a flexible approach to a class
of problems.

The pattern concept
Initially, you can think of a pattern as an especially clever and insightful way of solving a
particular class of problems. That is, it looks like a lot of people have worked out all the
angles of a problem and have come up with the most general, flexible solution for it. The

                                                       

69 Conveniently, the examples are in C++.



Chapter 16: Design Patterns 814

problem could be one you have seen and solved before, but your solution probably didn’t
have the kind of completeness you’ll see embodied in a pattern.

Although they’re called «design patterns,» they really aren’t tied to the realm of design. A
pattern seems to stand apart from the traditional way of thinking about analysis, design, and
implementation. Instead, a pattern embodies a complete idea within a program, and thus it can
sometimes appear at the analysis phase or high-level design phase. This is interesting because
a pattern has a direct implementation in code and so you might not expect it to show up before
low-level design or implementation (and in fact you might not realize that you need a
particular pattern until you get to those phases).

The basic concept of a pattern can also be seen as the basic concept of program design: adding
a layer of abstraction. Whenever you abstract something you’re isolating particular details,
and one of the most compelling motivations behind this is to separate things that change from
things that stay the same. Another way to put this is that once you find some part of your
program that’s likely to change for one reason or another, you’ll want to keep those changes
from propagating other changes throughout your code. Not only does this make the code
much cheaper to maintain, but it also turns out that it is usually simpler to understand (which
results in lowered costs).

Often, the most difficult part of developing an elegant and cheap-to-maintain design is in
discovering what I call «the vector of change.» (Here, «vector» refers to the maximum
gradient and not a collection class.) This means finding the most important thing that changes
in your system, or put another way, discovering where your greatest cost is. Once you
discover the vector of change, you have the focal point around which to structure your design.

So the goal of design patterns is to isolate changes in your code. If you look at it this way,
you’ve been seeing some design patterns already in this book. For example, inheritance can
be thought of as a design pattern (albeit one implemented by the compiler). It allows you to
express differences in behavior (that’s the thing that changes) in objects that all have the same
interface (that’s what stays the same). Composition can also be considered a pattern, since it
allows you to change – dynamically or statically – the objects that implement your class, and
thus the way that class works.

You’ve also already seen another pattern that appears in Design Patterns: the iterator (Java
1.0 and 1.1 capriciously calls it the Enumeration; Java 1.2 collections use «iterator»). This
hides the particular implementation of the collection as you’re stepping through and selecting
the elements one by one. The iterator allows you to write generic code that performs an
operation on all of the elements in a sequence without regard to the way that sequence is built.
Thus your generic code can be used with any collection that can produce an iterator.

The singleton
Possibly the simplest design pattern is the singleton, which is a way to provide one and only
one instance of an object. This is used in the Java libraries, but here’s a more direct example:

//: C25:SingletonPattern.java
// The Singleton design pattern: you can
// never instantiate more than one.



Chapter 16: Design Patterns 815

package c16;

// Since this isn't inherited from a Cloneable
// base class and cloneability isn't added,
// making it final prevents cloneability from
// being added in any derived classes:
final class Singleton {
  private static Singleton s = new Singleton(47);
  private int i;
  private Singleton(int x) { i = x; }
  public static Singleton getHandle() {
    return s;
  }
  public int getValue() { return i; }
  public void setValue(int x) { i = x; }
}

public class SingletonPattern {
  public static void main(String[] args) {
    Singleton s = Singleton.getHandle();
    System.out.println(s.getValue());
    Singleton s2 = Singleton.getHandle();
    s2.setValue(9);
    System.out.println(s.getValue());
    try {
      // Can't do this: compile-time error.
      // Singleton s3 = (Singleton)s2.clone();
    } catch(Exception e) {}
  }
} ///:~

The key to creating a singleton is to prevent the client programmer from having any way to
create an object except the ways you provide. You must make all constructors private, and
you must create at least one constructor to prevent the compiler from synthesizing a default
constructor for you (which it will create as «friendly»).

At this point, you decide how you’re going to create your object. Here, it’s created statically,
but you can also wait until the client programmer asks for one and create it on demand. In any
case, the object should be stored privately. You provide access through public methods. Here,
getHandle( ) produces the handle to the Singleton object. The rest of the interface
(getValue( ) and setValue( )) is the regular class interface.

Java also allows the creation of objects through cloning. In this example, making the class
final prevents cloning. Since Singleton is inherited directly from Object, the clone( ) member
function remains protected so it cannot be used (doing so produces a compile-time error).
However, if you’re inheriting from a class hierarchy that has already overridden clone( ) as



Chapter 16: Design Patterns 816

public and implemented Cloneable, the way to prevent cloning is to override clone( ) and
throw a CloneNotSupportedException as described in Chapter 12. (You could also override
clone( ) and simply return this, but that would be deceiving since the client programmer
would think they were cloning the object, but would instead still be dealing with the original.)

Note that you aren’t restricted to creating only one object. This is also a technique to create a
limited pool of objects. In that situation, however, you can be confronted with the problem of
sharing objects in the pool. If this is an issue, you can create a solution involving a check-out
and check-in of the shared objects.

Classifying patterns
The Design Patterns book discusses 23 different patterns, classified under three purposes (all
of which revolve around the particular aspect that can vary). The three purposes are:

1. Creational: how an object can be created. This often involves isolating the
details of object creation so your code isn’t dependent on what types of objects
there are and thus doesn’t have to be changed when you add a new type of
object. The aforementioned Singleton is classified as a creational pattern, and
later in this chapter you’ll see examples of Factory Method and Prototype.

2. Structural: designing objects to satisfy particular project constraints. These
work with the way objects are connected with other objects to ensure that
changes in the system don’t require changes to those connections.

3. Behavioral: objects that handle particular types of actions within a program.
These encapsulate processes that you want to perform, such as interpreting a
language, fulfilling a request, moving through a sequence (as in an iterator), or
implementing an algorithm. This chapter contains examples of the Observer and
the Visitor patterns.

The Design Patterns book has a section on each of its 23 patterns along with one or more
examples for each, typically in C++ but sometimes in Smalltalk. (You’ll find that this doesn’t
matter too much since you can easily translate the concepts from either language into Java.)
This book will not repeat all the patterns shown in Design Patterns since that book stands on
its own and should be studied separately. Instead, this chapter will give some examples that
should provide you with a decent feel for what patterns are about and why they are so
important.

The observer pattern
The observer pattern solves a fairly common problem: What if a group of objects needs to
update themselves when some object changes state? This can be seen in the «model-view»
aspect of Smalltalk’s MVC (model-view-controller), or the almost-equivalent «Document-
View Architecture.» Suppose that you have some data (the «document») and more than one
view, say a plot and a textual view. When you change the data, the two views must know to



Chapter 16: Design Patterns 817

update themselves, and that’s what the observer facilitates. It’s a common enough problem
that its solution has been made a part of the standard java.util library.

There are two types of objects used to implement the observer pattern in Java. The
Observable class keeps track of everybody who wants to be informed when a change
happens, whether the «state» has changed or not. When someone says «OK, everybody
should check and potentially update themselves,» the Observable class performs this task by
calling the notifyObservers( ) member function for each one on the list. The
notifyObservers( ) member function is part of the base class Observable.

There are actually two «things that change» in the observer pattern: the quantity of observing
objects and the way an update occurs. That is, the observer pattern allows you to modify both
of these without affecting the surrounding code.

The following example is similar to the ColorBoxes example from Chapter 14. Boxes are
placed in a grid on the screen and each one is initialized to a random color. In addition, each
box implements the Observer interface and is registered with an Observable object. When
you click on a box, all of the other boxes are notified that a change has been made because the
Observable object automatically calls each Observer object’s update( ) member function.
Inside this member function, the box checks to see if it’s adjacent to the one that was clicked,
and if so it changes its color to match the clicked box.

//: C25:BoxObserver.java
// Demonstration of Observer pattern using
// Java's built-in observer classes.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

// You must inherit a new type of Observable:
class BoxObservable extends Observable {
  public void notifyObservers(Object b) {
    // Otherwise it won't propagate changes:
    setChanged();
    super.notifyObservers(b);
  }
}

public class BoxObserver extends Frame {
  Observable notifier = new BoxObservable();
  public BoxObserver(int grid) {
    setTitle("Demonstrates Observer pattern");
    setLayout(new GridLayout(grid, grid));
    for(int x = 0; x < grid; x++)
      for(int y = 0; y < grid; y++)
        add(new OCBox(x, y, notifier));
  }



Chapter 16: Design Patterns 818

  public static void main(String[] args) {
    int grid = 8;
    if(args.length > 0)
      grid = Integer.parseInt(args[0]);
    Frame f = new BoxObserver(grid);
    f.setSize(500, 400);
    f.setVisible(true);
    f.addWindowListener(
      new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          System.exit(0);
        }
      });
  }
}

class OCBox extends Canvas implements Observer {
  Observable notifier;
  int x, y; // Locations in grid
  Color cColor = newColor();
  static final Color[] colors = {
    Color.black, Color.blue, Color.cyan,
    Color.darkGray, Color.gray, Color.green,
    Color.lightGray, Color.magenta,
    Color.orange, Color.pink, Color.red,
    Color.white, Color.yellow
  };
  static final Color newColor() {
    return colors[
      (int)(Math.random() * colors.length)
    ];
  }
  OCBox(int x, int y, Observable notifier) {
    this.x = x;
    this.y = y;
    notifier.addObserver(this);
    this.notifier = notifier;
    addMouseListener(new ML());
  }
  public void paint(Graphics  g) {
    g.setColor(cColor);
    Dimension s = getSize();
    g.fillRect(0, 0, s.width, s.height);
  }



Chapter 16: Design Patterns 819

  class ML extends MouseAdapter {
    public void mousePressed(MouseEvent e) {
      notifier.notifyObservers(OCBox.this);
    }
  }
  public void update(Observable o, Object arg) {
    OCBox clicked = (OCBox)arg;
    if(nextTo(clicked)) {
      cColor = clicked.cColor;
      repaint();
    }
  }
  private final boolean nextTo(OCBox b) {
    return Math.abs(x - b.x) <= 1 &&
           Math.abs(y - b.y) <= 1;
  }
} ///:~

When you first look at the online documentation for Observable, it’s a bit confusing because
it appears that you can use an ordinary Observable object to manage the updates. But this
doesn’t work; try it – inside BoxObserver, create an Observable object instead of a
BoxObservable object and see what happens: nothing. To get an effect, you must inherit from
Observable and somewhere in your derived-class code call setChanged( ). This is the
member function that sets the «changed» flag, which means that when you call
notifyObservers( ) all of the observers will, in fact, get notified. In the example above
setChanged( ) is simply called within notifyObservers( ), but you could use any criterion
you want to decide when to call setChanged( ).

BoxObserver contains a single Observable object called notifier, and every time an OCBox
object is created, it is tied to notifier. In OCBox, whenever you click the mouse the
notifyObservers( ) member function is called, passing the clicked object in as an argument so
that all the boxes receiving the message (in their update( ) member function) know who was
clicked and can decide whether to change themselves or not. Using a combination of code in
notifyObservers( ) and update( ) you can work out some fairly complex schemes.

It might appear that the way the observers are notified must be frozen at compile time in the
notifyObservers( ) member function. However, if you look more closely at the code above
you’ll see that the only place in BoxObserver or OCBox where you're aware that you’re
working with a BoxObservable is at the point of creation of the Observable object – from
then on everything uses the basic Observable interface. This means that you could inherit
other Observable classes and swap them at run-time if you want to change notification
behavior then.



Chapter 16: Design Patterns 820

The composite

Simulating the trash recycler
The nature of this problem is that the trash is thrown unclassified into a single bin, so the
specific type information is lost. But later, the specific type information must be recovered to
properly sort the trash. In the initial solution, RTTI (described in Chapter 11) is used.

This is not a trivial design because it has an added constraint. That’s what makes it interesting
– it’s more like the messy problems you’re likely to encounter in your work. The extra
constraint is that the trash arrives at the trash recycling plant all mixed together. The program
must model the sorting of that trash. This is where RTTI comes in: you have a bunch of
anonymous pieces of trash, and the program figures out exactly what type they are.

//: C25:RecycleA.java
// Recycling with RTTI
package c16.recyclea;
import java.util.*;
import java.io.*;

abstract class Trash {
  private double weight;
  Trash(double wt) { weight = wt; }
  abstract double value();
  double weight() { return weight; }
  // Sums the value of Trash in a bin:
  static void sumValue(Vector bin) {
    Enumeration e = bin.elements();
    double val = 0.0f;
    while(e.hasMoreElements()) {
      // One kind of RTTI:
      // A dynamically-checked cast
      Trash t = (Trash)e.nextElement();
      // Polymorphism in action:
      val += t.weight() * t.value();
      System.out.println(
        "weight of " +
        // Using RTTI to get type
        // information about the class:
        t.getClass().getName() +
        " = " + t.weight());
    }
    System.out.println("Total value = " + val);



Chapter 16: Design Patterns 821

  }
}

class Aluminum extends Trash {
  static double val  = 1.67f;
  Aluminum(double wt) { super(wt); }
  double value() { return val; }
  static void value(double newval) {
    val = newval;
  }
}

class Paper extends Trash {
  static double val = 0.10f;
  Paper(double wt) { super(wt); }
  double value() { return val; }
  static void value(double newval) {
    val = newval;
  }
}

class Glass extends Trash {
  static double val = 0.23f;
  Glass(double wt) { super(wt); }
  double value() { return val; }
  static void value(double newval) {
    val = newval;
  }
}

public class RecycleA {
  public static void main(String[] args) {
    Vector bin = new Vector();
    // Fill up the Trash bin:
    for(int i = 0; i < 30; i++)
      switch((int)(Math.random() * 3)) {
        case 0 :
          bin.addElement(new
            Aluminum(Math.random() * 100));
          break;
        case 1 :
          bin.addElement(new
            Paper(Math.random() * 100));
          break;



Chapter 16: Design Patterns 822

        case 2 :
          bin.addElement(new
            Glass(Math.random() * 100));
      }
    Vector
      glassBin = new Vector(),
      paperBin = new Vector(),
      alBin = new Vector();
    Enumeration sorter = bin.elements();
    // Sort the Trash:
    while(sorter.hasMoreElements()) {
      Object t = sorter.nextElement();
      // RTTI to show class membership:
      if(t instanceof Aluminum)
        alBin.addElement(t);
      if(t instanceof Paper)
        paperBin.addElement(t);
      if(t instanceof Glass)
        glassBin.addElement(t);
    }
    Trash.sumValue(alBin);
    Trash.sumValue(paperBin);
    Trash.sumValue(glassBin);
    Trash.sumValue(bin);
  }
} ///:~

The first thing you’ll notice is the package statement:

package c16.recyclea;

This means that in the source code listings available for the book, this file will be placed in
the subdirectory recyclea that branches off from the subdirectory c16 (for Chapter 16). The
unpacking tool in Chapter 17 takes care of placing it into the correct subdirectory. The reason
for doing this is that this chapter rewrites this particular example a number of times and by
putting each version in its own package the class names will not clash.

Several Vector objects are created to hold Trash handles. Of course, Vectors actually hold
Objects so they’ll hold anything at all. The reason they hold Trash (or something derived
from Trash) is only because you’ve been careful to not put in anything except Trash. If you
do put something «wrong» into the Vector, you won’t get any compile-time warnings or
errors – you’ll find out only via an exception at run-time.

When the Trash handles are added, they lose their specific identities and become simply
Object handles (they are upcast). However, because of polymorphism the proper behavior
still occurs when the dynamically-bound methods are called through the Enumeration
sorter, once the resulting Object has been cast back to Trash. sumValue( ) also uses an
Enumeration to perform operations on every object in the Vector.



Chapter 16: Design Patterns 823

It looks silly to upcast the types of Trash into a collection holding base type handles, and then
turn around and downcast. Why not just put the trash into the appropriate receptacle in the
first place? (Indeed, this is the whole enigma of recycling). In this program it would be easy to
repair, but sometimes a system’s structure and flexibility can benefit greatly from
downcasting.

The program satisfies the design requirements: it works. This might be fine as long as it’s a
one-shot solution. However, a useful program tends to evolve over time, so you must ask,
«What if the situation changes?» For example, cardboard is now a valuable recyclable
commodity, so how will that be integrated into the system (especially if the program is large
and complicated). Since the above type-check coding in the switch statement could be
scattered throughout the program, you must go find all that code every time a new type is
added, and if you miss one the compiler won’t give you any help by pointing out an error.

The key to the misuse of RTTI here is that every type is tested. If you’re looking for only a
subset of types because that subset needs special treatment, that’s probably fine. But if you’re
hunting for every type inside a switch statement, then you’re probably missing an important
point, and definitely making your code less maintainable. In the next section we’ll look at
how this program evolved over several stages to become much more flexible. This should
prove a valuable example in program design.

Improving the design
The solutions in Design Patterns are organized around the question «What will change as this
program evolves?» This is usually the most important question that you can ask about any
design. If you can build your system around the answer, the results will be two-pronged: not
only will your system allow easy (and inexpensive) maintenance, but you might also produce
components that are reusable, so that other systems can be built more cheaply. This is the
promise of object-oriented programming, but it doesn’t happen automatically; it requires
thought and insight on your part. In this section we’ll see how this process can happen during
the refinement of a system.

The answer to the question «What will change?» for the recycling system is a common one:
more types will be added to the system. The goal of the design, then, is to make this addition
of types as painless as possible. In the recycling program, we’d like to encapsulate all places
where specific type information is mentioned, so (if for no other reason) any changes can be
localized to those encapsulations. It turns out that this process also cleans up the rest of the
code considerably.

«Make more objects»
This brings up a general object-oriented design principle that I first heard spoken by Grady
Booch: «If the design is too complicated, make more objects.» This is simultaneously
counterintuitive and ludicrously simple, and yet it’s the most useful guideline I’ve found.
(You might observe that «making more objects» is often equivalent to «add another level of
indirection.») In general, if you find a place with messy code, consider what sort of class



Chapter 16: Design Patterns 824

would clean that up. Often the side effect of cleaning up the code will be a system that has
better structure and is more flexible.

Consider first the place where Trash objects are created, which is a switch statement inside
main( ):

    for(int i = 0; i < 30; i++)
      switch((int)(Math.random() * 3)) {
        case 0 :
          bin.addElement(new
            Aluminum(Math.random() * 100));
          break;
        case 1 :
          bin.addElement(new
            Paper(Math.random() * 100));
          break;
        case 2 :
          bin.addElement(new
            Glass(Math.random() * 100));
      }

This is definitely messy, and also a place where you must change code whenever a new type
is added. If new types are commonly added, a better solution is a single member function that
takes all of the necessary information and produces a handle to an object of the correct type,
already upcast to a trash object. In Design Patterns this is broadly referred to as a creational
pattern (of which there are several). The specific pattern that will be applied here is a variant
of the Factory Method. Here, the factory method is a static member of Trash, but more
commonly it is a member function that is overridden in the derived class.

The idea of the factory member function is that you pass it the essential information it needs
to know to create your object, then stand back and wait for the handle (already upcast to the
base type) to pop out as the return value. From then on, you treat the object polymorphically.
Thus, you never even need to know the exact type of object that’s created. In fact, the factory
member function hides it from you to prevent accidental misuse. If you want to use the object
without polymorphism, you must explicitly use RTTI and casting.

But there’s a little problem, especially when you use the more complicated approach (not
shown here) of making the factory member function in the base class and overriding it in the
derived classes. What if the information required in the derived class requires more or
different arguments? «Creating more objects» solves this problem. To implement the factory
member function, the Trash class gets a new member function called factory. To hide the
creational data, there’s a new class called Info that contains all of the necessary information
for the factory method to create the appropriate Trash object. Here’s a simple
implementation of Info:

class Info {
  int type;
  // Must change this to add another type:



Chapter 16: Design Patterns 825

  static final int MAX_NUM = 4;
  double data;
  Info(int typeNum, double dat) {
    type = typeNum % MAX_NUM;
    data = dat;
  }
}

An Info object’s only job is to hold information for the factory( ) method. Now, if there’s a
situation in which factory( ) needs more or different information to create a new type of
Trash object, the factory( ) interface doesn’t need to be changed. The Info class can be
changed by adding new data and new constructors, or in the more typical object-oriented
fashion of subclassing.

The factory( ) method for this simple example looks like this:

  static Trash factory(Info i) {
    switch(i.type) {
      default: // To quiet the compiler
      case 0:
        return new Aluminum(i.data);
      case 1:
        return new Paper(i.data);
      case 2:
        return new Glass(i.data);
      // Two lines here:
      case 3:
        return new Cardboard(i.data);
    }
  }

Here, the determination of the exact type of object is simple, but you can imagine a more
complicated system in which factory( ) uses an elaborate algorithm. The point is that it’s now
hidden away in one place, and you know to come to this place when you add new types.

The creation of new objects is now much simpler in main( ):

    for(int i = 0; i < 30; i++)
      bin.addElement(
        Trash.factory(
          new Info(
            (int)(Math.random() * Info.MAX_NUM),
            Math.random() * 100)));

An Info object is created to pass the data into factory( ), which in turn produces some kind of
Trash object on the heap and returns the handle that’s added to the Vector bin. Of course, if
you change the quantity and type of argument, this statement will still need to be modified,
but that can be eliminated if the creation of the Info object is automated. For example, a



Chapter 16: Design Patterns 826

Vector of arguments can be passed into the constructor of an Info object (or directly into a
factory( ) call, for that matter). This requires that the arguments be parsed and checked at
runtime, but it does provide the greatest flexibility.

You can see from this code what «vector of change» problem the factory is responsible for
solving: if you add new types to the system (the change), the only code that must be modified
is within the factory, so the factory isolates the effect of that change.

A pattern for prototyping creation
A problem with the design above is that it still requires a central location where all the types
of the objects must be known: inside the factory( ) method. If new types are regularly being
added to the system, the factory( ) method must be changed for each new type. When you
discover something like this, it is useful to try to go one step further and move all of the
information about the type – including its creation – into the class representing that type. This
way, the only thing you need to do to add a new type to the system is to inherit a single class.

To move the information concerning type creation into each specific type of Trash, the
«prototype» pattern (from the Design Patterns book) will be used. The general idea is that
you have a master sequence of objects, one of each type you’re interested in making. The
objects in this sequence are used only for making new objects, using an operation that’s not
unlike the clone( ) scheme built into Java’s root class Object. In this case, we’ll name the
cloning member function tClone( ). When you’re ready to make a new object, presumably
you have some sort of information that establishes the type of object you want to create, then
you move through the master sequence comparing your information with whatever
appropriate information is in the prototype objects in the master sequence. When you find one
that matches your needs, you clone it.

In this scheme there is no hard-coded information for creation. Each object knows how to
expose appropriate information and how to clone itself. Thus, the factory( ) method doesn’t
need to be changed when a new type is added to the system.

One approach to the problem of prototyping is to add a number of methods to support the
creation of new objects. However, in Java 1.1 there’s already support for creating new objects
if you have a handle to the Class object. With Java 1.1 reflection (introduced in Chapter 11)
you can call a constructor even if you have only a handle to the Class object. This is the
perfect solution for the prototyping problem.

The list of prototypes will be represented indirectly by a list of handles to all the Class objects
you want to create. In addition, if the prototyping fails, the factory( ) method will assume that
it’s because a particular Class object wasn’t in the list, and it will attempt to load it. By
loading the prototypes dynamically like this, the Trash class doesn’t need to know what types
it is working with, so it doesn’t need any modifications when you add new types. This allows
it to be easily reused throughout the rest of the chapter.

//: C25:Trash.java
// Base class for Trash recycling examples
package c16.trash;
import java.util.*;



Chapter 16: Design Patterns 827

import java.lang.reflect.*;

public abstract class Trash {
  private double weight;
  Trash(double wt) { weight = wt; }
  Trash() {}
  public abstract double value();
  public double weight() { return weight; }
  // Sums the value of Trash in a bin:
  public static void sumValue(Vector bin) {
    Enumeration e = bin.elements();
    double val = 0.0f;
    while(e.hasMoreElements()) {
      // One kind of RTTI:
      // A dynamically-checked cast
      Trash t = (Trash)e.nextElement();
      val += t.weight() * t.value();
      System.out.println(
        "weight of " +
        // Using RTTI to get type
        // information about the class:
        t.getClass().getName() +
        " = " + t.weight());
    }
    System.out.println("Total value = " + val);
  }
  // Remainder of class provides support for
  // prototyping:
  public static class PrototypeNotFoundException
      extends Exception {}
  public static class CannotCreateTrashException
      extends Exception {}
  private static Vector trashTypes =
    new Vector();
  public static Trash factory(Info info)
      throws PrototypeNotFoundException,
      CannotCreateTrashException {
    for(int i = 0; i < trashTypes.size(); i++) {
      // Somehow determine the new type
      // to create, and create one:
      Class tc =
        (Class)trashTypes.elementAt(i);
      if (tc.getName().indexOf(info.id) != -1) {
        try {



Chapter 16: Design Patterns 828

          // Get the dynamic constructor member function
          // that takes a double argument:
          Constructor ctor =
            tc.getConstructor(
              new Class[] {double.class});
          // Call the constructor to create a
          // new object:
          return (Trash)ctor.newInstance(
            new Object[]{new Double(info.data)});
        } catch(Exception ex) {
          ex.prinTStackTrace();
          throw new CannotCreateTrashException();
        }
      }
    }
    // Class was not in the list. Try to load it,
    // but it must be in your class path!
    try {
      System.out.println("Loading " + info.id);
      trashTypes.addElement(
        Class.forName(info.id));
    } catch(Exception e) {
      e.prinTStackTrace();
      throw new PrototypeNotFoundException();
    }
    // Loaded successfully. Recursive call
    // should work this time:
    return factory(info);
  }
  public static class Info {
    public String id;
    public double data;
    public Info(String name, double data) {
      id = name;
      this.data = data;
    }
  }
} ///:~

The basic Trash class and sumValue( ) remain as before. The rest of the class supports the
prototyping pattern. You first see two inner classes (which are made static, so they are inner
classes only for code organization purposes) describing exceptions that can occur. This is
followed by a Vector trashTypes, which is used to hold the Class handles.

In Trash.factory( ), the String inside the Info object id (a different version of the Info class
than that of the prior discussion) contains the type name of the Trash to be created; this



Chapter 16: Design Patterns 829

String is compared to the Class names in the list. If there’s a match, then that’s the object to
create. Of course, there are many ways to determine what object you want to make. This one
is used so that information read in from a file can be turned into objects.

Once you’ve discovered which kind of Trash to create, then the reflection methods come into
play. The getConstructor( ) member function takes an argument that’s an array of Class
handles. This array represents the arguments, in their proper order, for the constructor that
you’re looking for. Here, the array is dynamically created using the Java 1.1 array-creation
syntax:

new Class[] {double.class}

This code assumes that every Trash type has a constructor that takes a double (and notice
that double.class is distinct from Double.class). It’s also possible, for a more flexible
solution, to call getConstructors( ), which returns an array of the possible constructors.

What comes back from getConstructor( ) is a handle to a Constructor object (part of
java.lang.reflect). You call the constructor dynamically with the member function
newInstance( ), which takes an array of Object containing the actual arguments. This array is
again created using the Java 1.1 syntax:

new Object[]{new Double(info.data)}

In this case, however, the double must be placed inside a wrapper class so that it can be part
of this array of objects. The process of calling newInstance( ) extracts the double, but you
can see it is a bit confusing – an argument might be a double or a Double, but when you
make the call you must always pass in a Double. Fortunately, this issue exists only for the
primitive types.

Once you understand how to do it, the process of creating a new object given only a Class
handle is remarkably simple. Reflection also allows you to call methods in this same dynamic
fashion.

Of course, the appropriate Class handle might not be in the trashTypes list. In this case, the
return in the inner loop is never executed and you’ll drop out at the end. Here, the program
tries to rectify the situation by loading the Class object dynamically and adding it to the
trashTypes list. If it still can’t be found something is really wrong, but if the load is
successful then the factory method is called recursively to try again.

As you’ll see, the beauty of this design is that this code doesn’t need to be changed, regardless
of the different situations it will be used in (assuming that all Trash subclasses contain a
constructor that takes a single double argument).

Trash subclasses
To fit into the prototyping scheme, the only thing that’s required of each new subclass of
Trash is that it contain a constructor that takes a double argument. Java 1.1 reflection handles
everything else.

Here are the different types of Trash, each in their own file but part of the Trash package
(again, to facilitate reuse within the chapter):



Chapter 16: Design Patterns 830

//: C25:Aluminum.java
// The Aluminum class with prototyping
package c16.trash;

public class Aluminum extends Trash {
  private static double val = 1.67f;
  public Aluminum(double wt) { super(wt); }
  public double value() { return val; }
  public static void value(double newVal) {
    val = newVal;
  }
} ///:~

//: C25:Paper.java
// The Paper class with prototyping
package c16.trash;

public class Paper extends Trash {
  private static double val = 0.10f;
  public Paper(double wt) { super(wt); }
  public double value() { return val; }
  public static void value(double newVal) {
    val = newVal;
  }
} ///:~

//: C25:Glass.java
// The Glass class with prototyping
package c16.trash;

public class Glass extends Trash {
  private static double val = 0.23f;
  public Glass(double wt) { super(wt); }
  public double value() { return val; }
  public static void value(double newVal) {
    val = newVal;
  }
} ///:~

And here’s a new type of Trash:

//: C25:Cardboard.java
// The Cardboard class with prototyping
package c16.trash;

public class Cardboard extends Trash {



Chapter 16: Design Patterns 831

  private static double val = 0.23f;
  public Cardboard(double wt) { super(wt); }
  public double value() { return val; }
  public static void value(double newVal) {
    val = newVal;
  }
} ///:~

You can see that, other than the constructor, there’s nothing special about any of these classes.

Parsing Trash from an external file
The information about Trash objects will be read from an outside file. The file has all of the
necessary information about each piece of trash on a single line in the form Trash:weight,
such as:

c16.Trash.Glass:54
c16.Trash.Paper:22
c16.Trash.Paper:11
c16.Trash.Glass:17
c16.Trash.Aluminum:89
c16.Trash.Paper:88
c16.Trash.Aluminum:76
c16.Trash.Cardboard:96
c16.Trash.Aluminum:25
c16.Trash.Aluminum:34
c16.Trash.Glass:11
c16.Trash.Glass:68
c16.Trash.Glass:43
c16.Trash.Aluminum:27
c16.Trash.Cardboard:44
c16.Trash.Aluminum:18
c16.Trash.Paper:91
c16.Trash.Glass:63
c16.Trash.Glass:50
c16.Trash.Glass:80
c16.Trash.Aluminum:81
c16.Trash.Cardboard:12
c16.Trash.Glass:12
c16.Trash.Glass:54
c16.Trash.Aluminum:36
c16.Trash.Aluminum:93
c16.Trash.Glass:93
c16.Trash.Paper:80
c16.Trash.Glass:36
c16.Trash.Glass:12



Chapter 16: Design Patterns 832

c16.Trash.Glass:60
c16.Trash.Paper:66
c16.Trash.Aluminum:36
c16.Trash.Cardboard:22

Note that the class path must be included when giving the class names, otherwise the class
will not be found.

To parse this, the line is read and the String member function indexOf( ) produces the index
of the ‘:’. This is first used with the String member function substring( ) to extract the name
of the trash type, and next to get the weight that is turned into a double with the static
Double.valueOf( ) member function. The trim( ) member function removes white space at
both ends of a string.

The Trash parser is placed in a separate file since it will be reused throughout this chapter:

//: C25:ParseTrash.java
// Open a file and parse its contents into
// Trash objects, placing each into a Vector
package c16.trash;
import java.util.*;
import java.io.*;

public class ParseTrash {
  public static void
  fillBin(String filename, Fillable bin) {
    try {
      BufferedReader data =
        new BufferedReader(
          new FileReader(filename));
      String buf;
      while((buf = data.readLine())!= null) {
        String type = buf.substring(0,
          buf.indexOf(':')).trim();
        double weight = Double.valueOf(
          buf.substring(buf.indexOf(':') + 1)
          .trim()).doubleValue();
        bin.addTrash(
          Trash.factory(
            new Trash.Info(type, weight)));
      }
      data.close();
    } catch(IOException e) {
      e.prinTStackTrace();
    } catch(Exception e) {
      e.prinTStackTrace();
    }



Chapter 16: Design Patterns 833

  }
  // Special case to handle Vector:
  public static void
  fillBin(String filename, Vector bin) {
    fillBin(filename, new FillableVector(bin));
  }
} ///:~

In RecycleA.java, a Vector was used to hold the Trash objects. However, other types of
collections can be used as well. To allow for this, the first version of fillBin( ) takes a handle
to a Fillable, which is simply an interface that supports a member function called
addTrash( ):

//: C25:Fillable.java
// Any object that can be filled with Trash
package c16.trash;

public interface Fillable {
  void addTrash(Trash t);
} ///:~

Anything that supports this interface can be used with fillBin. Of course, Vector doesn’t
implement Fillable, so it won’t work. Since Vector is used in most of the examples, it makes
sense to add a second overloaded fillBin( ) member function that takes a Vector. The Vector
can be used as a Fillable object using an adapter class:

//: C25:FillableVector.java
// Adapter that makes a Vector Fillable
package c16.trash;
import java.util.*;

public class FillableVector implements Fillable {
  private Vector v;
  public FillableVector(Vector vv) { v = vv; }
  public void addTrash(Trash t) {
    v.addElement(t);
  }
} ///:~

You can see that the only job of this class is to connect Fillable’s addTrash( ) member
function to Vector’s addElement( ). With this class in hand, the overloaded fillBin( )
member function can be used with a Vector in ParseTrash.java:

  public static void
  fillBin(String filename, Vector bin) {
    fillBin(filename, new FillableVector(bin));
  }



Chapter 16: Design Patterns 834

This approach works for any collection class that’s used frequently. Alternatively, the
collection class can provide its own adapter that implements Fillable. (You’ll see this later, in
DynaTrash.java.)

Recycling with prototyping
Now you can see the revised version of RecycleA.java using the prototyping technique:

//: C25:RecycleAP.java
// Recycling with RTTI and Prototypes
package c16.recycleap;
import c16.trash.*;
import java.util.*;

public class RecycleAP {
  public static void main(String[] args) {
    Vector bin = new Vector();
    // Fill up the Trash bin:
    ParseTrash.fillBin("Trash.dat", bin);
    Vector
      glassBin = new Vector(),
      paperBin = new Vector(),
      alBin = new Vector();
    Enumeration sorter = bin.elements();
    // Sort the Trash:
    while(sorter.hasMoreElements()) {
      Object t = sorter.nextElement();
      // RTTI to show class membership:
      if(t instanceof Aluminum)
        alBin.addElement(t);
      if(t instanceof Paper)
        paperBin.addElement(t);
      if(t instanceof Glass)
        glassBin.addElement(t);
    }
    Trash.sumValue(alBin);
    Trash.sumValue(paperBin);
    Trash.sumValue(glassBin);
    Trash.sumValue(bin);
  }
} ///:~

All of the Trash objects, as well as the ParseTrash and support classes, are now part of the
package c16.trash so they are simply imported.

The process of opening the data file containing Trash descriptions and the parsing of that file
have been wrapped into the static member function ParseTrash.fillBin( ), so now it’s no



Chapter 16: Design Patterns 835

longer a part of our design focus. You will see that throughout the rest of the chapter, no
matter what new classes are added, ParseTrash.fillBin( ) will continue to work without
change, which indicates a good design.

In terms of object creation, this design does indeed severely localize the changes you need to
make to add a new type to the system. However, there’s a significant problem in the use of
RTTI that shows up clearly here. The program seems to run fine, and yet it never detects any
cardboard, even though there is cardboard in the list! This happens because of the use of
RTTI, which looks for only the types that you tell it to look for. The clue that RTTI is being
misused is that every type in the system is being tested, rather than a single type or subset of
types. As you will see later, there are ways to use polymorphism instead when you’re testing
for every type. But if you use RTTI a lot in this fashion, and you add a new type to your
system, you can easily forget to make the necessary changes in your program and produce a
difficult-to-find bug. So it’s worth trying to eliminate RTTI in this case, not just for aesthetic
reasons – it produces more maintainable code.

Abstracting usage
With creation out of the way, it’s time to tackle the remainder of the design: where the classes
are used. Since it’s the act of sorting into bins that’s particularly ugly and exposed, why not
take that process and hide it inside a class? This is the principle of «If you must do something
ugly, at least localize the ugliness inside a class.» It looks like this:

The TrashSorter object initialization must now be changed whenever a new type of Trash is
added to the model. You could imagine that the TrashSorter class might look something like
this:

class TrashSorter extends Vector {
  void sort(Trash t) { /* ... */ }
}

That is, TrashSorter is a Vector of handles to Vectors of Trash handles, and with
addElement( ) you can install another one, like so:

TrashSorter ts = new TrashSorter();
ts.addElement(new Vector());

Trash Sorter

Vector of
Trash Bins

Aluminum Vector

Paper Vector

Glass Vector



Chapter 16: Design Patterns 836

Now, however, sort( ) becomes a problem. How does the statically-coded member function
deal with the fact that a new type has been added? To solve this, the type information must be
removed from sort( ) so that all it needs to do is call a generic member function that takes
care of the details of type. This, of course, is another way to describe a dynamically-bound
member function. So sort( ) will simply move through the sequence and call a dynamically-
bound member function for each Vector. Since the job of this member function is to grab the
pieces of trash it is interested in, it’s called grab(Trash). The structure now looks like:

TrashSorter needs to call each grab( ) member function and get a different result depending
on what type of Trash the current Vector is holding. That is, each Vector must be aware of
the type it holds. The classic approach to this problem is to create a base «Trash bin» class
and inherit a new derived class for each different type you want to hold. If Java had a
parameterized type mechanism that would probably be the most straightforward approach.
But rather than hand-coding all the classes that such a mechanism should be building for us,
further observation can produce a better approach.

A basic OOP design principle is «Use data members for variation in state, use polymorphism
for variation in behavior.» Your first thought might be that the grab( ) member function
certainly behaves differently for a Vector that holds Paper than for one that holds Glass. But
what it does is strictly dependent on the type, and nothing else. This could be interpreted as a
different state, and since Java has a class to represent type (Class) this can be used to
determine the type of Trash a particular Tbin will hold.

The constructor for this Tbin requires that you hand it the Class of your choice. This tells the
Vector what type it is supposed to hold. Then the grab( ) member function uses Class
BinType and RTTI to see if the Trash object you’ve handed it matches the type it’s supposed
to grab.

Here is the whole program. The commented numbers (e.g. (*1*) ) mark sections that will be
described following the code.

//: C25:RecycleB.java
// Adding more objects to the recycling problem
package c16.recycleb;

Trash Sorter

Vector of
Trash Bins boolean grab(Trash)

Paper Vector

boolean grab(Trash)

Aluminum Vector

boolean grab(Trash)

Glass Vector

Tbins:



Chapter 16: Design Patterns 837

import c16.trash.*;
import java.util.*;

// A vector that admits only the right type:
class Tbin extends Vector {
  Class binType;
  Tbin(Class binType) {
    this.binType = binType;
  }
  boolean grab(Trash t) {
    // Comparing class types:
    if(t.getClass().equals(binType)) {
      addElement(t);
      return true; // Object grabbed
    }
    return false; // Object not grabbed
  }
}

class TbinList extends Vector { // (*1*)
  boolean sort(Trash t) {
    Enumeration e = elements();
    while(e.hasMoreElements()) {
      Tbin bin = (Tbin)e.nextElement();
      if(bin.grab(t)) return true;
    }
    return false; // bin not found for t
  }
  void sortBin(Tbin bin) { // (*2*)
    Enumeration e = bin.elements();
    while(e.hasMoreElements())
      if(!sort((Trash)e.nextElement()))
        System.out.println("Bin not found");
  }
}

public class RecycleB {
  static Tbin bin = new Tbin(Trash.class);
  public static void main(String[] args) {
    // Fill up the Trash bin:
    ParseTrash.fillBin("Trash.dat", bin);

    TbinList trashBins = new TbinList();
    trashBins.addElement(



Chapter 16: Design Patterns 838

      new Tbin(Aluminum.class));
    trashBins.addElement(
      new Tbin(Paper.class));
    trashBins.addElement(
      new Tbin(Glass.class));
    // Add one line here: (*3*)
    trashBins.addElement(
      new Tbin(Cardboard.class));

    trashBins.sortBin(bin); // (*4*)

    Enumeration e = trashBins.elements();
    while(e.hasMoreElements()) {
      Tbin b = (Tbin)e.nextElement();
      Trash.sumValue(b);
    }
    Trash.sumValue(bin);
  }
} ///:~

1. TbinList holds a set of Tbin handles, so that sort( ) can iterate
through the Tbins when it’s looking for a match for the Trash
object you’ve handed it.

2. sortBin( ) allows you to pass an entire Tbin in, and it moves
through the Tbin, picks out each piece of Trash, and sorts it into
the appropriate specific Tbin. Notice the genericity of this code: it
doesn’t change at all if new types are added. If the bulk of your
code doesn’t need changing when a new type is added (or some
other change occurs) then you have an easily-extensible system.

3. Now you can see how easy it is to add a new type. Few lines must
be changed to support the addition. If it’s really important, you can
squeeze out even more by further manipulating the design.

4. One member function call causes the contents of bin to be sorted
into the respective specifically-typed bins.

Multiple dispatching
The above design is certainly satisfactory. Adding new types to the system consists of adding
or modifying distinct classes without causing code changes to be propagated throughout the
system. In addition, RTTI is not «misused» as it was in RecycleA.java. However, it’s
possible to go one step further and take a purist viewpoint about RTTI and say that it should
be eliminated altogether from the operation of sorting the trash into bins.



Chapter 16: Design Patterns 839

To accomplish this, you must first take the perspective that all type-dependent activities –
such as detecting the type of a piece of trash and putting it into the appropriate bin – should be
controlled through polymorphism and dynamic binding.

The previous examples first sorted by type, then acted on sequences of elements that were all
of a particular type. But whenever you find yourself picking out particular types, stop and
think. The whole idea of polymorphism (dynamically-bound member function calls) is to
handle type-specific information for you. So why are you hunting for types?

The answer is something you probably don’t think about: Java performs only single
dispatching. That is, if you are performing an operation on more than one object whose type is
unknown, Java will invoke the dynamic binding mechanism on only one of those types. This
doesn’t solve the problem, so you end up detecting some types manually and effectively
producing your own dynamic binding behavior.

The solution is called multiple dispatching, which means setting up a configuration such that a
single member function call produces more than one dynamic member function call and thus
determines more than one type in the process. To get this effect, you need to work with more
than one type hierarchy: you’ll need a type hierarchy for each dispatch. The following
example works with two hierarchies: the existing Trash family and a hierarchy of the types of
trash bins that the trash will be placed into. This second hierarchy isn’t always obvious and in
this case it needed to be created in order to produce multiple dispatching (in this case there
will be only two dispatches, which is referred to as double dispatching).

Implementing the double dispatch
Remember that polymorphism can occur only via member function calls, so if you want
double dispatching to occur, there must be two member function calls: one used to determine
the type within each hierarchy. In the Trash hierarchy there will be a new member function
called addToBin( ), which takes an argument of an array of TypedBin. It uses this array to
step through and try to add itself to the appropriate bin, and this is where you’ll see the double
dispatch.

The new hierarchy is TypedBin, and it contains its own member function called add( ) that is
also used polymorphically. But here’s an additional twist: add( ) is overloaded to take
arguments of the different types of trash. So an essential part of the double dispatching
scheme also involves overloading.

Trash

addToBin(TypedBin[])

Aluminum

addToBin()

Paper

addToBin()

Glass

addToBin()

Cardboard

addToBin()

TypedBin

add(Aluminum)

add(Paper)

add(Glass)

add(Cardboard)

AluminumBin

add(Aluminum)

CardboardBin

add(Cardboard)

PaperBin

add(Paper)

GlassBin

add(Glass)



Chapter 16: Design Patterns 840

Redesigning the program produces a dilemma: it’s now necessary for the base class Trash to
contain an addToBin( ) member function. One approach is to copy all of the code and change
the base class. Another approach, which you can take when you don’t have control of the
source code, is to put the addToBin( ) member function into an interface, leave Trash alone,
and inherit new specific types of Aluminum, Paper, Glass, and Cardboard. This is the
approach that will be taken here.

Most of the classes in this design must be public, so they are placed in their own files. Here’s
the interface:

//: C25:TypedBinMember.java
// An interface for adding the double dispatching
// member function to the trash hierarchy without
// modifying the original hierarchy.
package c16.doubledispatch;

interface TypedBinMember {
  // The new member function:
  boolean addToBin(TypedBin[] tb);
} ///:~

In each particular subtype of Aluminum, Paper, Glass, and Cardboard, the addToBin( )
member function in the interface TypedBinMember is implemented,, but it looks like the
code is exactly the same in each case:

//: C25:DDAluminum.java
// Aluminum for double dispatching
package c16.doubledispatch;
import c16.trash.*;

public class DDAluminum extends Aluminum
    implements TypedBinMember {
  public DDAluminum(double wt) { super(wt); }
  public boolean addToBin(TypedBin[] tb) {
    for(int i = 0; i < tb.length; i++)
      if(tb[i].add(this))
        return true;
    return false;
  }
} ///:~

//: C25:DDPaper.java
// Paper for double dispatching
package c16.doubledispatch;
import c16.trash.*;

public class DDPaper extends Paper



Chapter 16: Design Patterns 841

    implements TypedBinMember {
  public DDPaper(double wt) { super(wt); }
  public boolean addToBin(TypedBin[] tb) {
    for(int i = 0; i < tb.length; i++)
      if(tb[i].add(this))
        return true;
    return false;
  }
} ///:~

//: C25:DDGlass.java
// Glass for double dispatching
package c16.doubledispatch;
import c16.trash.*;

public class DDGlass extends Glass
    implements TypedBinMember {
  public DDGlass(double wt) { super(wt); }
  public boolean addToBin(TypedBin[] tb) {
    for(int i = 0; i < tb.length; i++)
      if(tb[i].add(this))
        return true;
    return false;
  }
} ///:~

//: C25:DDCardboard.java
// Cardboard for double dispatching
package c16.doubledispatch;
import c16.trash.*;

public class DDCardboard extends Cardboard
    implements TypedBinMember {
  public DDCardboard(double wt) { super(wt); }
  public boolean addToBin(TypedBin[] tb) {
    for(int i = 0; i < tb.length; i++)
      if(tb[i].add(this))
        return true;
    return false;
  }
} ///:~

The code in each addToBin( ) calls add( ) for each TypedBin object in the array. But notice
the argument: this. The type of this is different for each subclass of Trash, so the code is
different. (Although this code will benefit if a parameterized type mechanism is ever added to
Java.) So this is the first part of the double dispatch, because once you’re inside this member



Chapter 16: Design Patterns 842

function you know you’re Aluminum, or Paper, etc. During the call to add( ), this
information is passed via the type of this. The compiler resolves the call to the proper
overloaded version of add( ). But since tb[i] produces a handle to the base type TypedBin,
this call will end up calling a different member function depending on the type of TypedBin
that’s currently selected. That is the second dispatch.

Here’s the base class for TypedBin:

//: C25:TypedBin.java
// Vector that knows how to grab the right type
package c16.doubledispatch;
import c16.trash.*;
import java.util.*;

public abstract class TypedBin {
  Vector v = new Vector();
  protected boolean addIt(Trash t) {
    v.addElement(t);
    return true;
  }
  public Enumeration elements() {
    return v.elements();
  }
  public boolean add(DDAluminum a) {
    return false;
  }
  public boolean add(DDPaper a) {
    return false;
  }
  public boolean add(DDGlass a) {
    return false;
  }
  public boolean add(DDCardboard a) {
    return false;
  }
} ///:~

You can see that the overloaded add( ) methods all return false. If the member function is not
overloaded in a derived class, it will continue to return false, and the caller (addToBin( ), in
this case) will assume that the current Trash object has not been added successfully to a
collection, and continue searching for the right collection.

In each of the subclasses of TypedBin, only one overloaded member function is overridden,
according to the type of bin that’s being created. For example, CardboardBin overrides
add(DDCardboard). The overridden member function adds the trash object to its collection
and returns true, while all the rest of the add( ) methods in CardboardBin continue to return
false, since they haven’t been overridden. This is another case in which a parameterized type



Chapter 16: Design Patterns 843

mechanism in Java would allow automatic generation of code. (With C++ templates, you
wouldn’t have to explicitly write the subclasses or place the addToBin( ) member function in
Trash.)

Since for this example the trash types have been customized and placed in a different
directory, you’ll need a different trash data file to make it work. Here’s a possible
DDTrash.dat:

c16.DoubleDispatch.DDGlass:54
c16.DoubleDispatch.DDPaper:22
c16.DoubleDispatch.DDPaper:11
c16.DoubleDispatch.DDGlass:17
c16.DoubleDispatch.DDAluminum:89
c16.DoubleDispatch.DDPaper:88
c16.DoubleDispatch.DDAluminum:76
c16.DoubleDispatch.DDCardboard:96
c16.DoubleDispatch.DDAluminum:25
c16.DoubleDispatch.DDAluminum:34
c16.DoubleDispatch.DDGlass:11
c16.DoubleDispatch.DDGlass:68
c16.DoubleDispatch.DDGlass:43
c16.DoubleDispatch.DDAluminum:27
c16.DoubleDispatch.DDCardboard:44
c16.DoubleDispatch.DDAluminum:18
c16.DoubleDispatch.DDPaper:91
c16.DoubleDispatch.DDGlass:63
c16.DoubleDispatch.DDGlass:50
c16.DoubleDispatch.DDGlass:80
c16.DoubleDispatch.DDAluminum:81
c16.DoubleDispatch.DDCardboard:12
c16.DoubleDispatch.DDGlass:12
c16.DoubleDispatch.DDGlass:54
c16.DoubleDispatch.DDAluminum:36
c16.DoubleDispatch.DDAluminum:93
c16.DoubleDispatch.DDGlass:93
c16.DoubleDispatch.DDPaper:80
c16.DoubleDispatch.DDGlass:36
c16.DoubleDispatch.DDGlass:12
c16.DoubleDispatch.DDGlass:60
c16.DoubleDispatch.DDPaper:66
c16.DoubleDispatch.DDAluminum:36
c16.DoubleDispatch.DDCardboard:22

Here’s the rest of the program:

//: C25:DoubleDispatch.java
// Using multiple dispatching to handle more



Chapter 16: Design Patterns 844

// than one unknown type during a member function call.
package c16.doubledispatch;
import c16.trash.*;
import java.util.*;

class AluminumBin extends TypedBin {
  public boolean add(DDAluminum a) {
    return addIt(a);
  }
}

class PaperBin extends TypedBin {
  public boolean add(DDPaper a) {
    return addIt(a);
  }
}

class GlassBin extends TypedBin {
  public boolean add(DDGlass a) {
    return addIt(a);
  }
}

class CardboardBin extends TypedBin {
  public boolean add(DDCardboard a) {
    return addIt(a);
  }
}

class TrashBinSet {
  private TypedBin[] binSet = {
    new AluminumBin(),
    new PaperBin(),
    new GlassBin(),
    new CardboardBin()
  };
  public void sortIntoBins(Vector bin) {
    Enumeration e = bin.elements();
    while(e.hasMoreElements()) {
      TypedBinMember t =
        (TypedBinMember)e.nextElement();
      if(!t.addToBin(binSet))
        System.err.println("Couldn't add " + t);
    }



Chapter 16: Design Patterns 845

  }
  public TypedBin[] binSet() { return binSet; }
}

public class DoubleDispatch {
  public static void main(String[] args) {
    Vector bin = new Vector();
    TrashBinSet bins = new TrashBinSet();
    // ParseTrash still works, without changes:
    ParseTrash.fillBin("DDTrash.dat", bin);
    // Sort from the master bin into the
    // individually-typed bins:
    bins.sortIntoBins(bin);
    TypedBin[] tb = bins.binSet();
    // Perform sumValue for each bin...
    for(int i = 0; i < tb.length; i++)
      Trash.sumValue(tb[i].v);
    // ... and for the master bin
    Trash.sumValue(bin);
  }
} ///:~

TrashBinSet encapsulates all of the different types of TypedBins, along with the
sortIntoBins( ) member function, which is where all the double dispatching takes place. You
can see that once the structure is set up, sorting into the various TypedBins is remarkably
easy. In addition, the efficiency of two dynamic member function calls is probably better than
any other way you could sort.

Notice the ease of use of this system in main( ), as well as the complete independence of any
specific type information within main( ). All other methods that talk only to the Trash base-
class interface will be equally invulnerable to changes in Trash types.

The changes necessary to add a new type are relatively isolated: you inherit the new type of
Trash with its addToBin( ) member function, then you inherit a new TypedBin (this is really
just a copy and simple edit), and finally you add a new type into the aggregate initialization
for TrashBinSet.

The «visitor» pattern
Now consider applying a design pattern with an entirely different goal to the trash-sorting
problem.

For this pattern, we are no longer concerned with optimizing the addition of new types of
Trash to the system. Indeed, this pattern makes adding a new type of Trash more
complicated. The assumption is that you have a primary class hierarchy that is fixed; perhaps
it’s from another vendor and you can’t make changes to that hierarchy. However, you’d like



Chapter 16: Design Patterns 846

to add new polymorphic methods to that hierarchy, which means that normally you’d have to
add something to the base class interface. So the dilemma is that you need to add methods to
the base class, but you can’t touch the base class. How do you get around this?

The design pattern that solves this kind of problem is called a «visitor» (the final one in the
Design Patterns book), and it builds on the double dispatching scheme shown in the last
section.

The visitor pattern allows you to extend the interface of the primary type by creating a
separate class hierarchy of type Visitor to virtualize the operations performed upon the
primary type. The objects of the primary type simply «accept» the visitor, then call the
visitor’s dynamically-bound member function. It looks like this:

Now, if v is a Visitable handle to an Aluminum object, the code:

PriceVisitor pv = new PriceVisitor();
v.accept(pv);

causes two polymorphic member function calls: the first one to select Aluminum’s version of
accept( ), and the second one within accept( ) when the specific version of visit( ) is called
dynamically using the base-class Visitor handle v.

This configuration means that new functionality can be added to the system in the form of
new subclasses of Visitor. The Trash hierarchy doesn’t need to be touched. This is the prime
benefit of the visitor pattern: you can add new polymorphic functionality to a class hierarchy
without touching that hierarchy (once the accept( ) methods have been installed). Note that

Trash

accept(Visitor)

Aluminum

accept(Visitor v) {

  v.visit(this);

}

Paper Glass

Visitor

Visit(Aluminum)

Visit(Paper)

Visit(Glass)

PriceVisitor

visit(Aluminum) {

  // Perform Aluminum-
  // specific work

}

visit(Paper) {

  // Perform Paper-
  // specific work

WeightVisitor etc.



Chapter 16: Design Patterns 847

the benefit is helpful here but not exactly what we started out to accomplish, so at first blush
you might decide that this isn’t the desired solution.

But look at one thing that’s been accomplished: the visitor solution avoids sorting from the
master Trash sequence into individual typed sequences. Thus, you can leave everything in the
single master sequence and simply pass through that sequence using the appropriate visitor to
accomplish the goal. Although this behavior seems to be a side effect of visitor, it does give
us what we want (avoiding RTTI).

The double dispatching in the visitor pattern takes care of determining both the type of Trash
and the type of Visitor. In the following example, there are two implementations of Visitor:
PriceVisitor to both determine and sum the price, and WeightVisitor to keep track of the
weights.

You can see all of this implemented in the new, improved version of the recycling program.
As with DoubleDispatch.java, the Trash class is left alone and a new interface is created to
add the accept( ) member function:

//: C25:Visitable.java
// An interface to add visitor functionality to
// the Trash hierarchy without modifying the
// base class.
package c16.trashvisitor;
import c16.trash.*;

interface Visitable {
  // The new member function:
  void accept(Visitor v);
} ///:~

The subtypes of Aluminum, Paper, Glass, and Cardboard implement the accept( ) member
function:

//: C25:VAluminum.java
// Aluminum for the visitor pattern
package c16.trashvisitor;
import c16.trash.*;

public class VAluminum extends Aluminum
    implements Visitable {
  public VAluminum(double wt) { super(wt); }
  public void accept(Visitor v) {
    v.visit(this);
  }
} ///:~

//: C25:VPaper.java
// Paper for the visitor pattern
package c16.trashvisitor;



Chapter 16: Design Patterns 848

import c16.trash.*;

public class VPaper extends Paper
    implements Visitable {
  public VPaper(double wt) { super(wt); }
  public void accept(Visitor v) {
    v.visit(this);
  }
} ///:~

//: C25:VGlass.java
// Glass for the visitor pattern
package c16.trashvisitor;
import c16.trash.*;

public class VGlass extends Glass
    implements Visitable {
  public VGlass(double wt) { super(wt); }
  public void accept(Visitor v) {
    v.visit(this);
  }
} ///:~

//: C25:VCardboard.java
// Cardboard for the visitor pattern
package c16.trashvisitor;
import c16.trash.*;

public class VCardboard extends Cardboard
    implements Visitable {
  public VCardboard(double wt) { super(wt); }
  public void accept(Visitor v) {
    v.visit(this);
  }
} ///:~

Since there’s nothing concrete in the Visitor base class, it can be created as an interface:

//: C25:Visitor.java
// The base interface for visitors
package c16.trashvisitor;
import c16.trash.*;

interface Visitor {
  void visit(VAluminum a);
  void visit(VPaper p);



Chapter 16: Design Patterns 849

  void visit(VGlass g);
  void visit(VCardboard c);
} ///:~

Once again custom Trash types have been created in a different subdirectory. The new Trash
data file is VTrash.dat and looks like this:

c16.TrashVisitor.VGlass:54
c16.TrashVisitor.VPaper:22
c16.TrashVisitor.VPaper:11
c16.TrashVisitor.VGlass:17
c16.TrashVisitor.VAluminum:89
c16.TrashVisitor.VPaper:88
c16.TrashVisitor.VAluminum:76
c16.TrashVisitor.VCardboard:96
c16.TrashVisitor.VAluminum:25
c16.TrashVisitor.VAluminum:34
c16.TrashVisitor.VGlass:11
c16.TrashVisitor.VGlass:68
c16.TrashVisitor.VGlass:43
c16.TrashVisitor.VAluminum:27
c16.TrashVisitor.VCardboard:44
c16.TrashVisitor.VAluminum:18
c16.TrashVisitor.VPaper:91
c16.TrashVisitor.VGlass:63
c16.TrashVisitor.VGlass:50
c16.TrashVisitor.VGlass:80
c16.TrashVisitor.VAluminum:81
c16.TrashVisitor.VCardboard:12
c16.TrashVisitor.VGlass:12
c16.TrashVisitor.VGlass:54
c16.TrashVisitor.VAluminum:36
c16.TrashVisitor.VAluminum:93
c16.TrashVisitor.VGlass:93
c16.TrashVisitor.VPaper:80
c16.TrashVisitor.VGlass:36
c16.TrashVisitor.VGlass:12
c16.TrashVisitor.VGlass:60
c16.TrashVisitor.VPaper:66
c16.TrashVisitor.VAluminum:36
c16.TrashVisitor.VCardboard:22

The rest of the program creates specific Visitor types and sends them through a single list of
Trash objects:

//: C25:TrashVisitor.java
// The "visitor" pattern



Chapter 16: Design Patterns 850

package c16.trashvisitor;
import c16.trash.*;
import java.util.*;

// Specific group of algorithms packaged
// in each implementation of Visitor:
class PriceVisitor implements Visitor {
  private double alSum; // Aluminum
  private double pSum; // Paper
  private double gSum; // Glass
  private double cSum; // Cardboard
  public void visit(VAluminum al) {
    double v = al.weight() * al.value();
    System.out.println(
      "value of Aluminum= " + v);
    alSum += v;
  }
  public void visit(VPaper p) {
    double v = p.weight() * p.value();
    System.out.println(
      "value of Paper= " + v);
    pSum += v;
  }
  public void visit(VGlass g) {
    double v = g.weight() * g.value();
    System.out.println(
      "value of Glass= " + v);
    gSum += v;
  }
  public void visit(VCardboard c) {
    double v = c.weight() * c.value();
    System.out.println(
      "value of Cardboard = " + v);
    cSum += v;
  }
  void total() {
    System.out.println(
      "Total Aluminum: $" + alSum + "\n" +
      "Total Paper: $" + pSum + "\n" +
      "Total Glass: $" + gSum + "\n" +
      "Total Cardboard: $" + cSum);
  }
}



Chapter 16: Design Patterns 851

class WeightVisitor implements Visitor {
  private double alSum; // Aluminum
  private double pSum; // Paper
  private double gSum; // Glass
  private double cSum; // Cardboard
  public void visit(VAluminum al) {
    alSum += al.weight();
    System.out.println("weight of Aluminum = "
        + al.weight());
  }
  public void visit(VPaper p) {
    pSum += p.weight();
    System.out.println("weight of Paper = "
        + p.weight());
  }
  public void visit(VGlass g) {
    gSum += g.weight();
    System.out.println("weight of Glass = "
        + g.weight());
  }
  public void visit(VCardboard c) {
    cSum += c.weight();
    System.out.println("weight of Cardboard = "
        + c.weight());
  }
  void total() {
    System.out.println("Total weight Aluminum:"
        + alSum);
    System.out.println("Total weight Paper:"
        + pSum);
    System.out.println("Total weight Glass:"
        + gSum);
    System.out.println("Total weight Cardboard:"
        + cSum);
  }
}

public class TrashVisitor {
  public static void main(String[] args) {
    Vector bin = new Vector();
    // ParseTrash still works, without changes:
    ParseTrash.fillBin("VTrash.dat", bin);
    // You could even iterate through
    // a list of visitors!



Chapter 16: Design Patterns 852

    PriceVisitor pv = new PriceVisitor();
    WeightVisitor wv = new WeightVisitor();
    Enumeration it = bin.elements();
    while(it.hasMoreElements()) {
      Visitable v = (Visitable)it.nextElement();
      v.accept(pv);
      v.accept(wv);
    }
    pv.total();
    wv.total();
  }
} ///:~

Note that the shape of main( ) has changed again. Now there’s only a single Trash bin. The
two Visitor objects are accepted into every element in the sequence, and they perform their
operations. The visitors keep their own internal data to tally the total weights and prices.

Finally, there’s no run-time type identification other than the inevitable cast to Trash when
pulling things out of the sequence. This, too, could be eliminated with the implementation of
parameterized types in Java.

One way you can distinguish this solution from the double dispatching solution described
previously is to note that, in the double dispatching solution, only one of the overloaded
methods, add( ), was overridden when each subclass was created, while here each one of the
overloaded visit( ) methods is overridden in every subclass of Visitor.

More coupling?
There’s a lot more code here, and there’s definite coupling between the Trash hierarchy and
the Visitor hierarchy. However, there’s also high cohesion within the respective sets of
classes: they each do only one thing (Trash describes Trash, while Visitor describes actions
performed on Trash), which is an indicator of a good design. Of course, in this case it works
well only if you’re adding new Visitors, but it gets in the way when you add new types of
Trash.

Low coupling between classes and high cohesion within a class is definitely an important
design goal. Applied mindlessly, though, it can prevent you from achieving a more elegant
design. It seems that some classes inevitably have a certain intimacy with each other. These
often occur in pairs that could perhaps be called couplets, for example, collections and
iterators (Enumerations). The Trash-Visitor pair above appears to be another such couplet.

RTTI considered harmful?
Various designs in this chapter attempt to remove RTTI, which might give you the impression
that it’s «considered harmful» (the condemnation used for poor, ill-fated goto, which was thus
never put into Java). This isn’t true; it is the misuse of RTTI that is the problem. The reason
our designs removed RTTI is because the misapplication of that feature prevented



Chapter 16: Design Patterns 853

extensibility, while the stated goal was to be able to add a new type to the system with as little
impact on surrounding code as possible. Since RTTI is often misused by having it look for
every single type in your system, it causes code to be non-extensible: when you add a new
type, you have to go hunting for all the code in which RTTI is used, and if you miss any you
won’t get help from the compiler.

However, RTTI doesn’t automatically create non-extensible code. Let’s revisit the trash
recycler once more. This time, a new tool will be introduced, which I call a TypeMap. It
contains a Hashtable that holds Vectors, but the interface is simple: you can add( ) a new
object, and you can get( ) a Vector containing all the objects of a particular type. The keys for
the contained Hashtable are the types in the associated Vector. The beauty of this design
(suggested by Larry O’Brien) is that the TypeMap dynamically adds a new pair whenever it
encounters a new type, so whenever you add a new type to the system (even if you add the
new type at run-time), it adapts.

Our example will again build on the structure of the Trash types in package c16.Trash (and
the Trash.dat file used there can be used here without change):

//: C25:DynaTrash.java
// Using a Hashtable of Vectors and RTTI
// to automatically sort trash into
// vectors. This solution, despite the
// use of RTTI, is extensible.
package c16.dynatrash;
import c16.trash.*;
import java.util.*;

// Generic TypeMap works in any situation:
class TypeMap {
  private Hashtable t = new Hashtable();
  public void add(Object o) {
    Class type = o.getClass();
    if(t.containsKey(type))
      ((Vector)t.get(type)).addElement(o);
    else {
      Vector v = new Vector();
      v.addElement(o);
      t.put(type,v);
    }
  }
  public Vector get(Class type) {
    return (Vector)t.get(type);
  }
  public Enumeration keys() { return t.keys(); }
  // Returns handle to adapter class to allow
  // callbacks from ParseTrash.fillBin():
  public Fillable filler() {



Chapter 16: Design Patterns 854

    // Anonymous inner class:
    return new Fillable() {
      public void addTrash(Trash t) { add(t); }
    };
  }
}

public class DynaTrash {
  public static void main(String[] args) {
    TypeMap bin = new TypeMap();
    ParseTrash.fillBin("Trash.dat",bin.filler());
    Enumeration keys = bin.keys();
    while(keys.hasMoreElements())
      Trash.sumValue(
        bin.get((Class)keys.nextElement()));
  }
} ///:~

Although powerful, the definition for TypeMap is simple. It contains a Hashtable, and the
add( ) member function does most of the work. When you add( ) a new object, the handle for
the Class object for that type is extracted. This is used as a key to determine whether a Vector
holding objects of that type is already present in the Hashtable. If so, that Vector is extracted
and the object is added to the Vector. If not, the Class object and a new Vector are added as a
key-value pair.

You can get an Enumeration of all the Class objects from keys( ), and use each Class object
to fetch the corresponding Vector with get( ). And that’s all there is to it.

The filler( ) member function is interesting because it takes advantage of the design of
ParseTrash.fillBin( ), which doesn’t just try to fill a Vector but instead anything that
implements the Fillable interface with its addTrash( ) member function. All filler( ) needs to
do is to return a handle to an interface that implements Fillable, and then this handle can be
used as an argument to fillBin( ) like this:

ParseTrash.fillBin("Trash.dat", bin.filler());

To produce this handle, an anonymous inner class (described in Chapter 7) is used. You never
need a named class to implement Fillable, you just need a handle to an object of that class,
thus this is an appropriate use of anonymous inner classes.

An interesting thing about this design is that even though it wasn’t created to handle the
sorting, fillBin( ) is performing a sort every time it inserts a Trash object into bin.

Much of class DynaTrash should be familiar from the previous examples. This time, instead
of placing the new Trash objects into a bin of type Vector, the bin is of type TypeMap, so
when the trash is thrown into bin it’s immediately sorted by TypeMap’s internal sorting
mechanism. Stepping through the TypeMap and operating on each individual Vector
becomes a simple matter:



Chapter 16: Design Patterns 855

    Enumeration keys = bin.keys();
    while(keys.hasMoreElements())
      Trash.sumValue(
        bin.get((Class)keys.nextElement()));

As you can see, adding a new type to the system won’t affect this code at all, nor the code in
TypeMap. This is certainly the smallest solution to the problem, and arguably the most
elegant as well. It does rely heavily on RTTI, but notice that each key-value pair in the
Hashtable is looking for only one type. In addition, there’s no way you can «forget» to add
the proper code to this system when you add a new type, since there isn’t any code you need
to add.

Summary
Coming up with a design such as TrashVisitor.java that contains a larger amount of code
than the earlier designs can seem at first to be counterproductive. It pays to notice what you’re
trying to accomplish with various designs. Design patterns in general strive to separate the
things that change from the things that stay the same. The «things that change» can refer to
many different kinds of changes. Perhaps the change occurs because the program is placed
into a new environment or because something in the current environment changes (this could
be: «The user wants to add a new shape to the diagram currently on the screen»). Or, as in this
case, the change could be the evolution of the code body. While previous versions of the
trash-sorting example emphasized the addition of new types of Trash to the system,
TrashVisitor.java allows you to easily add new functionality without disturbing the Trash
hierarchy. There’s more code in TrashVisitor.java, but adding new functionality to Visitor is
cheap. If this is something that happens a lot, then it’s worth the extra effort and code to make
it happen more easily.

The discovery of the vector of change is no trivial matter; it’s not something that an analyst
can usually detect before the program sees its initial design. The necessary information will
probably not appear until later phases in the project: sometimes only at the design or
implementation phases do you discover a deeper or more subtle need in your system. In the
case of adding new types (which was the focus of most of the «recycle» examples) you might
realize that you need a particular inheritance hierarchy only when you are in the maintenance
phase and you begin extending the system!

One of the most important things that you’ll learn by studying design patterns seems to be an
about-face from what has been promoted so far in this book. That is: «OOP is all about
polymorphism.» This statement can produce the «two-year-old with a hammer» syndrome
(everything looks like a nail). Put another way, it’s hard enough to «get» polymorphism, and
once you do, you try to cast all your designs into that one particular mold.

What design patterns say is that OOP isn’t just about polymorphism. It’s about «separating
the things that change from the things that stay the same.» Polymorphism is an especially
important way to do this, and it turns out to be helpful if the programming language directly
supports polymorphism (so you don’t have to wire it in yourself, which would tend to make it
prohibitively expensive). But design patterns in general show other ways to accomplish the



Chapter 16: Design Patterns 856

basic goal, and once your eyes have been opened to this you will begin to search for more
creative designs.

Since the Design Patterns book came out and made such an impact, people have been
searching for other patterns. You can expect to see more of these appear as time goes on. Here
are some sites recommended by Jim Coplien, of C++ fame (http://www.bell-labs.com/~cope),
who is one of the main proponents of the patterns movement:

http://st-www.cs.uiuc.edu/users/patterns
http://c2.com/cgi/wiki
http://c2.com/ppr
http://www.bell-labs.com/people/cope/Patterns/Process/index.html
http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns
http://st-www.cs.uiuc.edu/cgi-bin/wikic/wikic
http://www.cs.wustl.edu/~schmidt/patterns.html
http://www.espinc.com/patterns/overview.html

Also note there has been a yearly conference on design patterns, called PLOP, that
produces a published proceedings, the third of which came out in late 1997 (all
published by Addison-Wesley).

Exercises
 1.  Using SingletonPattern.java as a starting point, create a class that manages

a fixed number of its own objects.
 2.  Add a class Plastic to TrashVisitor.java.
 3.  Add a class Plastic to DynaTrash.java.



857

26: Tools & topics
Tools created & used during the development of this book
and various other handy things

The code extractor
To get the code for this book onto your machine, go to the web site www.BruceEckel.com
and download the text file containing the book. Then run the program in this section to extract
all the code files and place them in appropriate subdirectories.

You've seen that each file to be extracted contains a starting marker (which includes the file
name and path) and an ending marker. Files can be of any type, and if the colon after the
comment is directly followed by a '!' then the starting and ending marker lines are not
reproduced in the generated file. In addition, you’ve seen the other markers {O}, {L}, and {T}
that have been placed inside comments; these are used to generate the makefile for each
subdirectory.

If there's a mistake in the input file, then the program must report the error, which is the
error( ) function at the beginning of the program. In addition, directory manipulation is not
supported by the standard libraries, so this is hidden away in the class OSDirControl. If you
discover that this class will not compile on your system, you must replace the non-portable
function calls in OSDirControl with eqivalent calls from your library.

Although this program is very useful for distributing the code in the book, you’ll see that it’s
also a useful example in its own right, since it partitions everything into sensible objects and
also makes heavy use of the STL and standard string class:

//: C26:ExtractCode.cpp
// Automatically extracts code files from
// ASCII text of this book.
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <map>
#include <set>
using namespace std;
const string nl("\n");



Appendix A: Et cetera 858

const long bsz = 1024 * 64; // Buffer size

// A debugging macro, just in case:
#define D(a) cout << #a "=[" << a << "]" << nl;

// Program values can be changed by command line:
class ProgVals : public map<string, string> {
public:
  ProgVals() {
    // Default compiler, extensions for makefile:
    operator[]("compiler") = "g++";
    operator[]("objfile") = "o";
    operator[]("exefile") = "out";
    operator[]("exeflag") = "-o";
    operator[]("slash") = "forward";
  }
} pvals; // Global holder for program values

string usage =
  " Usage:ExtractCode source [arg1, arg2, ...]\n"
  "where source is the ASCII file containing \n"
  "the embedded tagged sourcefiles, and the\n"
  "optional arguments are in the form \n"
  "name=value \n"
  "and can be any of the following, \n"
  "where the defaults are shown here:\n"
  "compiler=g++ (name of compiler to use)\n"
  "objfile=o (objectfile extension)\n"
  "exefile=out  (executable file extension)\n"
  "exeflag=-o (to specify output file name)"
  "slash=forward (for path, can be 'backward')";

void error(string file, string errmsg) {
  static string errfile("ExtractCodeErrors.txt");
  static ofstream errs(errfile.c_str());
  static const string border(
  "-----------------------------------------\n");
  class ErrReport {
    int count;
  public:
    ErrReport() : count(0) {}
    void operator++(int) { count++; }
    ~ErrReport() {



Appendix A: Et cetera 859

      cerr << count << " Errors found" << endl;
      cerr << "Details in " << errfile << endl;
    }
  };
  // Created on first call to this function;
  // Destructor reports total errors:
  static ErrReport report;
  report++;
  errs << border << errmsg << nl
    << "Problem spot: " << file << nl;
}

///// OS-specific code, hidden inside a class:
#include <direct.h> // Non-portable
class OSDirControl {
public:
  static string getCurrentDir() {
    char path[_MAX_PATH];
    getcwd(path, _MAX_PATH);
    return string(path);
  }
  static void makeDir(string dir) {
    mkdir(dir.c_str());
  }
  static void changeDir(string dir) {
    chdir(dir.c_str());
  }
};
///// End of OS-specific code

class PushDirectory {
  string oldpath;
public:
  PushDirectory(string path);
  ~PushDirectory() {
    OSDirControl::changeDir(oldpath);
  }
  void pushOneDir(string dir) {
    OSDirControl::makeDir(dir);
    OSDirControl::changeDir(dir);
  }
};



Appendix A: Et cetera 860

PushDirectory::PushDirectory(string path) {
  oldpath = OSDirControl::getCurrentDir();
  while(path.size() != 0) {
    int colon = path.find(':');
    if(colon != string::npos) {
      pushOneDir(path.substr(0, colon));
      path = path.substr(colon + 1);
    } else {
      pushOneDir(path);
      return;
    }
  }
}

class CodeFile {
  string path; // Where the source file lives
  string file; // Name of the source file
  string base; // Name without extension
  string tname; // Target name
  vector<string>
    compile, // Compile dependencies
    link; // How to link the executable
  string testargs; // Command-line arguments
  bool writeTags; // Whether to write the markers
  vector<string> lines; // Contains the file
  // Initial makefile processing for the file:
  void target(const string& s);
  // For quoted #include headers:
  void headerline(const string& s);
  // For special dependency tag marks:
  void dependline(const string& s);
public:
  enum ttype {header, object, executable, none};
  ttype targettype;
  CodeFile(istream& in, string& s);
  const string& Path() { return path; }
  const string& File() { return file; }
  const string& Base() { return base; }
  const string& TargetName() { return tname; }
  const vector<string>& Compile() {
    return compile;
  }
  const vector<string>& Link() {



Appendix A: Et cetera 861

    return link;
  }
  const string& TestArgs() { return testargs; }
  friend ostream&
  operator<<(ostream& os, CodeFile cf) {
    for(int i = 0; i < cf.lines.size(); i++)
      os << cf.lines[i];
    return os;
  }
  void dumpInfo(ostream& os) {
    os << path << ':' << file << nl;
    os << "target: " << tname << nl;
    os << "compile: " << nl;
    for(int i = 0; i < compile.size(); i++)
      os << '\t' << compile[i] << nl;
    os << "link: " << nl;
    for(int i = 0; i < link.size(); i++)
      os << '\t' << link[i] << nl;
  }
};

void CodeFile::target(const string& s) {
  // Find the base name of the file (without
  // the extension):
  int lastDot = file.find_last_of('.');
  if(lastDot == string::npos) {
    error(s, "Missing extension");
    exit(1);
  }
  base = file.substr(0, lastDot);
  // Determine the type of file and target:
  if(s.find(".h") != string::npos ||
     s.find(".H") != string::npos) {
    targettype = header;
    tname = file;
    return;
  }
  if(s.find(".txt") != string::npos
      || s.find(".TXT") != string::npos) {
    // Text file, not involved in make
    targettype = none;
    tname = file;
    return;



Appendix A: Et cetera 862

  }
  // CPP objs/exes depend on their own source:
  compile.push_back(file);
  if(s.find("{O}") != string::npos) {
    // Don't build an executable from this file
    targettype = object;
    tname = base + '.' + pvals["objfile"];
  } else {
    targettype = executable;
    tname = base + '.' + pvals["exefile"];
    // The exe depends on its own object file:
    link.push_back(base +'.'+ pvals["objfile"]);
  }
}

void CodeFile::headerline(const string& s) {
  int start = s.find('\"');
  int end = s.find('\"', start + 1);
  int len = end - start - 1;
  compile.push_back(s.substr(start + 1, len));
}

string trim(string& s) {
  int i, j;
  for(i = 0; s[i] == ' '; i++);
  for(j = s.size(); s[j] == ' '; j--);
  return s.substr(i, j);
}

void CodeFile::dependline(const string& s) {
  const string linktag("//{L} ");
  int tag = s.find(linktag) + linktag.size();
  string deps = trim(s.substr(tag));
  while(true) {
    int end = deps.find(' ');
    string dep = deps.substr(0, end);
    link.push_back(dep + "." + pvals["objfile"]);
    if(end == string::npos) // Last one
      break;
    else
      deps = trim(deps.substr(end));
  }
}



Appendix A: Et cetera 863

CodeFile::CodeFile(istream& in, string& s) {
  // If false, don't write begin & end tags:
  writeTags = (s[3] != '!');
  // Assume a space after the starting tag:
  file = s.substr(s.find(' ') + 1);
  // There will always be at least one colon:
  int lastColon = file.find_last_of(':');
  if(lastColon == string::npos) {
    error(s, "Missing path");
    lastColon = 0; // Recover from error
  }
  path = file.substr(0, lastColon);
  file = file.substr(lastColon + 1);
  file = file.substr(0, file.find_last_of(' '));
  cout << "path = [" << path << "] "
    << "file = [" << file << "]" << nl;
  target(s); // Determine target type
  if(writeTags)
    lines.push_back(string(s + nl +
      "// From Thinking in C++, 2nd Edition\n"
      "// (c) Bruce Eckel 1998\n"
      "// Copyright notice in Copyright.txt\n"));
  const int bsz2 = 2048;
  char buf2[bsz2];
  // Use getline(in, s2) when library is faster:
  while(in.getline(buf2, bsz2)) {
    string s2(buf2);
    // Look for specified link dependencies:
    if(s2.find("//{L}") == 0) // 0: Start of line
      dependline(s2);
    // Look for command-line arguments for test:
    if(s2.find("//{T}") == 0) // 0: Start of line
      testargs = s2.substr(strlen("//{T}") + 1);
    // Look for quoted includes:
    if(s2.find("#include \"") != string::npos) {
      // NOTE: probably don't need this:
      // Take care of forward/backward slashes:
      if(pvals["slash"] == "forward") {
        for(int i = 0; i < s2.size(); i++)
          if(s2[i] == '\\')
            s2[i] = '/';
      }



Appendix A: Et cetera 864

      headerline(s2); // Grab makefile info
    }
    // Look for end marker:
    if(s2.find("//" "/:~") != string::npos) {
      if(writeTags)
        lines.push_back(s2 + nl);
      return;  // Found the end
    }
    // Make sure you don't see another start:
    if(s2.find("//" ":") != string::npos
       || s2.find("/*" ":") != string::npos) {
      error(s, "Error: new file started before"
        " previous file concluded");
      return;
    }
    // Write ordinary line:
    lines.push_back(s2 + nl);
  }
}

// Create the makefile for this directory, based
// on each of the CodeFile entries:
class Makefile {
  // The sections of the makefile:
  vector<string> mhead, mtest, mall, mdeps;
public:
  Makefile(string path) {
    mhead.push_back(
      "# Automatically-generated MAKEFILE \n"
      "# For examples in directory " + path);
    mhead.push_back("CPP = "+pvals["compiler"]);
    mhead.push_back("");
    mhead.push_back("OFLAG = "+pvals["exeflag"]);
    mhead.push_back("");
  }
  void addEntry(CodeFile& cf) {
    if(cf.targettype == CodeFile::executable) {
      mall.push_back(cf.TargetName());
      mtest.push_back(
        cf.TargetName() + ' ' + cf.TestArgs());
      // Create the link command:
      int linkdeps = cf.Link().size();
      string linklist;



Appendix A: Et cetera 865

      for(int i = 0; i < linkdeps; i++)
        linklist += cf.Link()[i] + " ";
      mdeps.push_back(
        cf.TargetName() + ": " + linklist);
      mdeps.push_back("\t$(CPP) $(OFLAG)"
        + cf.TargetName() + ' ' + linklist);
      mdeps.push_back("");
    }
    // Create the compile command:
    if(cf.targettype == CodeFile::executable ||
       cf.targettype == CodeFile::object) {
      int compiledeps = cf.Compile().size();
      string objlist = cf.Base() + '.'
        + pvals["objfile"] + ": ";
      for(int i = 0; i < compiledeps; i++)
        objlist += cf.Compile()[i] + " ";
      mdeps.push_back(objlist);
      mdeps.push_back(
        "\t$(CPP) -c " + cf.File());
      mdeps.push_back("");
    }
  }
  // Sometimes makefiles use different names:
  void write(string name) {
    ofstream makefile(name.c_str());
    for(int i = 0; i < mhead.size(); i++)
      makefile << mhead[i] << nl;
    makefile << nl;
    makefile << "all: \\" << nl;
    for(int i = 0; i < mall.size(); i++)
      makefile << '\t' << mall[i] << " \\" << nl;
    makefile << nl;
    makefile << "test: all" << nl;
    for(int i = 0; i < mtest.size(); i++)
      makefile << '\t' << mtest[i] << nl;
    makefile << nl;
    for(int i = 0; i < mdeps.size(); i++)
      makefile << mdeps[i] << nl;
  }
};

typedef multimap<string, CodeFile> CodeFiles;
typedef CodeFiles::iterator citer;



Appendix A: Et cetera 866

typedef CodeFiles::value_type CFval;

int main(int argc, char* argv[]) {
  if(argc < 2) {
    error("Command line error", usage);
    exit(1);
  }
  // Parse and apply additional
  // command-line arguments:
  for(int i = 2; i < argc; i++) {
    string flag(argv[i]);
    int equal = flag.find('=');
    if(equal == string::npos) {
      error("Command line error", flag + usage);
      continue; // Next argument
    }
    string name = flag.substr(0, equal);
    string value = flag.substr(equal + 1);
    if(pvals.find(name) == pvals.end()) {
      error(name, usage);
      continue; // Next argument
    }
    pvals[name] = value;
  }
  cout << "Program values:" << endl;
  for(ProgVals::iterator it = pvals.begin();
      it != pvals.end(); it++)
    cout << (*it).first << " = "
         << (*it).second << endl;
  // Open and read the input file:
  ifstream in(argv[1]);
  if(!in) {
    cerr << "could not open" << argv[1] << endl;
    return 1;
  }
  CodeFiles codefiles;
  set<string> paths;
  const int bsz = 2048;
  char buf[bsz];
  // Use getline(in, s2) when library is faster:
  while(in.getline(buf, bsz)) {
    string s(buf);
    // Look for tag at beginning of line:



Appendix A: Et cetera 867

    if(s.find("//" ":") == 0
       || s.find("/*" ":") == 0) {
      CodeFile cf(in, s);
      codefiles.insert(CFval(cf.Path(), cf));
      paths.insert(cf.Path());
    }
  }
  // Select all the files in each path by pulling
  // them out of the multimap with equal_range():
  for(set<string>::iterator it = paths.begin();
      it != paths.end(); it++) {
    cout << "path: [" << *it << "]" << nl;
    Makefile make(*it); // For this directory
    // Change to the path of interest:
    PushDirectory pd(*it); // Destructor pops it
    // Get all the files in this path:
    pair<citer, citer> path =
      codefiles.equal_range(*it);
    // Write each of the listings in this path,
    // and extract the makefile information:
    for(citer i = path.first;
        i != path.second; i++) {
      CodeFile& cf = (*i).second;
      ofstream listing(cf.File().c_str());
      listing << cf;  // Write the file
      make.addEntry(cf);
    }
    make.write("makefile");
  }
  // Create the master makefile:
  vector<string> mhead, mbody;
  mhead.push_back("# Master makefile for "
    "Thinking in C++, 2nd Ed. by Bruce Eckel\n"
    "# Compiles all the code in the book\n\n"
    "all: \\");
  for(set<string>::iterator it = paths.begin();
      it != paths.end(); it++) {
    // Ignore the root directory:
    if((*it).length() == 0) continue;
    mhead.push_back("\t" + *it + " \\");
    mbody.push_back(*it + ":");
    mbody.push_back("\tcd " + *it);
    mbody.push_back("\tmake");



Appendix A: Et cetera 868

    mbody.push_back("\tcd ..");
    mbody.push_back("");
  }
  mhead.push_back("");
  ofstream makefile("makefile");
  copy(mhead.begin(), mhead.end(),
    ostream_iterator<string>(makefile, "\n"));
  copy(mbody.begin(), mbody.end(),
    ostream_iterator<string>(makefile, "\n"));
} ///:~

To read the input lines, this program uses the form in.getline(buf, bsz) instead of the safer
and more general getline(in, s) (where s is a string). My preference would have been to use
the latter form, but some compilers still have a very slow implementation of this form, and
thus it is not so practical (however, it may be more practical by the time you read this so you
should prefer the getline(in, s) form). Because, for code extraction, the book is saved in plain
ASCII with no line breaks, the text paragraphs can get very long and so to make sure none of
them can overrun the buffer (which causes the program to choke) the buffer size bsz is made
very large.

The macro D( ) was used to help debug the program. If there’s an expression you want to
display, you simply put it inside a call to D( ) and the expression will be printed, followed by
its value (assuming there’s an overloaded operator << for the result type). For example, you
can say D(a + b). This macro is left in the listing to aid you if you need to port the program to
some other compiler or operating system.

The code in this book is designed to be as generic as possible, but it is only tested under two
operating systems: 32-bit Windows and Linux, with the Gnu C++ compiler g++ (which
means it should compile under other versions of Unix without too much trouble). However, to
extract and compile the code under Linux there are a few issues that must be dealt with, like
whether the slashes in directory paths are forward or backward, and the compiler names,
extensions and flags that must be used within the makefiles. To allow these to be changed at
execution time, a class called ProgVals is inherited from a map of strings to strings. In the
constructor, the values are initialized using the map’s operator[ ]. Much later in the program,
at the beginning of main( ), you can see

The error( ) member function is designed so that if it is never called, no error reporting
occurs, but if it is called one or more times then an error file is created and the total number of
errors is reported at the end of the program execution. This is accomplished by using a static
ofstream object to hold the error messages – the file is created the first time error( ) is called
and the ofstream destructor closes it. The count of the number of errors is held in a static
object of the inner class ErrReport. Again, this object is only created the first time error( ) is
called, and if that happens then its destructor is called when the program exits, thus producing
the error count upon program termination.

The job of a PushDirectory object is to capture the current directory, then created and move
down each directory in the path (the path can be arbitrarily long). Each subdirectory in the



Appendix A: Et cetera 869

file's path description is separated by a ‘:’ and the mkdir( ) and chdir( ) (or the equivalent on
your system) are used to move into only one directory at a time, so the actual character that's
used to separate directory paths is safely ignored. The destructor returns the path to the one
that was captured before all the creating and moving took place.

In main( ), the input file is opened and each line is read. When the starting tag is discovered,
the line it was discovered in along with the istream which produces the input is passed to
extractFile( ) to pull out the contents of a single file; then it goes back to searching for the
beginning of a source-code file. You'll notice that the starting and ending tags are expressed in
a broken-up form, such as «//» «:». The preprocessor will meld these together, as they have no
intervening punctuation, into a single string, but separating them like this prevents the
ExtractCode program from being fooled when it sees the characters within the code.

The extractFile( ) function does the bulk of the work. First it checks to see if this file doesn’t
want its beginning and ending tag lines to be output. The string file initially holds the entire
path and file data, but string::find_last_of( ) is used to create path (containing all the path
information) and trim file so it only contains the file name. The creation of the
PushDirectory object creates the necessary directories and moves to the right one (and the
destructor restores the original directory). The output file is created and this creation is
reported to cout. After adding a reference to the copyright notice (which will also be extracted
from the text by this same program), the lines are copied to the output file, watching for the
ending tag (or a new beginning tag before the end is found, which indicates an error). Once
the end tag is found, that file is complete.

Debugging
This section contains some tips and techniques which may help during debugging.

assert( )
The Standard C library assert( ) macro has been used regularly through this chapter. It's brief,
to the point and portable. In addition, when you're finished debugging you can remove all the
code by defining NDEBUG, either on the command-line or in code.

Also, assert( ) can be used while roughing out the code. Later, the calls to assert( ) that are
actually providing information to the end user can be replaced with more civilized messages.

Trace macros
Sometimes it's very helpful to print the code of each statement before it is executed, either to
cout or to a trace file. Here's a preprocessor macro to accomplish this:

#define TRACE(arg) cout << #arg << endl; arg



Appendix A: Et cetera 870

Now you can go through and surround the statements you trace with this macro. Of course, it
can introduce problems. For example, if you take the statement:

for(int i = 0; i < 100; i++)
  cout << i << endl;

And put both lines inside TRACE( ) macros, you get this:

TRACE(for(int i = 0; i < 100; i++))
TRACE(  cout << i << endl;)

Which expands to this:

cout << "for(int i = 0; i < 100; i++)" << endl;
for(int i = 0; i < 100; i++)
  cout << "cout << i << endl;" << endl;
cout << i << endl;

Which isn't what you want. Thus, this technique must be used carefully.

Trace file
This code allows you to easily create a trace file and send all the output that would normally
go to cout into the file. All you have to do is #define TRACEON and include the header file
(of course, it's fairly easy just to write the two key lines right into your file):

//: C26:Trace.h
// Creating a trace file
#ifndef TRACE_H_
#define TRACE_H_
#include <fstream>

#ifdef TRACEON
ofstream TRACEFILE__("TRACE.OUT");
#define cout TRACEFILE__
#endif

#endif // TRACE_H_ ///:~

Here's a simple test of the above file:

//: C26:Tracetst.cpp
// Test of trace.h
#include <iostream>
#include <fstream>
#include "../require.h"
using namespace std;



Appendix A: Et cetera 871

#define TRACEON
#include "Trace.h"

int main() {
  ifstream f("tracetst.cpp");
  assure(f, "tracetst.cpp");
  cout << f.rdbuf();
} ///:~

Abstract base class for debugging
In the Smalltalk tradition, you can create your own object-based hierarchy, and install pure
virtual functions to perform debugging. Then everyone on the team must inherit from this
class and redefine the debugging functions. All objects in the system will then have
debugging functions available.

Tracking new/delete & malloc/free
Common problems with memory allocation include calling delete for things you have
malloced, calling free for things you allocated with new, forgetting to release objects from
the free store, and releasing them more than once. This section provides a system to help you
track these kinds of problems down.

To use the memory checking system, you simply link the obj file in and all the calls to
malloc( ), realloc( ), calloc( ), free( ), new and delete are intercepted. However, if you also
include the following file (which is optional), all the calls to new will store information about
the file and line where they were called. This is accomplished with a use of the placement
syntax for operator new (this trick was suggested by Reg Charney of the C++ Standards
Committee). The placement syntax is intended for situations where you need to place objects
at a specific point in memory. However, it allows you to create an operator new with any
number of arguments. This is used to advantage here to store the results of the __FILE__ and
__LINE__ macros whenever new is called:

//: C26:Memcheck.h
// Memory testing system
// This file is only included if you want to
// use the special placement syntax to find
// out the line number where "new" was called.
#ifndef MEMCHECK_H_
#define MEMCHECK_H_
#include <cstdlib>  // size_t

// Use placement syntax to pass extra arguments.



Appendix A: Et cetera 872

// From an idea by Reg Charney:
void * operator
new(std::size_t sz, char * file, int line);
#define new new(__FILE__, __LINE__)

#endif // MEMCHECK_H_ ///:~

In the following file containing the function definitions, you will note that everything is done
with standard IO rather than iostreams. This is because, for example, the cout constructor
allocates memory. Standard IO ensures against cyclical conditions that can lock up the
system.

//: C26:Memcheck.cpp {O}
// Memory allocation tester
#include <cstdlib>
#include <cstring>
#include <cstdio>
using namespace std;
// MEMCHECK.H must not be included here

// Output file object using stdio.h.
// (cout constructor calls malloc())
class OFile {
  FILE* f;
public:
  OFile(char * name) : f(fopen(name, "w")) {}
  ~OFile() { fclose(f); }
  operator FILE*() { return f; }
};
extern OFile memtrace;
// Comment out the following to send all the
// information to the trace file:
#define memtrace stdout

const unsigned long _pool_sz = 50000L;
static unsigned char _memory_pool[_pool_sz];
static unsigned char* _pool_ptr = _memory_pool;

void* getmem(size_t sz) {
  if(_memory_pool + _pool_sz - _pool_ptr < sz) {
    fprintf(stderr,
           "Out of memory. Use bigger model\n");
    exit(1);
  }



Appendix A: Et cetera 873

  void* p = _pool_ptr;
  _pool_ptr += sz;
  return p;
}

// Holds information about allocated pointers:
class MemBag {
public:
  enum type { Malloc, New };
private:
  char * typestr(type t) {
    switch(t) {
      case Malloc: return "malloc";
      case New: return "new";
      default: return "?unknown?";
    }
  }
  struct m {
    void * mp;  // Memory pointer
    type t;     // Allocation type
    char * file; // File name where allocated
    int line;  // Line number where allocated
    m(void * v, type T, char* F, int L)
      : mp(v), t(T), file(F), line(L) {}
  } * v;
  int sz, next;
  enum { increment = 50 };
public:
  MemBag() : v(0), sz(0), next(0) {}
  void* add(void * P, type T = Malloc,
            char* S = "library", int L = 0) {
    if(next >= sz) {
      sz += increment;
      // This memory is never freed, so it
      // doesn't "get involved" in the test:
      const memsize = sz * sizeof(m);
      // Equivalent of realloc, no registration:
      void* p = getmem(memsize);
      if(v) memmove(p, v, memsize);
      v = (m*)p;
      memset(&v[next], 0,
             increment * sizeof(m));
    }



Appendix A: Et cetera 874

    v[next++] = m(P, T, S, L);
    return P;
  }
  // Print information about allocation:
  void allocation(int i) {
    fprintf(memtrace, "pointer %p"
      " allocated with %s",
      v[i].mp, typestr(v[i].t));
    if(v[i].t == New)
      fprintf(memtrace, " at %s: %d",
        v[i].file, v[i].line);
    fprintf(memtrace, "\n");
  }
  void validate(void * p, type T = Malloc) {
    for(int i = 0; i < next; i++)
      if(v[i].mp == p) {
        if(v[i].t != T) {
          allocation(i);
          fprintf(memtrace,
          "\t was released as if it were "
          "allocated with %s \n", typestr(T));
        }
        v[i].mp = 0;  // Erase it
        return;
      }
    fprintf(memtrace,
    "pointer not in memory list: %p\n", p);
  }
  ~MemBag() {
    for(int i = 0; i < next; i++)
      if(v[i].mp != 0) {
        fprintf(memtrace,
        "pointer not released: ");
        allocation(i);
      }
  }
};
extern MemBag MEMBAG_;

void* malloc(size_t sz) {
  void* p = getmem(sz);
  return MEMBAG_.add(p, MemBag::Malloc);
}



Appendix A: Et cetera 875

void* calloc(size_t num_elems, size_t elem_sz) {
  void* p = getmem(num_elems * elem_sz);
  memset(p, 0, num_elems * elem_sz);
  return MEMBAG_.add(p, MemBag::Malloc);
}

void* realloc(void *block, size_t sz) {
  void* p = getmem(sz);
  if(block) memmove(p, block, sz);
  return MEMBAG_.add(p, MemBag::Malloc);
}

void free(void* v) {
  MEMBAG_.validate(v, MemBag::Malloc);
}

void * operator new(size_t sz) {
  void* p = getmem(sz);
  return MEMBAG_.add(p, MemBag::New);
}

void *
operator new(size_t sz, char * file, int line) {
  void * p = getmem(sz);
  return MEMBAG_.add(p, MemBag::New, file,line);
}

void operator delete(void * v) {
  MEMBAG_.validate(v, MemBag::New);
}

MemBag MEMBAG_;
// Placed here so the constructor is called
// AFTER that of MEMBAG_ :
#ifdef memtrace
#undef memtrace
#endif
OFile memtrace("memtrace.out");
// Causes 1 "pointer not in memory list" message
///:~



Appendix A: Et cetera 876

OFile is a simple wrapper around a FILE*; the constructor opens the file and the destructor
closes it. The operator FILE*( ) allows you to simply use the OFile object anyplace you
would ordinarily use a FILE* (in the fprintf( ) statements in this example). The #define that
follows simply sends everything to standard output, but if you need to put it in a trace file you
simply comment out that line.

Memory is allocated from an array called _memory_pool. The _pool_ptr is moved forward
every time storage is allocated. For simplicity, the storage is never reclaimed, and realloc( )
doesn't try to resize the storage in the same place.

All the storage allocation functions call getmem( ) which ensures there is enough space left
and moves the _pool_ptr to allocate your storage. Then they store the pointer in a special
container of class MemBag called MEMBAG_, along with pertinent information (notice the
two versions of operator new; one which just stores the pointer and the other which stores
the file and line number). The MemBag class is the heart of the system.

You will see many similarities to xbag in MemBag. A distinct difference is realloc( ) is
replaced by a call to getmem( ) and memmove( ), so that storage allocated for the MemBag
is not registered. In addition, the type enum allows you to store the way the memory was
allocated; the typestr( ) function takes a type and produces a string for use with printing.

The nested struct m holds the pointer, the type, a pointer to the file name (which is assumed
to be statically allocated) and the line where the allocation occurred. v is a pointer to an array
of m objects -- this is the array which is dynamically sized.

The allocation( ) function prints out a different message depending on whether the storage
was allocated with new (where it has line and file information) or malloc( ) (where it doesn't).
This function is used inside validate( ), which is called by free( ) and delete( ) to ensure
everything is OK, and in the destructor, to ensure the pointer was cleaned up (note that in
validate( ) the pointer value v[i].mp is set to zero, to indicate it has been cleaned up).

The following is a simple test using the memcheck facility. The MEMCHECK.OBJ file must
be linked in for it to work:

//: C26:Memtest.cpp
//{L} Memcheck
// Test of memcheck system
#include "Memcheck.h"

int main() {
  void * v = std::malloc(100);
  delete v;
  int * x = new int;
  std::free(x);
  new double;
} ///:~



Appendix A: Et cetera 877

The trace file created in MEMCHECK.CPP causes the generation of one "pointer not in
memory list" message, apparently from the creation of the file pointer on the heap.

CGI programming in C++
The World-Wide Web has become the common tongue of connectivity on planet earth. It
began as simply a way to publish primitively-formatted documents in a way that everyone
could read them regardless of the machine they were using. The documents are created in
hypertext markup language (HTML) and placed on a central server machine where they are
handed to anyone who asks. The documents are requested and read using a web browser that
has been written or ported to each particular platform.

Very quickly, just reading a document was not enough and people wanted to be able to collect
information from the clients, for example to take orders or allow database lookups from the
server. Many different approaches to client-side programming have been tried such as Java
applets, Javascript, and other scripting or programming languages. Unfortunately, whenever
you publish something on the Internet you face the problem of a whole history of browsers,
some of which may support the particular flavor of your client-side programming tool, and
some which won’t. The only reliable and well-established solution70 to this problem is to use
straight HTML (which has a very limited way to collect and submit information from the
client) and common gateway interface (CGI) programs that are run on the server. The Web
server takes an encoded request submitted via an HTML page and responds by invoking a
CGI program and handing it the encoded data from the request. This request is classified as
either a «GET» or a «POST» (the meaning of which will be explained later) and if you look at
the URL window in your Web browser when you push a «submit» button on a page you’ll
often be able to see the encoded request and information.

CGI can seem a bit intimidating at first, but it turns out that it’s just messy, and not all that
difficult to write. (An innocent statement that’s true of many things – after you understand
them.) A CGI program is quite straightforward since it takes its input from environment
variables and standard input, and sends its output to standard output. However, there is some
decoding that must be done in order to extract the data that’s been sent to you from the
client’s web page. In this section you’ll get a crash course in CGI programming, and we’ll
develop tools that will perform the decoding for the two different types of CGI submissions
(GET and POST). These tools will allow you to easily write a CGI program to solve any
problem. Since C++ exists on virtually all machines that have Web servers (and you can get
GNU C++ free for virtually any platform), the solution presented here is quite portable.

                                                       

70 Actually, Java Servlets look like a much better solution than CGI, but – at least at this
writing – Servlets are still an up-and-coming solution and you’re unlikely to find them
provided by your typical ISP.



Appendix A: Et cetera 878

Encoding data for CGI
To submit data to a CGI program, the HTML «form» tag is used. The following very simple
HTML page contains a form that has one user-input field along with a «submit» button:

//:! C26:SimpleForm.html
<HTML><HEAD>
<TITLE>A simple HTML form</TITLE></HEAD>
Test, uses standard html GET
<Form method="GET" ACTION="/cgi-bin/CGI_GET.exe">
<P>Field1: <INPUT TYPE = "text" NAME = "Field1"
VALUE = "This is a test" size = "40"></p>
<p><input type = "submit" name = "submit" > </p>
</Form></HTML>
///:~

Everything between the <Form and the </Form> is part of this form (You can have multiple
forms on a single page, but each one is controlled by its own method and submit button). The
«method» can be either «get» or «post,» and the «action» is what the server does when it
receives the form data: it calls a program. Each form has a method, an action, and a submit
button, and the rest of the form consists of input fields. The most commonly-used input field
is shown here: a text field. However, you can also have things like check boxes, drop-down
selection lists and radio buttons.

CGI_GET.exe is the name of the executable program that resides in the directory that’s
typically called «cgi-bin» on your Web server.71 (If the named program is not in the cgi-bin
directory, you won’t see any results.) Many Web servers are Unix machines (mine runs
Linux) that don’t traditionally use the .exe extension for their executable programs, but you
can call the program anything you want under Unix. By using the .exe extension the program
can be tested without change under most operating systems.

If you fill out this form and press the «submit» button, in the URL address window of your
browser you will see something like:

http://www.pooh.com/cgi-bin/CGI_GET.exe?Field1=
This+is+a+test&submit=Submit+Query

(Without the line break, of course.) Here you see a little bit of the way that data is encoded to
send to CGI. For one thing, spaces are not allowed (since spaces typically separate command-
line arguments). Spaces are replaced by ‘+’ signs. In addition, each field contains the field
name (which is determined by the form on the HTML page) followed by an ‘=’ and the field
data, and terminated by a ‘&’.

                                                       

71 Free Web servers are relatively common and can be found by browsing the Internet;
Apache, for example, is the most popular Web server on the Internet.



Appendix A: Et cetera 879

At this point, you might wonder about the ‘+’, ‘=,’ and ‘&’. What if those are used in the
field, as in «John & Marsha Smith»? This is encoded to:

John+%26+Marsha+Smith

That is, the special character is turned into a ‘%’ followed by its ASCII value in hex.
Fortunately, the web browser automatically performs all encoding for you.

The CGI parser
There are many examples of CGI programs written using Standard C. One argument for doing
this is that Standard C can be found virtually everywhere. However, C++ has become quite
ubiquitous, especially in the form of the GNU C++ Compiler72 (g++) that can be downloaded
free from the Internet for virtually any platform (and often comes pre-installed with operating
systems such as Linux). As you will see, this means that you can get the benefit of object-
oriented programming in a CGI program.

Since what we’re concerned with when parsing the CGI information is the field name-value
pairs, one class (CGIpair) will be used to represent a single name-value pair and a second
class (CGImap) will use CGIpair to parse each name-value pair that is submitted from the
HTML form into keys and values that it will hold in a map of strings so you can easily fetch
the value for each field at your leisure.

One of the reasons for using C++ here is the convenience of the STL, in particular the map
class. Since map has the operator[ ], you have a nice syntax for extracting the data for each
field. The map template will be used in the creation of CGImap, which you’ll see is a fairly
short definition considering how powerful it is.

The project will start with a reusable portion, which consists of CGIpair and CGImap in a
header file. Normally you should avoid cramming this much code into a header file, but for
these examples it’s convenient and it doesn’t hurt anything:

//: C26:CGImap.h
// Tools for extracting and decoding data from
// from CGI GETs and POSTs.
#include <string>
#include <vector>
#include <iostream>
using namespace std;

                                                       

72 GNU stands for «Gnu’s Not Unix.» The project, created by the Free Software Foundation,
was originally intended to replace the Unix operating system with a free version of that OS.
Linux appears to have replaced this initiative, but the GNU tools have played an integral part
in the development of Linux, which comes packaged with many GNU components.



Appendix A: Et cetera 880

class CGIpair : public pair<string, string> {
public:
  CGIpair() { }
  CGIpair(string name, string value) {
    first = decodeURLString(name);
    second = decodeURLString(value);
  }
  // Automatic type conversion for boolean test:
  operator bool() const {
    return (first.length() != 0);
  }
private:
  static string decodeURLString(string URLstr) {
    const int len = URLstr.length();
    string result;
    for(int i = 0; i < len; i++) {
      if(URLstr[i] == '+')
        result += ' ';
      else if(URLstr[i] == '%') {
        result +=
          translateHex(URLstr[i + 1]) * 16 +
          translateHex(URLstr[i + 2]);
        i += 2; // Move past hex code
      } else // An ordinary character
        result += URLstr[i];
    }
    return result;
  }
  // Translate a single hex character; used by
  // decodeURLString():
  static char translateHex(char hex) {
    if(hex >= 'A')
      return (hex & 0xdf) - 'A' + 10;
    else
      return hex - '0';
  }
};

// Parses any CGI query and turns it into an
// STL vector of CGIpair which has an associative
// lookup operator[] like a map. A vector is used
// instead of a map because it keeps the original
// ordering of the fields in the Web page form.



Appendix A: Et cetera 881

class CGImap : public vector<CGIpair> {
  string gq;
  int index;
  // Prevent assignment and copy-construction:
  void operator=(CGImap&);
  CGImap(CGImap&);
public:
  CGImap(string query): index(0), gq(query){
    CGIpair p;
    while((p = nextPair()) != 0)
      push_back(p);
  }
  // Look something up, as if it were a map:
  string operator[](const string& key) {
    iterator i = begin();
    while(i != end()) {
      if((*i).first == key)
        return (*i).second;
      i++;
    }
    return string(); // Empty string == not found
  }
  void dump(ostream& o, string nl = "<br>") {
    for(iterator i = begin(); i != end(); i++) {
      o << (*i).first << " = "
        << (*i).second << nl;
    }
  }
private:
  // Produces name-value pairs from the query
  // string. Returns an empty Pair when there's
  // no more query string left:
  CGIpair nextPair() {
    if(gq.length() == 0)
      return CGIpair(); // Error, return empty
    if(gq.find('=') == -1)
      return CGIpair(); // Error, return empty
    string name = gq.substr(0, gq.find('='));
    gq = gq.substr(gq.find('=') + 1);
    string value = gq.substr(0, gq.find('&'));
    gq = gq.substr(gq.find('&') + 1);
    return CGIpair(name, value);
  }



Appendix A: Et cetera 882

};

// Helper class for getting POST data:
class Post : public string {
public:
  Post() {
    // For a CGI "POST," the server puts the
    // length of the content string in the
    // environment variable CONTENT_LENGTH:
    char* clen = getenv("CONTENT_LENGTH");
    if(clen == 0) {
      cout << "Zero CONTENT_LENGTH, Make sure "
        "this is a POST and not a GET" << endl;
      return;
    }
    int len = atoi(clen);
    char* s = new char[len];
    cin.read(s, len); // Get the data
    append(s, len); // Add it to this string
    delete s;
  }
}; ///:~

The CGIpair class starts out quite simply: it inherits from the standard library pair template
to create a pair of strings, one for the name and one for the value. The second constructor
calls the member function decodeURLString( ) which produces a string after stripping away
all the extra characters added by the browser as it submitted the CGI request. There is no need
to provide functions to select each individual element – because pair is inherited publicly,
you can just select the first and second elements of the CGIpair.

The operator bool provides automatic type conversion to bool. If you have a CGIpair object
called p and you use it in an expression where a Boolean result is expected, such as

if(p) { //...

then the compiler will recognize that it has a CGIpair and it needs a Boolean, so it will
automatically call operator bool to perform the necessary conversion.

Because the string objects take care of themselves, you don’t need to explicitly define the
copy-constructor, operator= or destructor – the default versions synthesized by the compiler
do the right thing.

The remainder of the CGIpair class consists of the two methods decodeURLString( ) and a
helper member function translateHex( ) which is used by decodeURLString( ). (Note that
translateHex( ) does not guard against bad input such as «%1H.») decodeURLString( )
moves through and replaces each ‘+’ with a space, and each hex code (beginning with a ‘%’)
with the appropriate character. It’s worth noting here and in CGImap the power of the string



Appendix A: Et cetera 883

class – you can index into a string object using operator[ ], and you can use methods like
find( ) and substring( ).

CGImap parses and holds all the name-value pairs submitted from the form as part of a CGI
request. You might think that anything that has the word «map» in it’s name should be
inherited from the STL map, but map has it’s own way of ordering the elements it stores
whereas here it’s useful to keep the elements in the order that they appear on the Web page.
So CGImap is inherited from vector<CGIpair>, and operator[ ] is overloaded so you get
the associative-array lookup of a map.

You can also see that CGImap has a copy-constructor and an operator=, but they’re both
declared as private. This is to prevent the compiler from synthesizing the two functions
(which it will do if you don’t declare them yourself), but it also prevents the client
programmer from passing a CGImap by value or from using assignment.

CGImap’s job is to take the input data and parse it into name-value pairs, which it will do
with the aid of CGIpair (effectively, CGIpair is only a helper class, but it also seems to
make it easier to understand the code). After copying the query string (you’ll see where the
query string comes from later) into a local string object gq, the nextPair( ) member function
is used to parse the string into raw name-value pairs, delimited by ‘=’ and ‘&’ signs. Each
resulting CGIpair object is added to the vector using the standard vector::push_back( ).
When nextPair( ) runs out of input from the query string, it returns zero.

The CGImap::operator[ ] takes the brute-force approach of a linear search through the
elements. Since the CGImap is intentionally not sorted and they tend to be small, this is not
too terrible. The dump( ) function is used for testing, typically by sending information to the
resulting Web page, as you might guess from the default value of nl, which is an HTML
«break line» token.

Using GET can be fine for many applications. However, GET passes its data to the CGI
program through an environment variable (called QUERY_STRING), and operating systems
typically run out of environment space with long GET strings (you should start worrying at
about 200 characters). CGI provides a solution for this: POST. With POST, the data is
encoded and concatenated the same way as with GET, but POST uses standard input to pass
the encoded query string to the CGI program and has no length limitation on the input. All
you have to do in your CGI program is determine the length of the query string. This length is
stored in the environment variable CONTENT_LENGTH. Once you know the length, you
can allocate storage and read the precise number of bytes from standard input. Because POST
is the less-fragile solution, you should probably prefer it over GET, unless you know for sure
that your input will be short. In fact, one might surmise that the only reason for GET is that it
is slightly easier to code a CGI program in C using GET. However, the last class in
CGImap.h is a tool that makes handling a POST just as easy as handling a GET, which
means you can always use POST.

The class Post inherits from a string and only has a constructor. The job of the constructor is
to get the query data from the POST into itself (a string). It does this by reading the
CONTENT_LENGTH environment variable using the Standard C library function getenv( ).
This comes back as a pointer to a C character string. If this pointer is zero, the



Appendix A: Et cetera 884

CONTENT_LENGTH environment variable has not been set, so something is wrong.
Otherwise, the character string must be converted to an integer using the Standard C library
function atoi( ). The resulting length is used with new to allocate enough storage to hold the
query string (plus its null terminator), and then read( ) is called for cin. The read( ) function
takes a pointer to the destination buffer and the number of bytes to read. The resulting buffer
is inserted into the current string using string::append( ). At this point, the POST data is just
a string object and can be easily used without further concern about where it came from.

Testing the CGI parser
Now that the basic tools are defined, they can easily be used in a CGI program like the
following which simply dumps the name-value pairs that are parsed from a GET query.
Remember that an iterator for a CGImap returns a CGIpair object when it is dereferenced,
so you must select the first and second parts of that CGIpair:

//: C26:CGI_GET.cpp
// Tests CGImap by extracting the information
// from a CGI GET submitted by an HTML Web page.
#include "CGImap.h"

int main() {
  // You MUST print this out, otherwise the
  // server will not send the response:
  cout << "Content-type: text/plain\n" << endl;
  // For a CGI "GET," the server puts the data
  // in the environment variable QUERY_STRING:
  CGImap query(getenv("QUERY_STRING"));
  // Test: dump all names and values
  for(CGImap::iterator it = query.begin();
    it != query.end(); it++) {
    cout << (*it).first << " = "
      << (*it).second << endl;
  }
} ///:~

When you use the GET approach (which is controlled by the HTML page with the METHOD
tag of the FORM directive), the Web server grabs everything after the ‘?’ and puts in into the
operating-system environment variable QUERY_STRING. So to read that information all
you have to do is get the QUERY_STRING. You do this with the standard C library function
getenv( ), passing it the identifier of the environement variable you wish to fetch. In main( ),
notice how simple the act of parsing the QUERY_STRING is: you just hand it to the
constructor for the CGImap object called query and all the work is done for you. Although
an iterator is used here, you can also pull out the names and values from query using
CGImap::operator[ ].



Appendix A: Et cetera 885

Now it’s important to understand something about CGI. A CGI program is handed its input in
one of two ways: through QUERY_STRING during a GET (as in the above case) or through
standard input during a POST. But a CGI program only returns its results through standard
output, via cout. Where does this output go? Back to the Web server, which decides what to
do with it. The server makes this decision based on the content-type header, which means
that if the content-type header isn’t the first thing it sees, it won’t know what to do with the
data. Thus it’s essential that you start the output of all CGI programs with the content-type
header.

In this case, we want the server to feed all the information directly back to the client program.
The information should be unchanged, so the content-type is text/plain. Once the server sees
this, it will echo all strings right back to the client as a simple text Web page.

To test this program, you must compile it in the cgi-bin directory of your host Web server.
Then you can perform a simple test by writing an HTML page like this:

//:! C26:GETtest.html
<HTML><HEAD>
<TITLE>A test of standard HTML GET</TITLE>
</HEAD> Test, uses standard html GET
<Form method="GET" ACTION="/cgi-bin/CGI_GET.exe">
<P>Field1: <INPUT TYPE = "text" NAME = "Field1"
VALUE = "This is a test" size = "40"></p>
<P>Field2: <INPUT TYPE = "text" NAME = "Field2"
VALUE = "of the emergency" size = "40"></p>
<P>Field3: <INPUT TYPE = "text" NAME = "Field3"
VALUE = "broadcast system" size = "40"></p>
<P>Field4: <INPUT TYPE = "text" NAME = "Field4"
VALUE = "this is only a test" size = "40"></p>
<P>Field5: <INPUT TYPE = "text" NAME = "Field5"
VALUE = "In a real emergency" size = "40"></p>
<P>Field6: <INPUT TYPE = "text" NAME = "Field6"
VALUE = "you will be instructed" size = "40"></p>
<p><input type = "submit" name = "submit" > </p>
</Form></HTML>
///:~

Of course, the CGI_GET.exe program must be compiled on some kind of Web server and
placed in the correct subdirectory (typically called «cgi-bin» in order for this web page to
work. The dominant Web server is the freely-available Apache (see http://www.Apache.org),
which runs on virtuall all platforms. Some word-processing/spreadsheet packages even come
with Web servers. It’s also quite cheap and easy to get an old PC and install Linux along with
an inexpensive network card. Linux automatically sets up the Apache server for you, and you
can test everything on your local network as if it were live on the Internet. One way or another
it’s possible to install a Web server for local tests, so you don’t need to have a remote Web
server and permission to install CGI programs on that server.



Appendix A: Et cetera 886

One of the advantages of this design is that, now that CGIpair and CGImap are defined,
most of the work is done for you so you can easily create your own CGI program simply by
modifying main( ).

Using POST
The CGIpair and CGImap from CGImap.h can be used as is for a CGI program that
handles POSTs. The only thing you need to do is get the data from a Post object instead of
from the QUERY_STRING environment variable. The following listing shows how simple it
is to write such a CGI program:

//: C26:CGI_POST.cpp
// CGImap works as easily with POST as it
// does with GET.
#include <iostream>
#include "CGImap.h"
using namespace std;

int main() {
  cout << "Content-type: text/plain\n" << endl;
  Post p; // Get the query string
  CGImap query(p);
  // Test: dump all names and values
  for(CGImap::iterator it = query.begin();
    it != query.end(); it++) {
    cout << (*it).first << " = "
      << (*it).second << endl;
  }
} ///:~

After creating a Post object, the query string is no different from a GET query string, so it is
handed to the constructor for CGImap. The different fields in the vector are then available
just as in the previous example. If you wanted to get even more terse, you could even define
the Post as a temporary directly inside the constructor for the CGImap object:

CGImap query(Post());

To test this program, you can use the following Web page:

//:! C26:POSTtest.html
<HTML><HEAD>
<TITLE>A test of standard HTML POST</TITLE>
</HEAD>Test, uses standard html POST
<Form method="POST" ACTION="/cgi-bin/CGI_POST.exe">
<P>Field1: <INPUT TYPE = "text" NAME = "Field1"
VALUE = "This is a test" size = "40"></p>



Appendix A: Et cetera 887

<P>Field2: <INPUT TYPE = "text" NAME = "Field2"
VALUE = "of the emergency" size = "40"></p>
<P>Field3: <INPUT TYPE = "text" NAME = "Field3"
VALUE = "broadcast system" size = "40"></p>
<P>Field4: <INPUT TYPE = "text" NAME = "Field4"
VALUE = "this is only a test" size = "40"></p>
<P>Field5: <INPUT TYPE = "text" NAME = "Field5"
VALUE = "In a real emergency" size = "40"></p>
<P>Field6: <INPUT TYPE = "text" NAME = "Field6"
VALUE = "you will be instructed" size = "40"></p>
<p><input type = "submit" name = "submit" > </p>
</Form></HTML>
///:~

When you press the «submit» button, you’ll get back a simple text page containing the parsed
results, so you can see that the CGI program works correctly. The server turns around and
feeds the query string to the CGI program via standard input.

Handling mailing lists
Managing an email list is the kind of problem many people need to solve for their Web site.
As it is turning out to be the case for everything on the Internet, the simplest approach is
always the best. I learned this the hard way, first trying a variety of Java applets (which some
firewalls do not allow) and even JavaScript (which isn’t supported uniformly on all browsers).
The result of each experiment was a steady stream of email from the folks who couldn’t get it
to work. When you set up a Web site, your goal should be to never get email from anyone
complaing that it doesn’t work, and the best way to produce this result is to use plain HTML
(which, with a little work, can be made to look quite decent).

The second problem was on the server side. Ideally, you’d like all your email addresses to be
added and removed from a single master file, but this presents a problem. Most operating
systems allow more than one program to open a file. When a client makes a CGI request, the
Web server starts up a new invocation of the CGI program, and since a Web server can handle
many requests at a time, this means that you can have many instances of your CGI program
running at once. If the CGI program opens a specific file, then you can have many programs
running at once that open that file. This is a problem if they are each reading and writing to
that file.

There may be a function for your operating system that «locks» a file, so that other
invocations of your program do not access the file at the same time. However, I took a
different approach, which was to make a unique file for each client. Making a file unique was
quite easy, since the email name itself is a unique character string. The filename for each
request is then just the email name, followed by the string «.add» or «.remove». The contents
of the file is also the email address of the client. Then, to produce a list of all the names to
add, you simply say something like (in Unix):



Appendix A: Et cetera 888

cat *.add > addlist

(or the equivalent for your system). For removals, you say:

cat *.remove > removelist

Once the names have been combined into a list you can archive or remove the files.

The HTML code to place on your Web page becomes fairly straightforward. This particular
example takes an email address to be added or removed from my C++ mailing list:

<h1 align="center"><font color="#000000">
The C++ Mailing List</font></h1>
<div align="center"><center>

<table border="1" cellpadding="4"
cellspacing="1" width="550" bgcolor="#FFFFFF">
  <tr>
    <td width="30" bgcolor="#FF0000">&nbsp;</td>
    <td align="center" width="422" bgcolor="#0">
    <form action="/cgi-bin/mlm.exe" method="GET">
    <input type="hidden" name="subject-field"
    value="cplusplus-email-list">
    <input type="hidden" name="command-field"
    value="add"><p>
    <input type="text" size="40"
    name="email-address">
    <input type="submit" name="submit"
    value="Add Address to C++ Mailing List">
    </p></form></td>
    <td width="30" bgcolor="#FF0000">&nbsp;</td>
  </tr>
  <tr>
    <td width="30" bgcolor="#000000">&nbsp;</td>
    <td align="center" width="422"
    bgcolor="#FF0000">
    <form action="/cgi-bin/mlm.exe" method="GET">
    <input type="hidden" name="subject-field"
    value="cplusplus-email-list">
    <input type="hidden" name="command-field"
    value="remove"><p>
    <input type="text" size="40"
    name="email-address">
    <input type="submit" name="submit"
    value="Remove Address From C++ Mailing List">
    </p></form></td>



Appendix A: Et cetera 889

    <td width="30" bgcolor="#000000">&nbsp;</td>
  </tr>
</table>
</center></div>

Each form contains one data-entry field called email-address, as well as a couple of hidden
fields which don’t provide for user input but carry information back to the server nonetheless.
The subject-field tells the CGI program the subdirectory where the resulting file should be
placed. The command-field tells the CGI program whether the user is requesting that they be
added or removed from the list. From the action, you can see that a GET is used with a
program called mlm.exe (for «mailing list manager»). Here it is:

//: C26:mlm.cpp
// A GGI program to maintain a mailing list
#include "CGImap.h"
#include <fstream>
using namespace std;
const string contact("Bruce@EckelObjects.com");
// Paths in this program are for Linux/Unix. You
// must use backslashes (two for each single
// slash) on Win32 servers:
const string rootpath("/home/eckel/");

int main() {
  cout << "Content-type: text/html\n"<< endl;
  CGImap query(getenv("QUERY_STRING"));
  if(query["test-field"] == "on") {
    cout << "map size: " << query.size() << "<br>";
    query.dump(cout, "<br>");
  }
  if(query["subject-field"].size() == 0) {
    cout << "<h2>Incorrect form. Contact " <<
    contact << endl;
    return 0;
  }
  string email = query["email-address"];
  if(email.size() == 0) {
    cout << "<h2>Please enter your email address"
      << endl;
    return 0;
  }
  if(email.find_first_of(" \t") != string::npos){
    cout << "<h2>You cannot use white space "
      "in your email address" << endl;



Appendix A: Et cetera 890

    return 0;
  }
  if(email.find('@') == string::npos) {
    cout << "<h2>You must use a proper email"
      " address including an '@' sign" << endl;
    return 0;
  }
  if(email.find('.') == string::npos) {
    cout << "<h2>You must use a proper email"
      " address including a '.'" << endl;
    return 0;
  }
  string fname = email;
  if(query["command-field"] == "add")
    fname += ".add";
  else if(query["command-field"] == "remove")
    fname += ".remove";
  else {
    cout << "error: command-field not found. Contact "
      << contact << endl;
    return 0;
  }
  string path(rootpath + query["subject-field"]
    + "/" + fname);
  ofstream out(path.c_str());
  if(!out) {
    cout << "cannot open " << path << "; Contact"
      << contact << endl;
    return 0;
  }
  out << email << endl;
  cout << "<br><H2>" << email << " has been ";
  if(query["command-field"] == "add")
    cout << "added";
  else if(query["command-field"] == "remove")
    cout << "removed";
  cout << "<br>Thank you</H2>" << endl;
} ///:~

Again, all the CGI work is done by the CGImap. From then on it’s a matter of pulling the
fields out and looking at them, then deciding what to do about it, which is easy because of the
way you can index into a map and also because of the tools available for standard strings.
Here, most of the programming has to do with checking for a valid email address. Then a file



Appendix A: Et cetera 891

name is created with the email address as the name and «.add» or «.remove» as the extension,
and the email address is placed in the file.

Maintaining your list
Once you’ve got a list of names to add, you can just paste them to end of your list. However,
you might get some duplicates so you need a program to remove those. Because your names
may differ only by upper and lowercase, it’s useful to create a tool that will read a list of
names from a file and place them into a container of strings, forcing all the names to
lowercase as it does:

//: C26:readLower.h
// Read a file into a container of string,
// forcing each line to lower case.
#include <iostream>
#include <fstream>
#include <string>
#include "../require.h"
using namespace std;

template<class SContainer>
void readLower(char* filename, SContainer& c) {
  ifstream in(filename);
  assure(in, filename);
  const int sz = 1024;
  char buf[sz];
  while(in.getline(buf, sz))
    // Force to lowercase:
    c.push_back(string(strlwr(buf)));
} ///:~

Since it’s a template, it will work with any container of string that supports push_back( ).
Again, you may want to change the above to the form readln(in, s) instead of using a fixed-
sized buffer, which is more fragile.

Once the names are read into the list and forced to lowercase, removing duplicates is trivial:

//: C26:RemoveDuplicates.cpp
// Remove duplicate names from a mailing list
#include <vector>
#include "../require.h"
#include "readLower.h"
using namespace std;

int main(int argc, char **argv) {
  requireArgs(argc,  3);



Appendix A: Et cetera 892

  vector<string> names;
  readLower(argv[1], names);
  long before = names.size();
  // You must sort first for unique() to work:
  sort(names.begin(), names.end());
  // Remove adjacent duplicates:
  unique(names.begin(), names.end());
  long removed = before - names.size();
  ofstream out(argv[2]);
  assure(out, argv[2]);
  copy(names.begin(), names.end(),
       ostream_iterator<string>(out,"\n"));
  cout << removed << " names removed" << endl;
} ///:~

A vector is used here instead of a list because sorting requires random-access which is much
faster in a vector. (A list has a built-in sort( ) so that it doesn’t suffer from the performance
that would result from applying the normal sort( ) algorithm shown above).

The sort must be performed so that all duplicates are adjacent to each other. Then unique( )
can remove all the adjacent duplicates. The program also keeps track of how many duplicate
names were removed.

When you have a file of names to remove from your list, readLower( ) comes in handy
again:

//: C26:RemoveGroup.cpp
// Remove a group of names from a list
#include <list>
#include "../require.h"
#include "readLower.h"
using namespace std;

typedef list<string> Container;

int main(int argc, char **argv) {
  requireArgs(argc,  4);
  Container names, removals;
  readLower(argv[1], names);
  readLower(argv[2], removals);
  long original = names.size();
  Container::iterator rmit = removals.begin();
  while(rmit != removals.end())
    names.remove(*rmit++); // Removes all matches
  ofstream out(argv[3]);



Appendix A: Et cetera 893

  assure(out, argv[3]);
  copy(names.begin(), names.end(),
       ostream_iterator<string>(out,"\n"));
  long removed = original - names.size();
  cout << "On removal list: " << removals.size()
    << endl << "Removed: " << removed << endl;
} ///:~

Here, a list is used instead of a vector (since readLower( ) is a template, it adapts). Although
there is a remove( ) algorithm that can be applied to containers, the built-in list::remove( )
seems to work better. The second command-line argument is the file containing the list of
names to be removed. An iterator is used to step through that list, and the list::remove( )
function removes every instance of each name from the master list. Here, the list doesn’t need
to be sorted first.

Unfortunately, that’s not all there is to it. The messiest part about maintaining a mailing list is
the bounced messages. Presumably, you’ll just want to remove the addresses that produce
bounces. If you can combine all the bounced messages into a single file, the following
program has a pretty good chance of extracting the email addresses; then you can use
RemoveGroup to delete them from your list.

//: C26:ExtractUndeliverable.cpp
// From Thinking in C++, 2nd Edition
// (c) Bruce Eckel 1998
// See copyright notice in CRIGHT.TXT
// Find undeliverable names to remove from
// mailing list from within a mail file
// containing many messages
#include <cstdio>
#include <string>
#include <set>
#include "../require.h"
using namespace std;

char* start_str[] = {
  "following address",
  "following recipient",
  "following destination",
  "undeliverable to the following",
  "following invalid",
};

char* continue_str[] = {
  "Message-ID",
  "Please reply to",



Appendix A: Et cetera 894

};

// The in() function allows you to check whether
// a string in this set is part of your argument.
class StringSet {
  char** ss;
  int sz;
public:
  StringSet(char** sa, int sza):ss(sa),sz(sza) {}
  bool in(char* s) {
    for(int i = 0; i < sz; i++)
      if (strstr(s, ss[i]) != 0)
        return true;
    return false;
  }
};

// Calculate array length:
#define ALEN(A) ((sizeof A)/(sizeof *A))

StringSet
  starts(start_str, ALEN(start_str)),
  continues(continue_str, ALEN(continue_str));

int main(int argc, char **argv) {
  if(argc != 3) {
    puts("Usage: ExtractUndeliverable"
      " infile outfile");
    return 0;
  }
  FILE* infile = fopen(argv[1], "rb");
  FILE* outfile = fopen(argv[2], "w");
  require(infile != 0); require(outfile != 0);
  set<string> names;
  const int sz = 1024;
  char buf[sz];
  while(fgets(buf, sz, infile) != 0) {
    if(starts.in(buf)) {
      puts(buf);
      while(fgets(buf, sz, infile) != 0) {
        if(continues.in(buf)) continue;
        if(strstr(buf, "---") != 0) break;
        const char* delimiters= " \t<>():;,\n\"";



Appendix A: Et cetera 895

        char* name = strtok(buf, delimiters);
        while(name != 0) {
          if(strstr(name, "@") != 0)
            names.insert(string(name));
          name = strtok(0, delimiters);
        }
      }
    }
  }
  set<string>::iterator i = names.begin();
  while(i != names.end())
    fprintf(outfile, "%s\n", (*i++).c_str());
} ///:~

The first thing you’ll notice about this program is that contains some C functions, including C
I/O. This is not because of any particular design insight. It just seemed to work when I used
the C elements, and it started behaving strangely with C++ I/O. So the C is just because it
works, and you may be able to rewrite the program in more «pure C++» using your C++
compiler and produce correct results.

A lot of what this program does is read lines looking for string matches. To make this
convenient, I created a StringSet class with a member function in( ) that tells you whether
any of the strings in the set are in the argument. The StringSet is initialized with a constant
two-dimensional of strings and the size of that array. Although the StringSet makes the code
easier to read, it’s also easy to add new strings to the arrays.

Both the input file and the output file in main( ) are manipulated with standard I/O, since it’s
not a good idea to mix I/O types in a program. Each line is read using fgets( ), and if one of
them matches with the starts StringSet, then what follows will contain email addresses, until
you see some dashes (I figured this out empirically, by hunting through a file full of bounced
email). The continues StringSet contains strings whose lines should be ignored. For each of
the lines that potentially contains an addresses, each address is extracted using the Standard C
Library function strtok( ) and then it is added to the set<string> called names. Using a set
eliminates duplicates (you may have duplicates based on case, but those are dealt with by
RemoveGroup.cpp. The resulting set of names is then printed to the output file.

Mailing to your list
There are a number of ways to connect to your system’s emailer, but the following program
just takes the simple approach of calling an external command («fastmail,» which is part of
Unix) using the Standard C library function system( ). The program spends all its time
building the external command.

When people don’t want to be on a list anymore they will often ignore instructions and just
reply to the message. This can be a problem if the email address they’re replying with is
different than the one that’s on your list (sometimes it has been routed to a new or aliased
address). To solve the problem, this program prepends the text file with a message that



Appendix A: Et cetera 896

informs them that they can remove themselves from the list by visiting a URL. Since many
email programs will present a URL in a form that allows you to just click on it, this can
produce a very simple removal process. If you look at the URL, you can see it’s a call to the
mlm.exe CGI program, including removal information that incorporates the same email
address the message was sent to. That way, even if the user just replies to the message, all you
have to do is click on the URL that comes back with their reply (assuming the message is
automatically copied back to you).

//: C26:Batchmail.cpp
// Sends mail to a list using Unix fastmail
#include <iostream>
#include <fstream>
#include <string>
#include <strstream>
#include <cstdlib> // system() function
#include "../require.h"
using namespace std;

string subject("New Java Intensive Workshops");
string from("Bruce@EckelObjects.com");
string replyto("Bruce@EckelObjects.com");
ofstream logfile("BatchMail.log");

void main(int argc, char *argv[]) {
  if(argc != 3) {
    cerr << "Usage: Batchmail namelist mailfile"
      << endl;
    exit(1);
  }
  ifstream names(argv[1]);
  assure(names, argv[1]);
  string name;
  while(getline(names, name)) {
    ofstream msg("m.txt");
    assure(msg, "m.txt");
    msg << "To be removed from this list, "
      "DO NOT REPLY TO THIS MESSAGE. Instead, \n"
      "click on the following URL, or visit it "
      "using your Web browser. This \n"
      "way, the proper email address will be "
      "removed. Here's the URL:\n"
      << "http://www.mindview.net/cgi-bin/"
      "mlm.exe?subject-field=java-email-list"
      "&command-field=remove&email-address="



Appendix A: Et cetera 897

      << name << "&submit=submit\n\n"
      "------------------------------------\n\n";
    ifstream text(argv[2]);
    assure(text, argv[1]);
    msg << text.rdbuf() << endl;
    msg.close();
    string command("fastmail -F " + from +
      " -r " + replyto + " -s \"" + subject +
      "\" m.txt " + name);
    system(command.c_str());
    logfile << command << endl;
    static int mailcounter = 0;
    const bsz = 25; char buf[bsz];
    // Convert mailcounter to a char string:
    ostrstream mcounter(buf, bsz);
    mcounter << mailcounter++ << ends;
    if((++mailcounter % 500) == 0) {
      string command2("fastmail -F " + from +
        " -r " + replyto + " -s \"Sent " +
        string(buf) +
        " messages \" m.txt eckel@aol.com");
      system(command2.c_str());
    }
  }
} ///:~

The first command-line argument is the list of email addresses, one per line. The names are
read one at a time into the string called name using getline( ). Then a temporary file called
m.txt is created to build the customized message for that individual; the customization is the
note about how to remove themselves, along with the URL. Then the message body, which is
in the file specified by the second command-line argument, is appended to m.txt. Finally, the
command is built inside a string: the «-F» argument to fastmail is who it’s from, the «-r»
argument is who to reply to. The «-s» is the subject line, the next argument is the file
containing the mail and the last argument is the email address to send it to.

You can start this program in the background and tell Unix not to stop the program when you
sign off of the server. However, it takes a while to run for a long list (this isn’t because of the
program itself, but the mailing process). I like to keep track of the progress of the program by
sending a status message to another email account, which is accomplished in the last few lines
of the program.



Appendix A: Et cetera 898

A general information-extraction
CGI program

One of the problems with CGI is that you must write and compile a new program every time
you want to add a new facility to your Web site. However, much of the time all that your CGI
program does is capture information from the user and store it on the server. If you could use
hidden fields to specify what do do with the information, then it would be possible to write a
single CGI program that would extract the information from any CGI request. This
information could be stored in a uniform format, in a subdirectory specified by a hidden field
in the HTML form, and in a file that included the user’s email address – of course, in the
general case the email address doesn’t guarantee uniqueness (the user may post more than one
submission) so the date and time of the submission can be mangled in with the file name to
make it unique. If you can do this, then you can create a new data-collection page just by
defining the HTML and creating a new subdirectory on your server. For example, every time I
come up with a new class or workshop, all I have to do is create the HTML form for signups –
no CGI programming is required.

The following HTML page shows the format for this scheme. Since a CGI POST is more
general and doesn’t have any limit on the amount of information it can send, it will always be
used instead of a GET for the ExtractInfo.cpp program that will implement this system.
Although this form is simple, yours can be as complicated as you need it.

//:! C26:INFOtest.html
<html><head><title>
Extracting information from an HTML POST</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF"
vlink="#800080"> <hr>
<p>Extracting information from an HTML POST</p>
<form action="/cgi-bin/ExtractInfo.exe"
  method="POST">
<input type="hidden" name="subject-field"
value="test-extract-info">
<input type="hidden" name="reminder"
value="Remember your lunch!">
<input type="hidden" name="test-field"
value="on">
<input type="hidden" name="mail-copy"
value="Bruce@EckelObjects.com;eckel@aol.com">
<input type="hidden" name="confirmation"
value="confirmation1">
<p>Email address (Required): <input
type="text" size="45" name="email-address" >



Appendix A: Et cetera 899

</p>Comment:<br>
<textarea name="Comment" rows="6" cols="55">
</textarea>
<p><input type="submit" name="submit">
<input type="reset" name="reset"</p>
</form><hr></body></html>
///:~

Right after the form’s action statement, you see

<input type="hidden"

This means that particular field will not appear on the form that the user sees, but the
information will still be submitted as part of the data for the CGI program.

The value of this field named «subject-field» is used by ExtractInfo.cpp to determine the
subdirectory in which to place the resulting file (in this case, the subdirectory will be «test-
extract-info»). Because of this technique and the generality of the program, the only thing
you’ll usually need to do to start a new database of data is to create the subdirectory on the
server and then create an HTML page like the one above. The ExtractInfo.cpp program will
do the rest for you by creating a unique file for each submission. Of course, you can always
change the program if you want it to do something more unusual, but the system as shown
will work most of the time.

The contents of the «reminder» field will be displayed on the form that is sent back to the user
when their data is accepted. The «test-field» indicates whether to dump test information to the
resulting Web page. If «mail-copy» exists and contains anything other than «no» the value
string will be parsed for mailing addresses separated by ‘;’ and each of these addresses will
get a mail message with the data in it. The «email-address» field is required in each case and
the email address will be checked to ensure that it conforms to some basic standards.

The «confirmation» field causes a second program to be executed when the form is posted.
This program parses the information that was stored from the form into a file, turns it into
human-readable form and sends an email message back to the client to confirm that their
information was received (this is useful because the user may not have entered their email
address correctly; if they don’t get a confirmation message they’ll know something is wrong).
The design of the «confirmation» field allows the person creating the HTML page to select
more than one type of confirmation. Your first solution to this may be to simply call the
program directly rather than indirectly as was done here, but you don’t want to allow someone
else to choose – by modifying the web page that’s downloaded to them – what programs they
can run on your machine.

Here is the program that will extract the information from the CGI request:

//: C26:ExtractInfo.cpp
// Extracts all the information from a CGI POST
// submission, generates a file and stores the
// information on the server. By generating a



Appendix A: Et cetera 900

// unique file name, there are no clashes like
// you get when storing to a single file.
#include "CGImap.h"
#include <iostream>
#include <fstream>
#include <cstdio>
#include <ctime>
using namespace std;

const string contact("Bruce@EckelObjects.com");
// Paths in this program are for Linux/Unix. You
// must use backslashes (two for each single
// slash) on Win32 servers:
const string rootpath("/home/eckel/");

void show(CGImap& m, ostream& o);
// The definition for the following is the only
// thing you must change to customize the program
void
store(CGImap& m, ostream& o, string nl = "\n");

int main() {
  cout << "Content-type: text/html\n"<< endl;
  Post p; // Collect the POST data
  CGImap query(p);
  // "test-field" set to "on" will dump contents
  if(query["test-field"] == "on") {
    cout << "map size: " << query.size() << "<br>";
    query.dump(cout);
  }
  if(query["subject-field"].size() == 0) {
    cout << "<h2>Incorrect form. Contact " <<
    contact << endl;
    return 0;
  }
  string email = query["email-address"];
  if(email.size() == 0) {
    cout << "<h2>Please enter your email address"
      << endl;
    return 0;
  }
  if(email.find_first_of(" \t") != string::npos){
    cout << "<h2>You cannot include white space "



Appendix A: Et cetera 901

      "in your email address" << endl;
    return 0;
  }
  if(email.find('@') == string::npos) {
    cout << "<h2>You must include a proper email"
      " address including an '@' sign" << endl;
    return 0;
  }
  if(email.find('.') == string::npos) {
    cout << "<h2>You must include a proper email"
      " address including a '.'" << endl;
    return 0;
  }
  // Create a unique file name with the user's
  // email address and the current time in hex
  const int bsz = 1024;
  char fname[bsz];
  time_t now;
  time(&now); // Encoded date & time
  sprintf(fname, "%s%X.txt", email.c_str(), now);
  string path(rootpath + query["subject-field"] +
     "/" + fname);
  ofstream out(path.c_str());
  if(!out) {
    cout << "cannot open " << path << "; Contact"
      << contact << endl;
    return 0;
  }
  // Store the file and path information:
  out << "///{" << path << endl;
  // Display optional reminder:
  if(query["reminder"].size() != 0)
    cout <<"<H1>" << query["reminder"] <<"</H1>";
  show(query, cout); // For results page
  store(query, out); // Stash data in file
  cout << "<br><H2>Your submission has been "
    "posted as<br>" << fname << endl
    << "<br>Thank you</H2>" << endl;
  out.close();
  // Optionally send generated file as email
  // to recipients specified in the field:
  if(query["mail-copy"].length() != 0 &&
     query["mail-copy"] != "no") {



Appendix A: Et cetera 902

    string to = query["mail-copy"];
    // Parse out the recipient names, separated
    // by ';', into a vector.
    vector<string> recipients;
    int ii = to.find(';');
    while(ii != string::npos) {
      recipients.push_back(to.substr(0, ii));
      to = to.substr(ii + 1);
      ii = to.find(';');
    }
    recipients.push_back(to); // Last one
    // "fastmail" only available on Linux/Unix:
    for(int i = 0; i < recipients.size(); i++) {
      string cmd("fastmail -s"" \"" +
        query["subject-field"] + "\" " +
        path + " " + recipients[i]);
      system(cmd.c_str());
    }
  }
  // Execute a confirmation program on the file.
  // Typically, this is so you can email a
  // processed data file to the client along with
  // a confirmation message:
  if(query["confirmation"].length() != 0) {
    string conftype = query["confirmation"];
    if(conftype == "confirmation1") {
      string command("./ProcessApplication.exe "+
        path + " &");
      // The data file is the argument, and the
      // ampersand runs it as a separate process:
      system(command.c_str());
      string logfile("Extract.log");
      ofstream log(logfile.c_str());
    }
  }
}

// For displaying the information on the html
// results page:
void show(CGImap& m, ostream& o) {
  string nl("<br>");
  o << "<h2>The data you entered was:"
    << "</h2><br>"



Appendix A: Et cetera 903

    << "From[" << m["email-address"] << ']' <<nl;
  for(CGImap::iterator it = m.begin();
    it != m.end(); it++) {
    string name = (*it).first,
      value = (*it).second;
    if(name != "email-address" &&
       name != "confirmation" &&
       name != "submit" &&
       name != "mail-copy" &&
       name != "test-field" &&
       name != "reminder")
      o << "<h3>" << name << ": </h3>"
        << "<pre>" << value << "</pre>";
  }
}

// Change this to customize the program:
void store(CGImap& m, ostream& o, string nl) {
  o << "From[" << m["email-address"] << ']' <<nl;
  for(CGImap::iterator it = m.begin();
    it != m.end(); it++) {
    string name = (*it).first,
      value = (*it).second;
    if(name != "email-address" &&
       name != "confirmation" &&
       name != "submit" &&
       name != "mail-copy" &&
       name != "test-field" &&
       name != "reminder")
      o << nl << "[{[" << name << "]}]" << nl
        << "[([" << nl << value << nl << "])]"
        << nl;
    // Delimiters were added to aid parsing of
    // the resulting text file.
  }
} ///:~

The program is designed to be as generic as possible, but if you want to change something it
is most likely the way that the data is stored in a file (for example, you may want to store it in
a comma-separated ASCII format so that you can easily read it into a spreadsheet). You can
make changes to the storage format by modifying store( ), and to the way the data is
displayed by modifying show( ).



Appendix A: Et cetera 904

main( ) begins using the same three lines you’ll start with for any POST program. The rest of
the program is similar to mlm.cpp because it looks at the «test-field» and «email-address»
(checking it for correctness). The file name combines the user’s email address and the current
date and time in hex – notice that sprintf( ) is used because it has a convenient way to convert
a value to a hex representation. The entire file and path information is stored in the file, along
with all the data from the form, which is tagged as it is stored so that it’s easy to parse (you’ll
see a program to parse the files a bit later). All the information is also sent back to the user as
a simply-formatted HTML page, along with the reminder, if there is one. If «mail-copy»
exists and is not «no,» then the names in the «mail-copy» value are parsed and an email is
sent to each one containing the tagged data. Finally, if there is a «confirmation» field, the
value selects the type of confirmation (there’s only one type implemented here, but you can
easily add others) and the command is built that passes the generated data file to the program
(calle ProcessApplication.exe). That program will be created in the next section.

Parsing the data files
You now have a lot of data files accumulating on your Web site, as people sign up for
whatever you’re offering. Here’s what one of them might look like:

//:! C23:TestData.txt

///{/home/eckel/super-cplusplus-workshop-
registration/Bruce@EckelObjects.com35B589A0.txt
From[Bruce@EckelObjects.com]

[{[subject-field]}]
[([
super-cplusplus-workshop-registration
])]

[{[Date-of-event]}]
[([
Sept 2-4
])]

[{[name]}]
[([
Bruce Eckel
])]

[{[street]}]
[([
20 Sunnyside Ave, Suite A129
])]



Appendix A: Et cetera 905

[{[city]}]
[([
Mill Valley
])]

[{[state]}]
[([
CA
])]

[{[country]}]
[([
USA
])]

[{[zip]}]
[([
94941
])]

[{[busphone]}]
[([
415-555-1212
])]
///:~

This is a brief example, but there are as many fields as you have on your HTML form. Now,
if your event is compelling you’ll have a whole lot of these files and what you’d like to do is
automatically extract the information from them and put that data in any format you’d like.
For example, the ProcessApplication.exe program mentioned above will use the data in an
email confirmation message. You’ll also probably want to put the data in a form that can be
easily brought into a spreadsheet. So it makes sense to start by creating a general-purpose tool
that will automatically parse any file that is created by ExtractInfo.cpp:

//: C26:FormData.h
#include <string>
#include <iostream>
#include <fstream>
#include <vector>
using namespace std;

class DataPair : public pair<string, string> {
public:
  DataPair() {}



Appendix A: Et cetera 906

  DataPair(istream& in) { get(in); }
  DataPair& get(istream& in);
  operator bool() {
    return first.length() != 0;
  }
};

class FormData : public vector<DataPair> {
public:
  string filePath, email;
  // Parse the data from a file:
  FormData(char* fileName);
  void dump(ostream& os = cout);
  string operator[](const string& key);
}; ///:~

The DataPair class looks a bit like the CGIpair class, but it’s simpler. When you create a
DataPair, the constructor calls get( ) to extract the next pair from the input stream. The
operator bool indicates an empty DataPair, which usually signals the end of an input stream.

FormData contains the path where the original file was placed (this path information is
stored within the file), the email address of the user, and a vector<DataPair> to hold the
information. The operator[ ] allows you to perform a map-like lookup, just as in CGImap.

Here are the definitions:

//: C26:FormData.cpp {O}
#include "FormData.h"
#include "../require.h"

DataPair& DataPair::get(istream& in) {
  first.erase(); second.erase();
  string ln;
  getline(in,ln);
  while(ln.find("[{[") == string::npos)
    if(!getline(in, ln)) return *this; // End
  first = ln.substr(3, ln.find("]}]") - 3);
  getline(in, ln); // Throw away [([
  while(getline(in, ln))
    if(ln.find("])]") == string::npos)
      second += ln + string(" ");
    else
      return *this;
}



Appendix A: Et cetera 907

FormData::FormData(char* fileName) {
  ifstream in(fileName);
  assure(in, fileName);
  require(getline(in, filePath) != 0);
  // Should be start of first line:
  require(filePath.find("///{") == 0);
  filePath = filePath.substr(strlen("///{"));
  require(getline(in, email) != 0);
   // Should be start of 2nd line:
  require(email.find("From[") == 0);
  int begin = strlen("From[");
  int end = email.find("]");
  int length = end - begin;
  email = email.substr(begin, length);
  // Get the rest of the data:
  DataPair dp(in);
  while(dp) {
    push_back(dp);
    dp.get(in);
  }
}

string FormData::operator[](const string& key) {
  iterator i = begin();
  while(i != end()) {
    if((*i).first == key)
      return (*i).second;
    i++;
  }
  return string(); // Empty string == not found
}

void FormData::dump(ostream& os) {
  os << "filePath = " << filePath << endl;
  os << "email = " << email << endl;
  for(iterator i = begin(); i != end(); i++)
    os << (*i).first << " = "
       << (*i).second << endl;
} ///:~

The DataPair::get( ) function assumes you are using the same DataPair over and over
(which is the case, in FormData::FormData( )) so it first calls erase( ) for its first and
second strings. Then it begins parsing the lines for the key (which is on a single line and is
denoted by the «[{[» and «]}]») and the value (which may be on multiple lines and is denoted



Appendix A: Et cetera 908

by a begin-marker of «[([» and an end-marker of «])]») which it places in the first and second
members, respectively.

The FormData constructor is given a file name to open and read. The FormData object
alwas expects there to be a file path and an email address, so it reads those itself before
getting the rest of the data as DataPairs.

With these tools in hand, extracting the data becomes quite easy:

//: C26:FormDump.cpp
//{L} FormData
#include "FormData.h"
#include "../require.h"

int main(int argc, char* argv[]) {
  requireArgs(argc,  2);
  FormData fd(argv[1]);
  fd.dump();
} ///:~

The only reason that ProcessApplication.cpp is busier is that it is building the email reply.
Other than that, it just relies on FormData:

//: C26:ProcessApplication.cpp
//{L} FormData
#include <cstdio>
#include "FormData.h"
#include "../require.h"
using namespace std;

const string from("Bruce@EckelObjects.com");
const string replyto("Bruce@EckelObjects.com");
const string basepath("/home/eckel");

int main(int argc, char* argv[]) {
  requireArgs(argc,  2);
  FormData fd(argv[1]);
  char tfname[L_tmpnam];
  tmpnam(tfname); // Create a temporary file name
  string tempfile(basepath + tfname + fd.email);
  ofstream reply(tempfile.c_str());
  assure(reply, tempfile.c_str());
  reply << "This message is to verify that you "
    "have been added to the list for the "
    << fd["subject-field"] << ". Your signup "
    "form included the following data; please "



Appendix A: Et cetera 909

    "ensure it is correct. You will receive "
    "further updates via email. Thanks for your "
    "interest in the class!" << endl;
  FormData::iterator i;
  for(i = fd.begin(); i != fd.end(); i++)
    reply << (*i).first << " = "
       << (*i).second << endl;
  reply.close();
  // "fastmail" only available on Linux/Unix:
  string command("fastmail -F " + from +
    " -r " + replyto + " -s \"" +
    fd["subject-field"] + "\" " +
    tempfile + " " + fd.email);
  system(command.c_str()); // Wait to finish
  remove(tempfile.c_str()); // Erase the file
} ///:~

This program first creates a temporary file to build the email message in. Although it uses the
Standard C library function tmpnam( ) to create a temporary file name, this program takes
the paranoid step of assuming that, since there can be many instances of this program running
at once, it’s possible that a temporary name in one instance of the program could collide with
the temporary name in another instance. So to be extra careful, the email address is appended
onto the end of the temporary file name.

The message is built, the DataPairs are added to the end of the message, and once again the
Linux/Unix fastmail command is built to send the information. An interesting note: if, in
Linux/Unix, you add an ampersand (&) to the end of the command before giving it to
system( ), then this command will be spawned as a background process and system( ) will
immediately return (the same effect can be achieved in Win32 with start). Here, no
ampersand is used, so system( ) does not return until the command is finished – which is a
good thing, since the next operation is to delete the temporary file which is used in the
command.

The final operation in this project is to extract the data into an easily-usable form. A
spreadsheet is a useful way to handle this kind of information, so this program will put the
data into a form that’s easily readable by a spreadsheet program:

//: C26:DataToSpreadsheet.cpp
//{L} FormData
#include "FormData.h"
#include <string>
#include <cstdio>
#include "../require.h"
using namespace std;

string delimiter("\t");



Appendix A: Et cetera 910

int main(int argc, char* argv[]) {
  for(int i = 1; i < argc; i++) {
    FormData fd(argv[i]);
    cout << fd.email << delimiter;
    FormData::iterator i;
    for(i = fd.begin(); i != fd.end(); i++)
      if((*i).first != "workshop-suggestions")
        cout << (*i).second << delimiter;
    cout << endl;
  }
} ///:~

Common data interchange formats use various delimiters to separate fields of information.
Here, a tab is used but you can easily change it to something else. Also note that I have
checked for the «workshop-suggestions» field and specifically excluded that, because it tends
to be too long for the information I want in a spreadsheet. You can make another version of
this program that only extracts the «workshop-suggestions» field.

This program assumes that all the file names are expanded on the command line. Using it
under Linux/Unix is easy since file-name global expansion («globbing») is handled for you.
So you say:

DataToSpreadsheet *.txt >> spread.out

In Win32 (at a DOS prompt) it’s a bit more involved, since you must do the «globbing»
yourself:

For %f in (*.txt) do DataToSpreadsheet %f >> spread.out

This technique is generally useful for writing Win32/DOS command-lines.

Summary

Exercises
 1.  In ExtractInfo.cpp, change store( ) so it stores the data in comma-

separated ASCII format
 2.  (This exercise may require a little research and ingenuity, but you’ll have a

good idea of how server-side programming works when you’re done.) Gain
access to a Web server somehow, even if you do so by installing a Web
server that runs on your local machine (the Apache server is freely available



Appendix A: Et cetera 911

from http://www.Apache.org and runs on most platforms). Install and test
ExtractInfo.cpp as a CGI program, using INFOtest.html.

 3.  Create a program called ExtractSuggestions.cpp that is a modification of
DataToSpreadsheet.cpp which will only extract the suggestions along
with the name and email addresse of the person that made them.





913

A: Coding style
This appendix is not about indenting and placement of
parentheses and curly braces, although that will be
mentioned. This is about the general guidelines used in this
book for organizing the code listings.

Although many of these issues have been introduced throughout the book, this appendix
appears at the end so it can be assumed that every topic is fair game, and if you don’t
understand something you can look it up in the appropriate section.

All the decisions about coding style in this book have been deliberatly made and considered,
sometimes over a period of years. Of course, everyone has their reasons for organizing code
the way they do, and I’m just trying to tell you how I arrived at mine and the constraints and
environmental factors that brought me to those decisions.

Begin and end comment tags
A very important issue with this book is that all code that you see in the book must be
automatically extractable and compilable, so it can be verified to be correct (with at least one
compiler). To facilitate this, all code listings that are meant to be compiled (as opposed to
code fragments, of which there are few) have comment tags at the beginning and end. These
tags are used by the code-extraction tool ExtractCode.cpp in chapter 23 to pull each code
listing out of the plain-ASCII text version of this book (which you can find on the Web site
http://www.BruceEckel.com).

The end-listing tag simply tells ExtractCode.cpp that it’s the end of the listing, but the begin-
listing tag is followed by information about what subdirectory the file belongs in (generally
organized by chapters, so a file that belongs in Chapter 8 would have a tag of C08), followed
by a colon and the name of the listing file.

Because ExtractCode.cpp also creates a makefile for each subdirectory, information about
how a program is made and the command-line used to test it is also incorporated into the
listings. If a program is stand alone (it doesn’t need to be linked with anything else) it has no
extra information. This is also true for header files. However, if it doesn’t contain a main( )
and is meant to be linked with something else, then it has an {O} after the file name. If this
listing is meant to be the main program but needs to be linked with other components, there’s
a separate line that begins with //{L} and continues with all the files that need to be linked
(without extensions, since those can vary from platform to platform).



Appendix B: Programming Guidelines
914

Here’s an example of a stand-alone program:

Here’s a more complicated example that involves two header files, two implementation files
and a main program that requires a link line:

Here’s the makefile that ExtractCode.cpp generated for this appendix:

If a file should be extracted but the begin- and end-tags should not be included in the
extracted file (for example, if it’s a file of test data) then the begin-tag is immediatedly
followed by a ‘!’, like this:

Parens, braces and indentation
You may notice the formatting style in this book is different from many traditional C styles.
Of course, everyone feels their own style is the most rational. However, the style used here
has a simple logic behind it, which will be presented here mixed in with ideas on why some of
the other styles developed.

The formatting style is motivated by one thing: presentation, both in print and in live
seminars. You may feel your needs are different because you don't make a lot of
presentations, but working code is read much more than it is written, so it should be easy for
the reader to perceive. My two most important criteria are «scannability» (how easy it is for
the reader to grasp the meaning of a single line) and the number of lines that can fit on a page.
This latter may sound funny, but when you are giving a live presentation, it's very distracting
to shuffle back and forth between slides, and a few wasted lines can cause this.

Everyone seems to agree that code inside braces should be indented. What people don't agree
on, and the place where there's the most inconsistency within formatting styles is this: where
does the opening brace go? This one question, I feel, is what causes such inconsistencies
among coding styles (For an enumeration of coding styles, see C++ Programming Guidelines,
by Tom Plum & Dan Saks, Plum Hall 1991). I'll try to convince you that many of today's
coding styles come from pre-Standard C constraints (before function prototypes) and are thus
inappropriate now.

First, my answer to the question: the opening brace should always go on the same line as the
«precursor» (by which I mean «whatever the body is about: a class, function, object
definition, if statement, etc.»). This is a single, consistent rule I apply to all the code I write,
and it makes formatting much simpler. It makes the «scannability» easier — when you look at
this line:

void foo(int a);

you know, by the semicolon at the end of the line, that this is a declaration and it goes no
further, but when you see the line:

void foo(int a) {

you immediately know it's a definition because the line finishes with an opening brace, and
not a semicolon. Similarly, for a class:



Appendix B: Programming Guidelines
915

class Thing;

is a class name declaration, and

class Thing {

is a class declaration. You can tell by looking at the single line in all cases whether it's a
declaration or definition. And of course, putting the opening brace on the same line, instead of
a line by itself, allows you to fit more lines on a page.

So why do we have so many other styles? In particular, you'll notice that most people create
classes following the above style (which Stroustrup uses in all editions of his book The C++
Programming Language from Addison-Wesley) but create function definitions by putting the
opening brace on a single line by itself (which also engenders many different indentation
styles). Stroustrup does this except for short inline functions. With the approach I describe
here, everything is consistent – you name whatever it is (class, function, enum, etc) and on
that same line you put the opening brace to indicate that the body for this thing is about to
follow. Also, the opening brace is the same for short inlines and ordinary function definitions.

I assert that the style of function definition used by many folks comes from pre-function-
prototyping C, where you had to say:

void bar()
 int x,
 float y
{
 /* body here */
}

Here, it would be quite ungainly to put the opening brace on the same line, so no one did it.
However, they did make various decisions about whether the braces should be indented with
the body of the code, or whether they should be at the level of the «precursor.» Thus we got
many different formatting styles.

The approach I use removes all the exceptions and special cases, and logically produces a
single style of indentation, as well. Even within a function body, the consistency holds, as in:

for(int i = 0; i < 100; i++) {
  cout << i << endl;
  cout << x * i << endl;
}

The style is very easy to teach and remember — you use a single, consistent rule for all your
formatting, not one for classes, one for functions and possibly others for for loops, if
statements, etc. The consistency alone, I feel, makes it worthy of consideration. Above all,
C++ is a new language and (although we must make many concessions to C) we shouldn't be
carrying too many artifacts with us that cause problems in the future. Small problems
multiplied by many lines of code become big problems. (For a thorough examination of the
subject, albeit in C, see David Straker: C Style: Standards and Guidelines, Prentice-Hall
1992).



Appendix B: Programming Guidelines
916

The other constraint I must work under is the line width, since the book has a limitation of 50
characters. What happens when something is too long to fit on one line? Well, again I strive to
have a consistent policy for the way lines are broken up, so they can be easily viewed. As
long as something is all part of a single definition, it should …

Order of header inclusion
Headers are included from «the most general to the most specific.» That is, the standard C++
library headers are included first, then the C library headers, then any of my own «standard»
headers such as ../require.h or ../purge.h, any third-party library headers, and finally any
header files in the local directory.

Include guards on header files
Include guards are always used in headers files [more detail here].

Use of namespaces
[More detail will be given here]. In header files, any «pollution» of the namespace in which
the header is included must be scrupulously avoided, so no using declarations of any kind are
allowed outside of function definitions. In cpp files, any global using definitions will only
affect that file, and so they are generally used for ease of reading and writing code, especially
in small programs.

Use of require( ) and assure( )
The require( ) and assure( ) functions in ../require.h are used consistently throughout most
of the book, so that they may properly report problems. [more detail here]



917

B: Programming
guidelines

This appendix73 is a collection of suggestions for C++
programming. They’ve been collected over the course of my
teaching and programming experience and

also from the insights of friends including Dan Saks (coauthor with Tom Plum of C++
Programming Guidelines, Plum Hall, 1991), Scott Meyers (author of Effective C++,
Addison-Wesley, 1992), and Rob Murray (author of C++ Strategies & Tactics, Addison-
Wesley, 1993). Many of these tips are summarized from the pages of this book.

 4.  Don’t automatically rewrite all your existing C code in C++ unless you
need to significantly change its functionality (that is, don’t fix it if it isn’t
broken). Recompiling in C++ is a very valuable activity because it may
reveal hidden bugs. However, taking C code that works fine and rewriting it
in C++ may not be the most valuable use of your time, unless the C++
version will provide a lot of opportunities for reuse as a class.

 5.  Separate the class creator from the class user (client programmer). The class
user is the «customer» and doesn’t need or want to know what’s going on
behind the scenes of the class. The class creator must be the expert in class
design and write the class so it can be used by the most novice programmer
possible, yet still work robustly in the application. Library use will be easy
only if it’s transparent.

 6.  When you create a class, make your names as clear as possible. Your goal
should be to make the user’s interface conceptually simple. To this end, use
function overloading and default arguments to create a clear, easy-to-use
interface.

                                                       

73 This appendix was suggested by Andrew Binstock, editor of Unix Review, as an article for
that magazine.



Appendix B: Programming Guidelines
918

 7.  Data hiding allows you (the class creator) to change as much as possible in
the future without damaging client code in which the class is used. In this
light, keep everything as private as possible, and make only the class
interface public, always using functions rather than data. Make data public
only when forced. If class users don’t need to access a function, make it
private. If a part of your class must be exposed to inheritors as protected,
provide a function interface rather than expose the actual data. In this way,
implementation changes will have minimal impact on derived classes.

 8.  Don’t fall into analysis paralysis. Some things you don’t learn until you
start coding and get some kind of system working. C++ has built-in
firewalls; let them work for you. Your mistakes in a class or set of classes
won’t destroy the integrity of the whole system.

 9.  Your analysis and design must produce, at minimum, the classes in your
system, their public interfaces, and their relationships to other classes,
especially base classes. If your method produces more than that, ask
yourself if all the elements have value over the lifetime of the program. If
they do not, maintaining them will cost you. Members of development
teams tend not to maintain anything that does not contribute to their
productivity; this is a fact of life that many design methods don’t account
for.

 10.  Remember the fundamental rule of software engineering: All problems can
be simplified by introducing an extra level of conceptual indirection.74 This
one idea is the basis of abstraction, the primary feature of object-oriented
programming.

 11.  Make classes as atomic as possible; that is, give each class a single, clear
purpose. If your classes or your system design grows too complicated, break
complex classes into simpler ones.

 12.  From a design standpoint, look for and separate things that change from
things that stay the same. That is, search for the elements in a system that
you might want to change without forcing a redesign, then encapsulate
those elements in classes.

 13.  Watch out for variance. Two semantically different objects may have
identical actions, or responsibilities, and there is a natural temptation to try
to make one a subclass of the other just to benefit from inheritance. This is

                                                       

74 Explained to me by Andrew Koenig.



Appendix B: Programming Guidelines
919

called variance, but there’s no real justification to force a
superclass/subclass relationship where it doesn’t exist. A better solution is
to create a general base class that produces an interface for both as derived
classes — it requires a bit more space, but you still benefit from inheritance
and will probably make an important discovery about the natural language
solution.

 14.  Watch out for limitation during inheritance. The clearest designs add new
capabilities to inherited ones. A suspicious design removes old capabilities
during inheritance without adding new ones. But rules are made to be
broken, and if you are working from an old class library, it may be more
efficient to restrict an existing class in its subclass than it would be to
restructure the hierarchy so your new class fits in where it should, above the
old class.

 15.  Don’t extend fundamental functionality by subclassing. If an interface
element is essential to a class it should be in the base class, not added
during derivation. If you’re adding member functions by inheriting, perhaps
you should rethink the design.

 16.  Start with a minimal interface to a class, as small and simple as you need.
As the class is used, you’ll discover ways you must expand the interface.
However, once a class is in use you cannot shrink the interface without
disturbing client code. If you need to add more functions, that’s fine; it
won’t disturb code, other than forcing recompiles. But even if new member
functions replace the functionality of old ones, leave the existing interface
alone (you can combine the functionality in the underlying implementation
if you want). If you need to expand the interface of an existing function by
adding more arguments, leave the existing arguments in their current order,
and put default values on all the new arguments; this way you won’t disturb
any existing calls to that function.

 17.  Read your classes aloud to make sure they’re logical, referring to base
classes as «is-a» and member objects as «has-a..»

 18.  When deciding between inheritance and composition, ask if you need to
upcast to the base type. If not, prefer composition (member objects) to
inheritance. This can eliminate the perceived need for multiple inheritance.
If you inherit, users will think they are supposed to upcast.

 19.  Sometimes you need to inherit in order to access protected members of the
base class. This can lead to a perceived need for multiple inheritance. If you
don’t need to upcast, first derive a new class to perform the protected



Appendix B: Programming Guidelines
920

access. Then make that new class a member object inside any class that
needs to use it, rather than inheriting.

 20.  Typically, a base class will only be an interface to classes derived from it.
When you create a base class, default to making the member functions pure
virtual. The destructor can also be pure virtual (to force inheritors to
explicitly redefine it), but remember to give the destructor a function body,
because all destructors in a hierarchy are always called.

 21.  When you put a virtual function in a class, make all functions in that class
virtual, and put in a virtual destructor. Start removing the virtual keyword
when you’re tuning for efficiency. This approach prevents surprises in the
behavior of the interface.

 22.  Use data members for variation in value and virtual functions for variation
in behavior. That is, if you find a class with state variables and member
functions that switch behavior on those variables, you should probably
redesign it to express the differences in behavior within subclasses and
virtual functions.

 23.  If you must do something nonportable, make an abstraction for that service
and localize it within a class. This extra level of indirection prevents the
nonportability from being distributed throughout your program.

 24.  Avoid multiple inheritance. It’s for getting you out of bad situations,
especially repairing class interfaces where you don’t have control of the
broken class (see Chapter 15). You should be an experienced programmer
before designing multiple inheritance into your system.

 25.  Don’t use private inheritance. Although it’s in the language and seems to
have occasional functionality, it introduces  significant ambiguities when
combined with run-time type identification. Create a private member object
instead of using private inheritance.

 26.  If two classes are associated with each other in some functional way (such
as containers and iterators) try to make one a public nested friend class of
the other, as the STL does with iterators inside containers. This not only
emphasizes the association between the classes, but it allows the class name
to be reused by nesting it within another class. Again, the STL does this by
placing iterator inside each container class, thereby providing them with a
common interface.
The other reason you’ll want to nest a class is as part of the private
implementation. Here, nesting is beneficial for implementation hiding rather
than class association and the prevention of namespace pollution as above.



Appendix B: Programming Guidelines
921

 27.  Operator overloading is only «syntactic sugar»: a different way to make a
function call. If overloading an operator doesn’t make the class interface
clearer and easier to use, don’t do it. Create only one automatic type
conversion operator for a class. In general, follow the guidelines and format
given in Chapter 10 when overloading operators.

 28.  First make a program work, then optimize it. In particular, don’t worry
about writing inline functions, making some functions nonvirtual, or
tweaking code to be efficient when you are first constructing the system.
Your primary goal should be to prove the design, unless the design requires
a certain efficiency.

 29.  Don’t let the compiler create the constructors, destructors, or the operator=
for you. Those are training wheels. Class designers should always say
exactly what the class should do and keep the class entirely under control. If
you don’t want a copy-constructor or operator=, declare them private.
Remember that if you create any constructor, it prevents the default
constructor from being synthesized.

 30.  If your class contains pointers, you must create the copy-constructor,
operator=, and destructor for the class to work properly.

 31.  When you write a copy-constructor for a derived class, remember to call the
base-class copy-constructor explicitly. If you don’t, the default constructor
will be called for the base class and that probably isn’t what you want. To
call the base-class copy-constructor, pass it the derived object you’re
copying from:
Derived(const Derived& d) : base(d) { // ...

 32.  To minimize recompiles during development of a large project, use the
handle class/Cheshire cat technique demonstrated in Chapter 2, and remove
it only if run-time efficiency is a problem.

 33.  Avoid the preprocessor. Always use const for value substitution and inlines
for macros.

 34.  Keep scopes as small as possible so the visibility and lifetime of your
objects are as small as possible. This reduces the chance of using an object
in the wrong context and hiding a difficult-to-find bug. For example,
suppose you have a container and a piece of code that iterates through it. If
you copy that code to use with a new container, you may accidentally end
up using the size of the old container as the upper bound of the new one. If,
however, the old container is out of scope, the error will be caught at
compile time.



Appendix B: Programming Guidelines
922

 35.  Avoid global variables. Always strive to put data inside classes. Global
functions are more likely to occur naturally than global variables, although
you may later discover that a global function may fit better as a static
member of a class.

 36.  If you need to declare a class or function from a library, always do so by
including a header file. For example, if you want to create a function to
write to an ostream, never declare ostream yourself using an incomplete
type specification like this,
class ostream;
This approach leaves your code vulnerable to changes in representation.
(For example, ostream could actually be a typedef.) Instead, always use the
header file:
#include <iostream>
When creating your own classes, if a library is big, provide your users an
abbreviated form of the header file with incomplete type specifications (that
is, class name declarations) for cases where they only need to use pointers.
(It can speed compilations.)

 37.  When choosing the return type of an overloaded operator, think about
chaining expressions together. When defining operator=, remember x=x.
Return a copy or reference to the lvalue (return *this) so it can be used in a
chained expression (A = B = C).

 38.  When writing a function, pass arguments by const reference as your first
choice. As long as you don’t need to modify the object being passed in, this
practice is best because it has the simplicity of pass-by-value syntax but
doesn’t require expensive constructions and destructions to create a local
object, which occurs when passing by value. Normally you don’t want to be
worrying too much about efficiency issues when designing and building
your system, but this habit is a sure win.

 39.  Be aware of temporaries. When tuning for performance, watch out for
temporary creation, especially with operator overloading. If your
constructors and destructors are complicated, the cost of creating and
destroying temporaries can be high. When returning a value from a
function, always try to build the object «in place» with a constructor call in
the return statement:
return foo(i, j);
rather than
foo x(i, j);
return x;



Appendix B: Programming Guidelines
923

The former return statement eliminates a copy-constructor call and
destructor call.

 40.  When creating constructors, consider exceptions. In the best case, the
constructor won’t do anything that throws an exception. In the next-best
scenario, the class will be composed and inherited from robust classes only,
so they will automatically clean themselves up if an exception is thrown. If
you must have naked pointers, you are responsible for catching your own
exceptions and then deallocating any resources pointed to before you throw
an exception in your constructor. If a constructor must fail, the appropriate
action is to throw an exception.

 41.  Do only what is minimally necessary in your constructors. Not only does
this produce a lower overhead for constructor calls (many of which may not
be under your control) but your constructors are then less likely to throw
exceptions or cause problems.

 42.  The responsibility of the destructor is to release resources allocated during
the lifetime of the object, not just during construction.

 43.  Use exception hierarchies, preferably derived from the Standard C++
exception hierarchy and nested as public classes within the class that throws
the exceptions. The person catching the exceptions can then catch the
specific types of exceptions, followed by the base type. If you add new
derived exceptions, client code will still catch the exception through the
base type.

 44.  Throw exceptions by value and catch exceptions by reference. Let the
exception-handling mechanism handle memory management. If you throw
pointers to exceptions created on the heap, the catcher must know to destroy
the exception, which is bad coupling. If you catch exceptions by value, you
cause extra constructions and destructions; worse, the derived portions of
your exception objects may be sliced during upcasting by value.

 45.  Don’t write your own class templates unless you must. Look first in the
Standard Template Library, then to vendors who create special-purpose
tools. Become proficient with their use and you’ll greatly increase your
productivity.

 46.  When creating templates, watch for code that does not depend on type and
put that code in a nontemplate base class to prevent needless code bloat.
Using inheritance or composition, you can create templates in which the
bulk of the code they contain is type-dependent and therefore essential.



Appendix B: Programming Guidelines
924

 47.  Don’t use the STDIO.H functions such as printf( ). Learn to use iostreams
instead; they are type-safe and type-extensible, and significantly more
powerful. Your investment will be rewarded regularly (see Chapter 5). In
general, always use C++ libraries in preference to C libraries.

 48.  Avoid C’s built-in types. They are supported in C++ for backward
compatibility, but they are much less robust than C++ classes, so your bug-
hunting time will increase.

 49.  Whenever you use built-in types as globals or automatics, don’t define them
until you can also initialize them. Define variables one per line along with
their initialization. When defining pointers, put the ‘*’ next to the type
name. You can safely do this if you define one variable per line. This style
tends to be less confusing for the reader.

 50.  Guarantee that initialization occurs in all aspects of your code. Perform all
member initialization in the constructor initializer list, even built-in types
(using pseudo-constructor calls). Use any bookkeeping technique you can to
guarantee no uninitialized objects are running around in your system. Using
the constructor initializer list is often more efficient when initializing
subobjects; otherwise the default constructor is called, and you end up
calling other member functions — probably operator= — on top of that in
order to get the initialization you want.

 51.  Don’t use the form foo a = b; to define an object. This one feature is a
major source of confusion because it calls a constructor instead of the
operator=. For clarity, always be specific and use the form foo a(b);
instead. The results are identical, but other programmers won’t be confused.

 52.  Use the new casts in C++. A cast overrides the normal typing system and is
a potential error spot. By dividing C’s one-cast-does-all into classes of well-
marked casts, anyone debugging and maintaining the code can easily find
all the places where logical errors are most likely to happen.

 53.  For a program to be robust, each component must be robust. Use all the
tools provided by C++: implementation hiding, exceptions, const-
correctness, type checking, and so on in each class you create. That way you
can safely move to the next level of abstraction when building your system.

 54.  Build in const-correctness. This allows the compiler to point out bugs that
would otherwise be subtle and difficult to find. This practice takes a little
discipline and must be used consistently throughout your classes, but it pays
off.



Appendix B: Programming Guidelines
925

 55.  Use compiler error checking to your advantage. Perform all compiles with
full warnings, and fix your code to remove all warnings. Write code that
utilizes the compiler errors and warnings rather than that which causes run-
time errors (for example, don’t use variadic argument lists, which disable all
type checking). Use assert( ) for debugging, but use exceptions to work
with run-time errors.

 56.  Prefer compile-time errors to run-time errors. Try to handle an error as close
to the point of its occurrence as possible. Prefer dealing with the error at
that point to throwing an exception. Catch any exceptions in the nearest
handler that has enough information to deal with them. Do what you can
with the exception at the current level; if that doesn’t solve the problem,
rethrow the exception.

 57.  If you’re using exception specifications, install your own unexpected( )
function using set_unexpected( ). Your unexpected( ) should log the error
and rethrow the current exception. That way, if an existing function gets
redefined and starts throwing exceptions, it won’t abort the program.

 58.  Create a user-defined terminate( ) (indicating a programmer error) to log
the error that caused the exception, then release system resources, and exit
the program.

 59.  If a destructor calls any functions, those functions may throw exceptions. A
destructor cannot throw an exception (this can result in a call to
terminate( ), which indicates a programming error), so any destructor that
calls functions must catch and manage its own exceptions.

 60.  Don’t create your own «mangled» private data member names, unless you
have a lot of pre-existing global values; otherwise, let classes and
namespaces do that for you.

 61.  If you’re going to use a loop variable after the end of a for loop, define the
variable before the for control expression. This way, you won’t have any
surprises when implementations change to limit the lifetime of variables
defined within for control-expressions to the controlled expression.

 62.  Watch for overloading. A function should not conditionally execute code
based on the value of an argument, default or not. In this case, you should
create two or more overloaded functions instead.

 63.  Hide your pointers inside container classes. Bring them out only when you
are going to immediately perform operations on them. Pointers have always
been a major source of bugs. When you use new, try to drop the resulting



Appendix B: Programming Guidelines
926

pointer into a container. Prefer that a container «own» its pointers so it’s
responsible for cleanup. If you must have a free-standing pointer, always
initialize it, preferably to an object address, but to zero if necessary. Set it to
zero when you delete it to prevent accidental multiple deletions.

 64.  Don’t overload global new and delete; always do it on a class-by-class
basis. Overloading the global versions affects the entire client programmer
project, something only the creators of a project should control. When
overloading new and delete for classes, don’t assume you know the size of
the object; someone may be inheriting from you. Use the provided
argument. If you do anything special, consider the effect it could have on
inheritors.

 65.  Don’t repeat yourself. If a piece of code is recurring in many functions in
derived classes, put that code into a single function in the base class and call
it from the derived class functions. Not only do you save code space, you
provide for easy propagation of changes. This is possible even for pure
virtual functions (see Chapter 13). You can use an inline function for
efficiency. Sometimes the discovery of this common code will add valuable
functionality to your interface.

 66.  Prevent object slicing. It virtually never makes sense to upcast an object by
value. To prevent this, put pure virtual functions in your base class.

 67.  Sometimes simple aggregation does the job. A «passenger comfort system»
on an airline consists of disconnected elements: seat, air conditioning,
video, etc., and yet you need to create many of these in a plane. Do you
make private members and build a whole new interface? No — in this case,
the components themselves are also part of the public interface, so you
should create public member objects. Those objects have their own private
implementations, which are still safe.



927

C: Simulating
virtual
constructors

TODO: Incorporate this with the design patterns chapter, as
a creational pattern

During a constructor call, the virtual mechanism does not
operate (early binding occurs). Sometimes this is awkward.

In addition, you may want to organize your code so you don’t have to select an exact type of
constructor when creating an object. That is, you’d like to say, «I don’t know precisely what
type of object you are, but here’s the information: Create yourself.» This appendix
demonstrates two approaches to «virtual construction.» The first is a full-blown technique that
works on both the stack and the heap, but is also fairly complex to implement. The second is
much simpler to implement and maintain, but restricts you to creating objects on the heap.

All-purpose virtual
constructors

Consider the oft-cited «shapes» example. It seems logical that inside the constructor for a
Shape object, you would want to set everything up and then draw( ) the shape. draw( )
should be a virtual function, a message to the Shape that it should draw itself appropriately,
depending on whether it is a circle, square, line, and so on. However, this doesn’t work inside
the constructor, for the reasons given in Chapter 13: Virtual functions resolve to the «local»
function bodies when called in constructors.

If you want to be able to call a virtual function inside the constructor and have it do the right
thing, you must use a technique to simulate a virtual constructor. This is a conundrum.



Appendix C: Simulating Virtual Constructors
928

Remember the idea of a virtual function is that you send a message to an object and let the
object figure out the right thing to do. But a constructor builds an object. So a virtual
constructor would be like saying, «I don’t know exactly what type of object you are, but build
yourself anyway.» In an ordinary constructor, the compiler must know which VTABLE
address to bind to the VPTR, and if it existed, a virtual constructor couldn’t do this because it
doesn’t know all the type information at compile-time. It makes sense that a constructor can’t
be virtual because it is the one function that absolutely must know everything about the type
of the object.

And yet there are times when you want something approximating the behavior of a virtual
constructor.

In the Shape example, it would be nice to hand the Shape constructor some specific
information in the argument list and let the constructor create a specific type of Shape (a
Circle, Square, or Triangle) with no further intervention. Ordinarily, you’d have to make an
explicit call to the Circle, Square, or Triangle constructor yourself.

Coplien75 calls his solution to this problem «envelope and letter classes.» The «envelope»
class is the base class, a shell that contains a pointer to an object of the base class. The
constructor for the «envelope» determines (at run-time, when the constructor is called, not at
compile-time, when the type checking is normally done) what specific type to make, then
creates an object of that specific type (on the heap) and assigns the object to its pointer. All
the function calls are then handled by the base class through its pointer.

Here’s a simplified version of the shape example:

//: C:ShapeV.cpp
// "Virtual constructors"
// Used in a simple "Shape" framework
#include <iostream>
#include <vector>
using namespace std;

class Shape {
  Shape* S;
  // Prevent copy-construction & operator=
  Shape(Shape&);
  Shape operator=(Shape&);
protected:
  Shape() { S = 0; };
public:
  enum type { tCircle, tSquare, tTriangle };
  Shape(type);  // "Virtual" constructor

                                                       

75James O. Coplien, Advanced C++ Programming Styles and Idioms, Addison-Wesley, 1992.



Appendix C: Simulating Virtual Constructors
929

  virtual void draw() { S->draw(); }
  virtual ~Shape() {
    cout << "~Shape\n";
    delete S;
  }
};

class Circle : public Shape {
  Circle(Circle&);
  Circle operator=(Circle&);
public:
  Circle() {}
  void draw() { cout << "Circle::draw\n"; }
  ~Circle() { cout << "~Circle\n"; }
};

class Square : public Shape {
  Square(Square&);
  Square operator=(Square&);
public:
  Square() {}
  void draw() { cout << "Square::draw\n"; }
  ~Square() { cout << "~Square\n"; }
};

class Triangle : public Shape {
  Triangle(Triangle&);
  Triangle operator=(Triangle&);
public:
  Triangle() {}
  void draw() { cout << "Triangle::draw\n"; }
  ~Triangle() { cout << "~Triangle\n"; }
};

Shape::Shape(type t) {
  switch(t) {
    case tCircle: S = new Circle; break;
    case tSquare: S = new Square; break;
    case tTriangle: S = new Triangle; break;
  }
  draw();  // Virtual call in the constructor
}



Appendix C: Simulating Virtual Constructors
930

// Actually, use of auto_ptr should be illegal?
template<class T> class AutoVector
  : public vector<auto_ptr<T> > {
public:
  void add(T* p) {push_back(auto_ptr<T>(p));}
};

int main() {
  AutoVector<Shape> Shapes;
  cout << "virtual constructor calls:" << endl;
  Shapes.add(new Shape(Shape::tCircle));
  Shapes.add(new Shape(Shape::tSquare));
  Shapes.add(new Shape(Shape::tTriangle));
  cout << "virtual function calls:" << endl;
  for(int i = 0; i < Shapes.size(); i++)
    Shapes[i]->draw();
  Shape c(Shape::tCircle); // Can create on stack
} ///:~

The base class Shape contains a pointer to an object of type Shape as its only data member.
When you build a «virtual constructor» scheme, you must exercise special care to ensure this
pointer is always initialized to a live object.

The type enumeration inside class Shape and the requirement that the constructor for Shape
be defined after all the derived classes are two of the restrictions of this method. Each time
you derive a new subtype from Shape, you must go back and add the name for that type to the
type enumeration. Then you must modify the Shape constructor to handle the new case. The
disadvantage is you now have a dependency between the Shape class and all classes derived
from it. However, the advantage is that the dependency that normally occurs in the body of
the program (and possibly in more than one place, which makes it less maintainable) is
isolated inside the class. In addition, this produces an effect like the «cheshire cat» technique
in Chapter 2; in this case all the specific shape class definitions can be hidden inside the
implementation files. That way, the base-class interface is truly the only thing the user sees.

In this example, the information you must hand the constructor about what type to create is
very explicit: It’s an enumeration of the type. However, your scheme may use other
information — for example, in a parser the output of the scanner may be handed to the
«virtual constructor,» which then uses that text string to determine what exact token to create.

The «virtual constructor» Shape(type) can only be declared inside the class; it cannot be
defined until after all the base classes have been declared. However, the default constructor
can be defined inside class Shape, but it should be made protected so temporary Shape
objects cannot be created. This default constructor is only called by the constructors of
derived-class objects. You are forced to explicitly create a default constructor because the
compiler will create one for you automatically only if there are no constructors defined.
Because you must define Shape(type), you must also define Shape( ).



Appendix C: Simulating Virtual Constructors
931

The default constructor in this scheme has at least one very important chore — it must set the
value of the S pointer to zero. This sounds strange at first, but remember that the default
constructor will be called as part of the construction of the actual object — in Coplien’s
terms, the «letter,» not the «envelope.» However, the «letter» is derived from the «envelope,»
so it also inherits the data member S. In the «envelope,» S is important because it points to the
actual object, but in the «letter,» S is simply excess baggage. Even excess baggage should be
initialized, however, and if S is not set to zero by the default constructor called for the
«letter,» bad things happen (as you’ll see later).

The «virtual constructor» takes as its argument information that completely determines the
type of the object. Notice, though, that this type information isn’t read and acted upon until
run-time, whereas normally the compiler must know the exact type at compile-time (one other
reason this system effectively imitates virtual constructors).

Inside the virtual constructor there’s a switch statement that uses the argument to construct
the actual object, which is then assigned to the pointer inside the «envelope.» After that, the
construction of the «letter» is completed, so any virtual calls will be properly directed.

As an example, consider the call to draw( ) inside the virtual constructor. If you trace this call
(either by hand or with a debugger), you can see that it starts in the draw( ) function in the
base class, Shape. This function calls draw( ) for the «envelope» S pointer to its «letter.» All
types derived from Shape share the same interface, so this virtual call is properly executed,
even though it seems to be in the constructor. (Actually, the constructor for the «letter» has
already completed.) As long as all virtual calls in the base class simply make calls to identical
virtual function through the pointer to the «letter,» the system operates properly.

To understand how it works, consider the code in main( ). To create the array s[ ], «virtual
constructor» calls are made to Shape. Ordinarily in a situation like this, you would call the
constructor for the actual type, and the VPTR for that type would be installed in the object.
Here, however, the VPTR used in each case is the one for Shape, not the one for the specific
Circle, Square, or Triangle.

In the for loop where the draw( ) function is called for each Shape, the virtual function call
resolves, through the VPTR, to the corresponding type. However, this is Shape in each case.
In fact, you might wonder why draw( ) was made virtual at all. The reason shows up in the
next step: The base-class version of draw( ) makes a call, through the «letter» pointer S, to
the virtual function draw( ) for the «letter.» This time the call resolves to the actual type of
the object, not just the base class Shape. Thus the run-time cost of using «virtual
constructors» is one more virtual call every time you make a virtual function call.

A remaining conundrum
In the «virtual constructor» scheme presented here, calls made to virtual functions inside
destructors will be resolved in the normal way, at compile-time. You might think that you can
get around this restriction by cleverly calling the base-class version of the virtual function
inside the destructor. Unfortunately, this results in disaster. The base-class version of the
function is indeed called. However, its this pointer is the one for the «letter» and not the



Appendix C: Simulating Virtual Constructors
932

«envelope.» So when the base-class version of the function makes its call — remember, the
base-class versions of virtual functions always assume they are dealing with the «envelope»
— it will go to the S pointer to make the call. For the «letter,» S is zero, set by the protected
default constructor. Of course, you could prevent this by adding even more code to each
virtual function in the base class to check that S is not zero. Or, you can follow two rules
when using this «virtual constructor» scheme:

 1.  Never explicitly call root class virtual functions from derived-class
functions.

 2.  Always redefine virtual functions defined in the root class.

The second rule results from the same problem as rule one. If you call a virtual function inside
a «letter,» the function gets the «letter» this pointer. If the virtual call resolves to the base-
class version, which will happen if the function was never redefined, then a call will be made
through the «letter» this pointer to the «letter» S, which is again zero.

You can see that there are costs, restrictions, and dangers to using this method, which is why
you don’t want to have it as part of the programming environment all the time. It’s one of
those features that’s very useful for solving certain types of problems, but it isn’t something
you want to cope with all the time. Fortunately, C++ allows you to put it in when you need it,
but the standard way is the safest and, in the end, easiest.

Destructor operation
The activities of destruction in this scheme are also tricky. To understand, let’s verbally walk
through what happens when you call delete for a pointer to a Shape object — specifically, a
Square — created on the heap. (This is more complicated than an object created on the
stack.) This will be a delete through the polymorphic interface, as in the statement delete s[i]
in main( ).

The type of the pointer s[i] is of the base class Shape, so the compiler makes the call through
Shape. Normally, you might say that it’s a virtual call, so Square’s destructor will be called.
But with this «virtual constructor» scheme, the compiler is creating actual Shape objects,
even though the constructor initializes the «letter» pointer to a specific type of Shape. The
virtual mechanism is used, but the VPTR inside the Shape object is Shape’s VPTR, not
Square’s. This resolves to Shape’s destructor, which calls delete for the «letter» pointer S,
which actually points to a Square object. This is again a virtual call, but this time it resolves
to Square’s destructor.

With a destructor, however, all destructors in the hierarchy must be called. Square’s
destructor is called first, followed by any intermediate destructors, in order, until finally the
base-class destructor is called. This base-class destructor has code that says delete S. When
this destructor was called originally, it was for the «envelope» S, but now it’s for the «letter»
S, which is there because the «letter» was inherited from the «envelope,» and not because it
contains anything. So this call to delete should do nothing.



Appendix C: Simulating Virtual Constructors
933

The solution to the problem is to make the «letter» S pointer zero. Then when the «letter»
base-class destructor is called, you get delete 0, which by definition does nothing. Because
the default constructor is protected, it will be called only during the construction of a «letter,»
so that’s the only situation where S is set to zero.

A simpler alternative
This «virtual constructor» scheme is unnecessarily complicated for most needs. If you can
restrict yourself to objects created on the heap, things can be made a lot simpler. All you
really want is some function (which I’ll call an object-maker function) into which you can
throw a bunch of information and it will produce the right object. This function doesn’t have
to be a constructor if it’s OK to produce a pointer to the base type rather than an object itself.
Here’s the envelope-and-letter example redesigned using an object-maker function:

//: C:ShapeV2.cpp
// Alternative to ShapeV.cpp
#include <iostream>
#include <vector>
using namespace std;

class Shape {
  Shape(Shape&); // No copy-construction
protected:
  Shape() {} // Prevent stack objects
  // But allow access to derived constructors
public:
  enum type { tCircle, tSquare, tTriangle };
  virtual void draw() = 0;
  virtual ~Shape() { cout << "~Shape\n"; }
  static Shape* make(type);
};

class Circle : public Shape {
  Circle(Circle&); // No copy-construction
  Circle operator=(Circle&); // No operator=
protected:
  Circle() {};
public:
  void draw() { cout << "Circle::draw\n"; }
  ~Circle() { cout << "~Circle\n"; }
  friend Shape* Shape::make(type t);
};



Appendix C: Simulating Virtual Constructors
934

class Square : public Shape {
  Square(Square&); // No copy-construction
  Square operator=(Square&); // No operator=
protected:
  Square() {};
public:
  void draw() { cout << "Square::draw\n"; }
  ~Square() { cout << "~Square\n"; }
  friend Shape* Shape::make(type t);
};

class Triangle : public Shape {
  Triangle(Triangle&); // No copy-construction
  Triangle operator=(Triangle&); // Prevent
protected:
  Triangle() {};
public:
  void draw() { cout << "Triangle::draw\n"; }
  ~Triangle() { cout << "~Triangle\n"; }
  friend Shape* Shape::make(type t);
};

Shape* Shape::make(type t) {
  Shape* S;
  switch(t) {
    case tCircle: S = new Circle; break;
    case tSquare: S = new Square; break;
    case tTriangle: S = new Triangle; break;
  }
  S->draw(); // Virtual function call
  return S;
}

// Actually, use of auto_ptr should be illegal?
template<class T> class AutoVector
  : public vector<auto_ptr<T> > {
public:
  void add(T* p) {push_back(auto_ptr<T>(p));}
};

int main() {
  AutoVector<Shape> shapes;
  cout << "virtual constructor calls:" << endl;



Appendix C: Simulating Virtual Constructors
935

  shapes.add(Shape::make(Shape::tCircle));
  shapes.add(Shape::make(Shape::tSquare));
  shapes.add(Shape::make(Shape::tTriangle));
  cout << "virtual function calls:\n";
  for(int i = 0; i < shapes.size(); i++)
    shapes[i]->draw();
  //!Circle c; // Error: can't create on stack
} ///:~

You can see that everything’s a lot simpler, and you don’t have to worry about strange cases
with an internal pointer. The only restrictions are that the enum in the base class must be
changed every time you derive a new class (true also with the envelope-and-letter approach)
and that objects must be created on the heap. This latter restriction is enforced by making all
the constructors protected, so the user can’t create an object of the class, but the derived-class
constructors can still access the base-class constructors during object creation. This is an
excellent example of where the protected keyword is essential.





937

D: Recommended
reading

General topics
The C++ Programming Language, 3rd edition, by Bjarne Stroustrup (Addison-Wesley 1997).
To some degree, the goal of the book that you're currently holding is to allow you to use
Bjarne's book as a reference. Since his book contains the description of the language by the
author of that language, it's typically the place where you'll go to resolve any uncertainties
about what C++ is or isn't supposed to do. When you get the knack of the language and are
ready to get serious, you'll need it.

The C++ ANSI/ISO Standard. (Availability? Legality of use? Can this be put on the CD
Rom?).

Effective C++ and More Effective C++, by Scott Meyers.

Large Scale C++ (?) by John Lakos.

C & C++ Code Capsules by Chuck Allison.

Ruminations on C++ by Koenig & Moo.

C++ Gems, Stan Lippman, editor. SIGS publications.

The Design & Evolution of C++, by Bjarne Stroustrup

My own list of books
Not all of these are currently available.

Computer Interfacing with Pascal & C (Self-published via the Eisys imprint; only available
via the Web site)

Using C++

C++ Inside & Out

Thinking in C++, 1st edition



938

Black Belt C++, the Master's Collection (edited by Bruce Eckel) (out of print).

Thinking in Java

The STL

Design Patterns



939

Index
-, 126

--, 126

!, 126

!=, 122

#define, 135, 142, 232

#define NDEBUG, 144

#endif, 136

#ifdef, 136, 142

#ifndef, 136

#include, 155

#include, 83

#undef, 136, 142

&, 123, 127, 992

&&, 122

&=, 123

..., 131

::, 988

^, 123

^=, 123

|, 123

||, 122

|=, 123

+, 126

++, 126

<, 122

<<, 124

<<=, 124

<=, 122

=, 128

==, 122, 128

>, 122

>=, 122

>>, 124

>>=, 124

abort( ), 774

Standard C library function, 278, 760

abstract

abstract base classes and pure virtual functions,
444

class, 444

data type, 167

pure abstract base class, 445

abstract data type, 108, 979

abstraction, 27

in program design, 812

access

access function, 227, 260

access specifiers and object layout, 184



940

control, 30, 177

control, run-time, 189

order for specifiers, 179

specifiers, 31, 178

access functions, 980

accessors, 261

adapting to usage in different countries,
Standard C++ localization library, 508

adding new virtual functions in the derived
class, 449

addition, 120

address, 977

address of an object, 181

addresses

pass as const references, 317

passing and returning, 240

address-of (&), 127

aggregate

const aggregates, 233

initialization, 209

initialization and structures, 210

Algol, 44

aliasing, namespace, 282

allocation

dynamic memory, 372

dynamic memory allocation, 156

memory, 387

storage, 202

alternate linkage specification, 297

ambiguity, 170

in multiple inheritance, 727

with namespaces, 285

analysis

& design, object-oriented, 62

requirements analysis, 63

analysis paralysis, 55

AND, 128

AND (&&), 122

and, && (logical AND), 129

and_eq, &= (bitwise AND-assignment), 129

anonymous inner class, 852

ANSI/ISO C++ committee, 24

APL, 43

applicator, 576

applying a function to a container, 498

argument

default, 979

indeterminate list, 131

list, 130

pass by reference, 103

pass by value, 103

passing, 130, 992

unnamed, 131

variable list, 131

arguments

and name mangling, 215

and return values, operator overloading, 341

argument-passing guidelines, 303

command line, 174

const, 237

constructor, 197

default, 214, 220

destructor, 198

macro, 256

passing, 299



941

variable argument list, 543

arguments, mnemonic names, 81

array, 103

calculating size, 209

dynamic creation, 827

initializing to zero, 209

making a pointer look like an array, 386

new & delete, 385

overloading new and delete for arrays, 392

static initialization, 289

assembly-language

asm in-line assembly language keyword, 129

assembly-language code generated by a virtual
function, 440

CALL, 305

RETURN, 305

assert( ), 157, 270, 752, 774

assert() macro in ANSI C, 144

assignment, 120, 209

disallowing, 361

memberwise, 360

operators, 341

atexit( )

Standard C library function, 278

atof( ), 558

atoi( ), 558

auto, 281

auto keyword, 114

auto-decrement, 101

auto-increment, 101

automatic

counting, and arrays, 209

creation of default constructors, 212

creation of operator=, 360

destructor calls, 206

automatic type conversion, 109, 159, 361

and exception handling, 770

pitfalls, 367

preventing with the keyword explicit, 362

automatic variables, 117

awk, 153, 579

bad( ), 549

bad_alloc, 507

Standard C++ library exception type, 772

bad_cast

and run-time type identification, 791

Standard C++ library exception type, 772

bad_typeid

run-time type identification, 792

Standard C++ library exception type, 772

badbit, 549

base

abstract base class, 444

abstract base classes and pure virtual functions,
444

base-class interface, 433

pure abstract base class, 445

BASIC, 44

BASIC language, 73

before( )

run-time type identification, 783

behavioral design patterns, 814

binary

operators, examples of all overloaded, 330

overloaded operator, 324

printing, 577



942

binary operators, 123

binding

dynamic binding, 432

early binding, 442

function call binding, 432, 440

late binding, 432

run-time binding, 432

Binstock, Andrew, 915

bit vector, 221

bit_string

bit vector in the Standard C++ libraries, 508

bitand, & (bitwise AND), 129

bitcopy, 307, 314

bitor, | (bitwise OR), 129

bits

bit vector in the Standard C++ libraries, 508

bitwise

AND, 128

AND operator (&), 123

const, 250

EXCLUSIVE OR XOR (^), 123

explicit bitwise and logical operators, 129

NOT ~, 123

operators, 123

OR, 128

OR operator (|), 123

bloat, preventing template bloat, 489

block, definition, 199

Booch, Grady, 68, 821

book errors, reporting, 25

Boolean

bool, true and false, 109

boolean algebra, 123

break, 97

Brooks, Fred, 50

bubble sort, 489

buffer, 103

buffering, iostream, 552

bugs, finding, 202

built-in data type, 108

built-in type

initializer for a static variable, 277

pseudoconstructor calls for, 404

built-in types, basic, 108

bytes, reading raw, 549

C, 199

and C++ compatibility, 165

and the heap, 373

basic data types, 543

C programmers learning C++, 429

compiling with C++, 212

const, 234

difference with C++ when defining variables, 112

error handling in C, 752

function library, 132

linking compiled C code with C++, 297

localtime( ), Standard library, 591

operators and their use, 120

passing and returning variables by value, 303

rand( ), Standard library, 591

Standard C, 24

Standard C library function abort( ), 760

Standard C library function strncpy( ), 764

Standard C library function strtok( ), 650

standard I/O library, 565



943

Standard library function abort( ), 278

Standard library function atexit( ), 278

Standard library function exit( ), 278

Standard library macro toupper( ), 580

C & C++ operators, 100

C Libraries, 85

C++

and C compatibility, 165

ANSI/ISO C++ committee, 24

C programmers learning C++, 429

CGI programming in C++, 877

compiling C, 212

data, 108

difference with C when defining variables, 112

function overloading, 977

functions,unique features of, 975

GNU C++ Compiler, 877

linking compiled C code with C++, 297

major language features, 458

object-based C++, 430

operators and their use, 120

programming guidelines, 915

sacred design goals of C++, 544

Standard C++, 24

Standard string class, 545

Standard Template Library (STL)., 877

template, 841

the Standard C++ Libraries, 507

calculating array size, 209

CALL, assembly-language, 305

calling a member function, 167

calling other member functions, 989

calloc( ), 157, 373, 376, 495

Carolan, John, 190

Carroll, Lewis, 190

case, 99

cast, 127, 189, 374

casting away const, 805

casting away const and/or volatile, 802

casting away constness, 250

casting void pointers, 164

const_cast, 804

dynamic_cast, 801

new cast syntax, 801

operators, 128

reinterpret cast, 805

run-time type identification, casting to
intermediate levels, 788

searching for, 801

static_cast, 802

casting away const-ness, 998

Cat, Cheshire, 190

catch, 755

catching any exception, 759

CGI

connecting Java to CGI, 875

crash course in CGI programming, 875

GET, 875

POST, 875, 881

programming in C++, 877

chaining, in iostreams, 546

change

vector of change, 812, 824

char, 108

char* iostreams, 545

character, 119



944

constants, 119

pointer, 977

transforming strings to typed values, 558

check for self-assignment in operator
overloading, 340

Cheshire Cat, 190

clashes, name, 160

class, 93, 167, 185

abstract base classes and pure virtual functions,
444

abstract class, 444

adding new virtual functions in the derived class,
449

anonymous inner class, 852

class definition and inline functions, 259

class hierarchies and exception handling, 770

class-like items, 995

compile-time constant, 290

compile-time constant inside, 245

compile-time constants in, 243

composition, 314

const and enum in, 243

container class templates and virtual functions,
494

declaration, 190, 982

defining boundaries, 979

definition, 190

diagram, 444

duplicate class definitions and templates, 469

friend, 993

generated classes for templates, 468

handle, 190

inheritance diagrams, 421

inner class, 826

local, 290

maintaining library source, 580

member functions, defining, 988

members, 979

most-derived class, 730

name declaration, 982

nested, 290

nested class, and run-time type identification, 787

overloading new and delete for a class, 389

pointers in, 352

pure abstract base class, 445

Standard C++ string, 545

static data members, 287

static member, 984

static member functions, 291

string, 365

virtual base classes, 728

wrapping, 539

Class

reflection, 827

cleaning up the stack during exception
handling, 762

cleanup, 158, 456

cleanup & initialization, 982

clear( ), 550, 593

client programmer, 30, 177

clone( ), 824

COBOL, 43

code generator, 79

code organization, 170

header files, 169

code re-use, 399

collection, 344

collision, linker, 170



945

comma operator, 127, 343

command line, 174

interface, 548

comment syntax, 161

committee, ANSI/ISO C++, 24

common interface, 444

common pitfalls when using operators, 128

compatibility, C & C++, 165

compilation

needless, 189

separate, 134, 146

compilation process, 79

compile time

constants, 232

error checking, 543

compiler, 77

running, 88

compiler error tests, 584

compilers, 78

compiling C with C++, 212

compl, ~ (ones complement), 129

complex number class, 509

composition, 314, 399, 413

and design patterns, 812

choosing composition vs. inheritance, 410

combining composition & inheritance, 404

member object initialization, 403

vs. inheritance, 424

conditional operator, 127

console I/O, 548

const, 83, 107, 117, 231

address of, 118

and enum in classes, 243

and pointers, 235

and string literals, 237

casting away, 250, 998

casting away const, 805

casting away const and/or volatile, 802

class members, 986

const correctness, 253

const objects and member functions, 247

const reference function arguments, 242

extern, 119

for aggregates, 233

for function arguments and return values, 237

in array definition, 987

in C, 234

initializing data members, 244

member function, 243, 997

member functions, 996

memberwise, 250

mutable, 250

objects, 996

pass addresses as const references, 317

reference, 301, 341

return by value as const, 342

static inside class, 290

const_cast, 801, 804

constant, 117

character, 119

compile time, 232

compile-time constant inside class, 290

compile-time inside classes, 245

constants in templates, 472

folding, 118, 232



946

inside classes, 987

named, 117

string, 223

values, 119

constructor, 196, 371, 374, 403, 409, 455, 982

alternatives to copy-construction, 316

and exception handling, 762, 765, 777

and inlines, 267

and operator new, out of memory, 394

and overloading, 213

arguments, 197

automatic creation of default, 212

behavior of virtual functions inside constructors,
454

copy, 299, 303, 309

copy-constructor private, 378

copy-constructor vs. operator=, 350

default, 211, 277, 315, 385

default constructor, 928

default constructor synthesized by the compiler,
813

efficiency, 453

failing, 777

global object, 278

heap, 207

initializer list, 243, 403, 986

installing the VPTR, 441

name, 196

order of constructor and destructor calls, 406, 790

order of constructor calls, 454

private constructor, 813

pseudo-constructor, 382

return value, 197

simulating virtual constructors, 925

virtual base classes with a default constructor,
731

virtual functions & constructors, 453

virtual functions inside constructors, 925

Constructor

for reflection, 827

container, 344, 474

and iterators, 461

and polymorphism, 491

container class templates and virtual functions,
494

ownership, 377, 474

context, and overloading, 213

continuation, namespace, 282

continue, 97

contract, 51

control

access, 178

access and run-time, 189

controlling

access, 177

linkage, 280

template instantiation, 500

controlling access, 30, 31

controlling execution, 93

conversion

automatic type conversion, 361

automatic type conversions and exception
handling, 770

narrowing conversions, 804

pitfalls in automatic type conversion, 367

preventing automatic type conversion with the
keyword explicit, 362

Coplien, James, 926



947

copy-constructor, 299, 303, 309, 343, 453, 482

alternatives, 316

default, 313

private, 378

vs. operator=, 350

copying

pointers, 352

copy-on-write (COW), 353

correctness, const, 253

counting

automatic, and arrays, 209

reference, 353

couplet, 850

cout, 86

creating

a new object from an existing object, 308

automatic default constructors, 212

manipulators, 576

objects on the heap, 376

creating functions in C and C++, 130

creating your own libraries with the librarian,
133

creational design patterns, 814, 822

c-v qualifier, 253

data

C data types, 543

defining storage for static members, 287

distinct types, 223

initializing const members, 244

static area, 275

static members inside a class, 287

data type

abstract, 108, 979

built-in, 108

user-defined, 108

database

object-oriented database, 737

datalogger, 587

debugging, 78

assert() macro, 144

flags, 142

hints, 1000

preprocessor flags, 142

run-time, 143

techniques combined, 144

decimal, 119

dec in iostreams, 546

dec manipulator in iostreams, 571

formatting, 565

declaration, 80, 152, 163, 169

class, 190, 982

class name, 994

forward, 116

function, 133

name, 982

structure, 181

using, for namespaces, 286

virtual, 432

virtual keyword in derived-class declarations, 444

vs. definition, 982

vs. definitions, 80

declaring variables

point of declaration & scope, 97

decoration, name, 166, 214

decrement, 101, 126

and increment operators, 342



948

overloading operator, 329

default

arguments, 214, 220

automatic creation of constructors, 212

constructor, 211, 277, 315, 385, 928

copy-constructor, 313

default, 99

default arguments, 979

default constructor

synthesized by the compiler, 813

defining

and initializing variables, 108

class member functions, 988

data on the fly, 112

variable, anywhere in the scope, 112

variables, 112

vs declaring, 982

definition, 152

block, 199

class, 190

duplicate class definitions and templates, 469

object, 196

pure virtual function definitions, 448

storage for static data members, 287

vs declaration, 80

delete, 127, 375, 561

& new for arrays, 385

and new, interaction with malloc( ) and free( ),
381

and zero pointer, 375

delete-expression, 375, 387

multiple deletions of the same object, 375

overloading array new and delete, 764

overloading global new and delete, 388

overloading new & delete, 387

overloading new and delete for a class, 389

overloading new and delete for arrays, 392

Demarco, Tom, 53

dependency, static initialization, 293

dereference (*), 127

derived

adding new virtual functions in the derived class,
449

virtual keyword in derived-class declarations, 444

deserialization, and persistence, 737

design

abstraction in program design, 812

analysis & design, object-oriented, 62

and efficiency, 489

and inlines, 261

and mistakes, 192

patterns, 74

sacred design goals of C++, 544

design benefits, 981

design patterns, 811

behavioral, 814

creational, 814, 822

factory method, 822

observer, 814

prototype, 824, 832

structural, 814

vector of change, 812, 824

visitor, 844

destructor, 197, 409, 982

and exception handling, 762, 777

and inlines, 267

automatic destructor calls, 405



949

destruction of static objects, 278

destructors and virtual destructors, 455

explicit destructor call, 396

order of constructor and destructor calls, 406, 790

scope, 198

virtual destructor, 478, 494

virtual function calls in destructors, 457

development, incremental, 419

diagram

class, 444

class inheritance diagrams, 421

diamond

in multiple inheritance, 727

differences in const between C++ and ansi C,
118

directive, using, 284

directly accessing structure, 168

directory paths, 155

disallowing assignment, 361

discipline, 43

dispatching

double dispatching, 837, 845

multiple dispatching, 837

distinct data types, 223

distinguishing overloaded functions, 977

division, 120

domain_error

Standard C++ library exception type, 772

dot, 980

double, 108, 119

double dispatching, 837, 845

double precision floating point, 108

Double.valueOf( ), 830

do-while, 96

downcast

static, 804

type-safe downcast in run-time type
identification, 783

dump debugging function, 1000

duplicate class definitions and templates, 469

dynamic

array creation, 827

binding, 432

dynamic-link library (DLL), 151

memory allocation, 156, 372

object creation, 371, 483

dynamic_cast

and exceptions, run-time type identification, 791

difference between dynamic_cast and typeid( ),
run-time type identification, 789

run-time type identification, 783

early binding, 432, 440, 442

effectors, 577

efficiency, 255

and virtual functions, 443

constructor, 453

design, 489

inlines, 267

references, 303

run-time type identification, 794

when creating and returning objects, 342

elegance, in programming, 65

ellipses, with exception handling, 759

Ellis, Margaret, 294

else, 94



950

embedded

object, 400

systems, 395

encapsulation, 167, 185

endl, iostreams, 546, 572

ends, iostreams, 546, 559

Entsminger, Gary, 36

enum

and const in classes, 243

clarifying programs with, 138

for array size definition, 987

hack, 289

inside class, 987

limitation to integral values, 290

untagged, 245

enumeration, 583

incrementing, 247

type checking, 247

Enumeration, 820

eof( ), 549

eofbit, 549

equivalence, 128

equivalent (==), 122

errno, 752

error

checking, 270

compile-time checking, 543

error handling in C, 752

handling, iostream, 549

off-by-one, 209

recovery, 751

reporting errors in book, 25

escape sequences, 87

evaluation order, inline, 266

exception handling, 157, 751

asynchronous events, 773

atomic allocations for safety, 767

automatic type conversions, 770

bad_alloc Standard C++ library exception type,
772

bad_cast Standard C++ library exception type,
772

bad_typeid, 792

bad_typeid Standard C++ library exception type,
772

catching any exception, 759

class hierarchies, 770

cleaning up the stack during a throw, 762

constructors, 762, 765

constructors, 777

destructors, 762, 777

domain_error Standard C++ library exception
type, 772

dynamic_cast, run-time type identification, 791

ellipses, 759

exception handler, 755

exception hierarchies, 775

exception matching, 770

exception Standard C++ library exception type,
772

invalid_argument Standard C++ library exception
type, 772

length_error Standard C++ library exception type,
772

logic_error Standard C++ library exception type,
772

multiple inheritance, 776

naked pointers, 766

object slicing and exception handling, 770, 771



951

operator new placement syntax, 765

out_of_range Standard C++ library exception
type, 772

overflow_error Standard C++ library exception
type, 772

overhead, 778

programming guidelines, 773

range_error Standard C++ library exception type,
772

references, 769, 776

re-throwing an exception, 760

run-time type identification, 782

runtime_error Standard C++ library exception
type, 772

set_terminate( ), 761

set_unexpected( ), 757

specification, 756

Standard C++ library exception type, 772

Standard C++ library exceptions, 771

standard exception classes, 507

termination vs. resumption, 756

throwing & catching pointers, 777

throwing an exception, 754

typeid( ), 792

typical uses of exceptions, 774

uncaught exceptions, 760

unexpected( ), 757

unexpected, filtering exceptions, 765

executing code

after exiting main( ), 279

before entering main( ), 279

execution point, 372

exit( ) Standard C library function, 278

explicit

keyword to prevent automatic type conversion,
362

exponential, 119

notation, 109

exponentiation, no operator, 347

extensible, 851

extensible program, 433, 543

extern, 82, 116, 119, 232, 280

to link C code, 297

external

linkage, 234, 280

references, 159

external linkage, 117, 119

external references, 80

extractor, 545

and inserter, overloading for iostreams, 347

factory method, 822

fail( ), 549

failbit, 549, 593

false, 122, 126, 136

bool, true and false, 109

false and true in C, 93

fan-out, automatic type conversion, 367

fclose( ), 159

fgets( ), 159

fibonacci( ), 463

file

file scope, 118

file static, 115

header, 134, 159, 163, 169, 170, 220

iostreams, 545, 548

names, 146

reading and writing with iostreams, 107

scope, 280



952

static, 170, 281

file scope, 115, 117

FILE, stdio, 540

fill

width, precision, iostream, 567

filtering unexpected exceptions, 765

first C++ program, 86

flags

debugging, 142

flags, iostreams format, 564

floating point

float, 108, 119

FLOAT.H, 108

number size hierarchy, 110

numbers, 108, 119

true and false, 123

flush, iostreams, 546, 572

fopen( ), 159

for, 96

for loop, 201

format flags, iostreams, 564

formatting

formatting manipulators, iostreams, 571

in-core, 557

iostream internal data, 564

output stream, 563

FORTH, 44

FORTRAN, 43

forward declaration, 116

forward reference, inline, 266

free store, 372

free( ), 157, 373, 375, 376, 561

and malloc( ), interaction with new and delete,
381

freeze( ), 561

freezing a strstream, 561

friend, 180, 376

and namespace, 283

class, 993

function, 991

global function, 180

member function, 180, 994

nested, 182

structure, 180

fseek( ), 554

fstream.h, 107

FSTREAM.H, 550

function

abstract base classes and pure virtual functions,
444

access, 227, 260, 980

adding more to a design, 192

adding new virtual functions in the derived class,
449

applying a function to a container, 498

argument list, 300

assembly-language code generated by a virtual
function, 440

behavior of virtual functions inside constructors,
454

C library, 132

call overhead, 259, 976

calling a member, 167

calling other members, 989

class defined inside, 290

collections & separate compilation, 134



953

const function arguments, 237

const member, 243, 247, 996, 997

const reference arguments, 242

creating, 130

declaring, 133, 170

default arguments, 979

defining class members, 988

expanding the function interface, 229

friend member, 180, 994

function call binding, 432, 440

function call operator( ), 344

function objects, 508

function templates, 494

function type, 265

function-call stack frame, 305

global, 164

global friend, 180

helper, assembly, 305

inline, 255, 259, 975, 980

inline, 443

inline, abuse, 976

member function template, 500

member overloaded operator, 324

member selection, 164

member, calling, 980

object-maker function, 931

operator overloading, 323

overloaded, distinguishing, 977

overloading, 977, 980

overloading, is it object-oriented?, 978

pass-by reference & temporary objects, 302

picturing virtual functions, 438

pointer to a function, 762

polymorphic function call, 437

prototype, 152

prototyping, 130

pure virtual function definitions, 448

redefinition during inheritance, 402

reference arguments and return values, 300

return value, 131

return values, 300

run-time type identification without virtual
functions, 782, 787

static member, 253, 291, 311, 995

unique features in C++, 975

variable argument list, 131

virtual function overriding, 432

virtual functions, 430

virtual functions & constructors, 453

void return value, 132

volatile member, 996, 999

function bodies, 81

function declaration syntax, 81

function definitions, 81

function prototyping, 85

Gamma, Erich, 48

garbage collector, 387

GET, 875

get pointer, 555, 560, 593

get( ), 317, 548, 551

overloaded versions, 549

with streambuf, 554

get()

iostream function, 108

getConstructor( ), reflection, 827

getConstructors( )

reflection, 827



954

getline( ), 548, 551, 560

Glass, Robert, 53

global

friend function, 180

functions, 164

object constructor, 278

overloaded operator, 324

overloading global new and delete, 388

scope resolution, 174

static initialization dependency of global objects,
293

global variables, 113

GNU C++ Compiler, 877

going out of scope, 111

good( ), 549

goto, 198, 202

non-local, 198

non-local goto, setjmp( ) and longjmp( ), 752

graphical user interface (GUI), 548

greater than (>), 122

greater than or equal to (>=), 122

grep, 153

Grey, Jan, 734

guaranteed initialization, 203, 371

GUI

graphical user interface, 548

guidelines

argument-passing, 303

C++ programming guidelines, 915

hack, enum, 289

handle classes, 190

handler, exception, 755

header

file, 108, 133, 134

file names, 137

file, multiple inclusion, 135

files, 159, 163, 169, 170, 220, 232

formatting standard, 136

header file insulation, 170

header files and inline definitions, 259

header files and templates, 469

importance of using a common header file, 134

new file include format, 83

portable inclusion, 137

header file, 82

examining, 105

heap, 156, 372

and C, 373

and constructor, 207

creating a string on the stack or the heap, 483

creating objects, 376

heap-only string class, 377

simple storage allocation system, 390

helper function, assembly, 305

hex, 571

hex (hexadecimal) in iostreams, 546

hex( ), 566

hexadecimal, 119, 565

hiding

implementation hiding, 185, 189

name hiding during inheritance, 408

hierarchy

object-based hierarchy, 465, 724

high-level assembly language, 130

hostile programmers, 189



955

Hutt, Andrew T.F., 67

I/O

C standard library, 565

console, 548

I/O redirection, 90

IEEE floating-point format, 108

if-else, 94

if-else statement, 127

ifstream, 107, 412, 545, 550, 553

ignore( ), 551

implementation, 134, 981

and interface, separation, 31, 178, 185

hiding, 185, 189

limits, 507

implicit type conversion, 119

in situ inline functions, 268

include

new include format, 83

INCLUDE subdirectory, 105

incomplete type specification, 181, 190

in-core formatting, 557

increment, 126

and decrement operators, 342

incrementing and enumeration, 247

overloading operator, 329

increment, 101

incremental development, 66, 419

indeterminate argument list, 131

indexOf( ), 830

inference engine, 44

inheritance, 399

and design patterns, 812

and the VTABLE, 449

choosing composition vs. inheritance, 410

class inheritance diagrams, 421

combining composition & inheritance, 404

function redefinition, 402

multiple, 425

multiple inheritance (MI), 724

multiple inheritance and run-time type
identification, 788, 792, 797

name hiding during inheritance, 408

private inheritance, 416

protected inheritance, 418

public, 402

specialization, 414

subtyping, 412

templates, 486

vs. composition, 424

initialization, 158, 245

aggregate, 209

constructor initializer list, 243, 403

guaranteed, 203, 371

initializer for a static variable of a built-in type,
277

initializers for array elements, 209

initializing const data members, 244

initializing to zero, 209

initializing with the constructor, 196

member object initialization, 403

memberwise, 316

static array, 289

static dependency, 293

static to zero, 294

initialization & cleanup, 982

initializer list, constructor, 986



956

initializing static objects, 985

initializing variables at definition, 108

inject, into namespace, 283

inline, 976, 980

and class definition, 259

and constructors, 267

and destructors, 267

and efficiency, 267

constructor efficiency, 453

definitions and header files, 259

effectiveness, 265

function, 255, 259

functions, 443

in situ, 268

limitations, 265

order of evaluation, 266

inline functions, 83

in-memory compilation, 78

in-memory formatting, 108

inner class, 826

anonymous, 852

input

line at a time, 548

inserter, 545

and extractor, overloading for iostreams, 347

instantiation, template, 468

insulation, header file, 170

int, 108

interface, 134, 981

and implementation, separation, 185

base-class interface, 433

command-line, 548

common interface, 444

expanding function interface, 229

graphical user (GUI), 548

repairing an interface with multiple inheritance,
744

separation of interface and implementation, 31,
178

internal linkage, 117, 119, 232, 234, 259, 280

interpreter, printf( ) run-time, 542

interpreters, 77

interrupt, 306

interrupt service routine (ISR), 253, 306

invalid_argument

Standard C++ library exception type, 772

iostream, 77

get(), 104

manipulators, 88

reading input, 89

Support for File Manipulation, 107

IOSTREAM.H, 550

iostreams

and global overloaded new & delete, 391

and Standard C++ library string class, 508

applicator, 576

automatic, 566

bad( ), 549

badbit, 549

binary printing, 577

buffering, 552

clear( ), 593

dec, 571

dec (decimal), 546

effectors, 577

endl, 572



957

ends, 546

eof( ), 549

eofbit, 549

error handling, 549

fail( ), 549

failbit, 549, 593

files, 548

fill character, 589

fixed, 573

flush, 546, 572

format flags, 564

formatting manipulators, 571

fseek( ), 554

get pointer, 593

get( ), 317, 551

getline( ), 551

good( ), 549

hex, 571

hex (hexadecimal), 546

ignore( ), 551

internal, 573

internal formatting data, 564

ios::app, 559

ios::ate, 559

ios::basefield, 565

ios::beg, 555

ios::cur, 555

ios::dec, 566

ios::end, 555

ios::fill( ), 567

ios::fixed, 566

ios::flags( ), 564

ios::hex, 566

ios::internal, 567

ios::left, 566

ios::oct, 566

ios::out, 559

ios::precision( ), 567

ios::right, 566

ios::scientific, 566

ios::showbase, 565

ios::showpoint, 565

ios::showpos, 565

ios::skipws, 564

ios::stdio, 565

ios::unitbuf, 565

ios::uppercase, 565

ios::width( ), 567

left, 573

limitations with overloaded global new & delete,
389

manipulators, creating, 576

newline, manipulator for, 576

noshowbase, 573

noshowpoint, 573

noshowpos, 573

noskipws, 573

nouppercase, 573

oct (octal), 546, 571

open modes, 552

overloading << and >>, 347

precision( ), 589

rdbuf( ), 553

read( ), 593

read( ) and write( ), 739

resetiosflags, 574

right, 573

scientific, 573

seekg( ), 555



958

seeking in, 554

seekp( ), 555

setbase, 574

setf( ), 564, 589

setfill, 574

setiosflags, 574

setprecision, 574

setw, 574

setw( ), 589

showbase, 573

showpoint, 573

showpos, 573

skipws, 573

tellg( ), 554

tellp( ), 554

unit buffering, 565

uppercase, 573

width, fill and precision, 567

ws, 572

istream, 545

istringstreams, 545

istrstream, 545, 557

iteration, during software development, 66

iterator, 344, 479, 482, 812

and containers, 461

Java 1.0, 812

Java 1.1, 827

reflection, 824

Java 1.2, 812

K&R C, 93

keyword

asm, for in-line assembly language, 129

bool, true and false, 109

catch, 755

operator, 323

virtual, 432

Koenig, Andrew, 258, 916

Lajoie, Josée, 109, 801

large programs, creation of, 78

late binding, 432

implementing, 436

layout, object, and access control, 184

Lee, Meng, 602

left-shift operator (<<), 124

length_error

Standard C++ library exception type, 772

less than (<), 122

less than or equal to (<=), 122

librarian, 133

libraries, creating, 133

library, 77, 79, 151

C standard I/O, 565

issues with different compilers, 215

maintaining class source, 580

Standard C function abort( ), 278

Standard C function atexit( ), 278

Standard C function exit( ), 278

Standard C++ libraries, 507

standard template library (STL), 602

library, code, 78

lifetime

object, 371

of temporary objects, 313

of variables, 201

limits, implementation, 507



959

LIMITS.H, 108, 579

line input, 548

linkage, 117, 275

alternate linkage specification, 297

controlling, 280

external, 119, 234, 280

internal, 119, 232, 234, 259, 280

no, 117, 280

type-safe, 215

linked list, 171, 189, 206

linker, 78, 79, 84, 159

collision, 170

object file order, 84

pre-empting a library function, 85

searching libraries, 84, 133

unresolved references, 84

linker, 80

Lisp, 43

list

constructor initializer, 243

constructor initializer list, 403

linked, 171, 189, 206

Lister, Timothy, 53

local

classes, 290

static object, 278

local variables, 114

localtime( ), 591

logic_error

Standard C++ library exception type, 772

logical

AND, 128

explicit bitwise and logical operators, 129

NOT (!), 126

operators, 122, 342

OR, 128

long, 110

long double, 119

longjmp( ), 198, 752

loop, for, 201

Love, Tom, 53

lvalue, 120, 238

machine instructions, 77

macro

argument, 256

preprocessor, 122, 135, 255

preprocessor macros for parameterized types,
instead of templates, 466

macro, preprocessor, 975

magic numbers, 231

main( )

executing code after exiting, 279

executing code before entering, 279

main(), 86

maintaining class library source, 580

make, 146, 147

built-in macros, 150

continuing lines which are too long, 150

dependencies, 147

macros, 148

rules, implicit rules, inference rules, 149

make

target, 150

malloc( ), 157, 373, 374, 376, 495, 561



960

and free( ), interaction with new and delete, 381

and time, 376

mangling, name, 160, 166, 214, 297

manipulator, 546

creating, 576

iostreams formatting, 571

mathematical operators, 120

McKee, Robert, 54

member, 979

calling a member function, 167

const, 986

const member function, 243

const member functions, 247

defining storage for static data member, 287

friend function, 180

functions, calling, 980

initializing const data members, 244

member function selection, 164

member function template, 500

member object initialization, 403

member selection operator, 166

overloaded member operator, 324

pointers to members, 317

static, 984, 995

static data member, 359

static data member inside a class, 287

static member function, 253, 311

static member functions, 291

vs. non-member operators, 347

member function, friend, 994

memberwise

assignment, 360

initialization, 316

memberwise const, 250

memcpy( ), 156

memory

a memory allocation system, 495

allocation, 387

dynamic allocation, 372

dynamic memory allocation, 156

exhausting heap, 391

management, reference counting, 353

memory manager overhead, 376

read-only (ROM), 251

simple storage allocation system, 390

memory formatting, 108

memset( ), 245

message, 980

message, sending, 167, 436

method, 980

polymorphic method calls, 820

recursive method calls, 827

methodology, software development, 62

Meyers, Scott, 915

MI

multiple inheritance, 724

minimum size of a struct, 169

mistakes, and design, 192

modeling problems, 166

modes, iostream open, 552

modifying members of a const object, 998

modulus, 120

modulus operator, 591

monolithic, 724

Mortensen, Owen, 319



961

multiple dispatching, 837

multiple inclusion of header files, 135

multiple inheritance, 425, 724

ambiguity, 727

and exception handling, 776

and run-time type identification, 788, 792, 797

and upcasting, 734

avoiding, 744

diamonds, 727

duplicate subobjects, 726

most-derived class, 730

overhead, 733

pitfall, 740

repairing an interface, 744

upcasting, 727

virtual base classes, 728

virtual base classes with a default constructor,
731

multiplication, 120

multitasking and volatile, 252

Murray, Rob, 349, 915

mutable, 805

bitwise vs. memberwise const, 250

mutators, 261

naked pointers, and exception handling, 766

name

clashes, 160

decoration, 166, 214

file, 146

hiding, during inheritance, 408

mangling, 160, 166, 214, 297

mangling, no standard for, 215

named constant, 117

namespace, 281, 579

aliasing, 282

ambiguity, 285

continuation, 282

injection, 283

overloading and using declaration, 286

referring to names in, 283

unnamed, 283

using, 283

using declaration, 286

narrowing conversions, 804

needless recompilation, 189

nested

class, 290

friends, 182

structures, 171

nested scopes, 112

network programming

CGI POST, 881

CGI programming in C++, 877

connecting Java to CGI, 875

crash course in CGI programming, 875

new, 127, 561

and delete for arrays, 385

and delete, interaction with malloc( ) and free( ),
381

new-expression, 374, 387

new-handler, 386, 391

operator, 374

operator new and constructor, out of memory, 394

operator new placement specifier, 395

operator, exhausting storage, 386

overloaded, can take multiple arguments, 395

overloading array new and delete, 764



962

overloading global new and delete, 388

overloading new and delete, 387

overloading new and delete for a class, 389

overloading new and delete for arrays, 392

placement syntax, 765

vs. realloc( ), 380

newInstance( ), reflection, 827

newline, 576

no linkage, 117, 280

non-local goto, 198

setjmp( ) and longjmp( ), 752

not equivalent (!=), 122

not, ! (logical NOT), 129

not_eq, != (logical not-equivalent), 129

notifyObservers( ), 815, 817

nuance, and overloading, 213

null references, 791

NULL references, 300

numerical operations

efficiency using the Standard C++ Numerics
library, 509

object, 28, 79, 166

address of, 181

const member functions, 247

creating a new object from an existing object, 308

creating on the heap, 376

definition point, 196

destruction of static, 278

global constructor, 278

going out of scope, 111

layout, and access control, 184

lifetime, 371

local static, 278

object-based, 167

object-based C++, 430

object-based hierarchy, 465, 724

object-maker function, 931

object-oriented database, 737

object-oriented programming, 166, 782

passing and returning large, 304

size, 376

size, non-zero forcing, 438

slicing, 448, 451

slicing, and exception handling, 770, 771

static initialization dependency, 293

temporary, 240, 313, 579

thinking about, 980

volatile, 999

Object, 820

object module, 79, 80

object-oriented

analysis & design, 62

object-oriented programming, 978

Observable, 815

Observer, 815

observer design pattern, 814

oct, 571

octal, 119

off-by-one error, 209

ofstream, 108, 545, 550

as a static object, 279

ones complement operator, 123

OOP, 185

summarized, 167

open modes, iostreams, 552



963

operator, 120

( ), function call, 344

[], 343, 379, 468, 769

++, 329

<<, 545

<< overloading to use with ostream, 376

=, 340, 409

= behavior of, 351

= vs. copy-constructor, 350

=, automatic creation, 360

=as a private function, 361

-> smart pointer, 344

->*, 344

>>, 545

and bool, 109

assignment, 341

binary, 123

binary overloaded, 324

binary overloading examples, 330

bitwise, 123

C & C++, 100

casting, 128

choosing between member and non-member
overloaded, guidelines, 349

comma, 127, 343

common pitfalls, 128

different kind of function call, 122

dot, 980

explicit bitwise and logical operators, 129

fan-out in automatic type conversion, 367

friend, 991

global overloaded, 324

global scope resolution, 174

increment and decrement, 342

logical, 122, 342

member selection, 166

member vs. non-member, 347

modulus, 591

new, 374

new placement specifier, 395

new, exhausting storage, 386

new-expression, 374

no exponentiation, 347

no user-defined, 347

ones-complement, 123

operator overloading sneak preview, 544

operators you can’t overload, 347

overloaded member function, 324

overloaded return type, 325

overloading, 86, 103, 299, 323

overloading, arguments and return values, 341

overloading, check for self-assignment, 340

overloading, which operators can be overloaded,
325

postfix, 126

postfix increment & decrement, 329

precedence, 101

prefix, 126

prefix increment & decrement, 329

relational, 122

scope resolution, 173, 988, 996

scope resolution operator for calling base-class
functions, 403

shift, 124

sizeof, 129

ternary, 127

type conversion overloading, 363

unary, 123, 126

unary overloaded, 324

unary overloading examples, 325



964

unusual overloaded, 343

optimizer

global, 79

peephole, 79

volatile and, 999

OR, 128

OR (||), 122

or, || (logical OR), 129

or_eq, |= (bitwise OR-assignment), 129

order

for access specifiers, 179

of constructor and destructor calls, 406, 790

of constructor calls, 454

order of overloading, 135

organization

code, 170

code in header files, 169

ostream, 545, 551

overloading operator<<, 376

ostringstreams, 545

ostrstream, 545, 557, 583

out_of_range

Standard C++ library exception type, 772

output

stream formatting, 563

strstreams, 559

overflow_error

Standard C++ library exception type, 772

overhead

assembly-language code generated by a virtual
function, 440

exception handling, 778

function call, 259

memory manager, 376

multiple inheritance, 733

size overhead of virtual functions, 437

overhead, function call, 976

overloading, 87

<< and >> for iostreams, 347

and typedef, 109

and using declaration, namespaces, 286

array new and delete, 764

choosing between members and non-members,
guidelines, 349

fan-out in automatic type conversion, 367

function, 977

function call operator( ), 344

global new and delete, 388

global operators vs. member operators, 364

new & delete, 387

new and delete for a class, 389

new and delete for arrays, 392

on return values, 215

operator, 299

operator overloading reflexivity, 364

operator++, 329

operator<< to use with ostream, 376

operator->* (pointer-to-member), 344

operators you can’t overload, 347

order, 135

overload keyword, 980

pitfalls in automatic type conversion, 367

smart pointer operator->, 344

which operators can be overloaded, 325

overriding, 432

overview, chapters, 18



965

ownership, 416, 474, 482

container, 377

package, 820

pair template class, 508

paralysis, analysis, 55

parameterized type, 839

Park, Nick, 500

parsing, 79

parse tree, 79

Pascal, 44, 93, 130, 132, 199

pass by reference, 103

pass by value, 103

passing

and returning addresses, 237, 240

and returning by value, C, 303

and returning large objects, 304

by value, 299, 453

objects by value, 237

temporaries, 242

passing arguments, 992

paths, directory, 155

patterns, design, 74

patterns, design patterns, 811

perror( ), 752

persistence, 740

persistent object, 737

pipes, 105

pitfalls

in automatic type conversion, 367

in multiple inheritance, 740

placement

operator new placement specifier, 395

planning, software development, 63

Plauger, P.J., 53

Plum, Tom, 268, 915

point, sequence, 196, 202

pointer, 117, 127, 189, 299, 977, 992

and const, 235

finding exact type of a base pointer, 782

in classes, 352

making it look like an array, 386

pointer references, 302

pointer to a function, 762

smart pointer, 482

stack, 203

to member, 317, 499

void, 377, 379, 382

polymorphism, 457, 494, 793, 820, 834, 853

and containers, 491

polymorphic function call, 437

portable inclusion of header files, 137

POST, 875

CGI, 881

postfix operator, 126

postfix operator increment & decrement, 329

precision

width, fill, iostream, 567

precision( ), 589

prefix operator, 126

prefix operator increment & decrement, 329

preprocessor, 79, 83, 117

and scoping, 258

debugging flags, 142



966

define, 136

directives, 79

directives #define, #ifdef and #endif, 135

macro, 975

macros, 122, 135, 255

problems with, 256

string concatenation, 269

stringizing, 269, 569

token pasting, 269

value substitution, 231

preventing automatic type conversion with the
keyword explicit, 362

printf( ), 542, 563

error code, 751

run-time interpreter, 542

private, 31, 137, 178, 979, 990

constructor, 813

copy-constructor, 316

private inheritance, 416

problem space, 28

procedural language, 93

procedure

Pascal, 130

process, 252

program structure, 86

programmer, client, 30, 177

programming, object-oriented, 782, 978

project building tools, 146

Prolog, 44

promotion, 159

protected, 179, 417, 478, 800

inheritance, 418

prototype, 824

design pattern, 832

function prototype, 152

prototyping, 130

pseudoconstructor, for built-in types, 382, 404

public, 31, 137, 178, 979, 991

inheritance, 402

pure

abstract base classes and pure virtual functions,
444, 445

virtual function definitions, 448

push-down stack, 189

put pointer, 554

put()

iostream function, 108

putc( ), 258

qualifier, c-v, 253

raise( ), 752

rand( ), 591

RAND_MAX, 591

range_error

Standard C++ library exception type, 772

rapid development, 489

raw, reading bytes, 549

rdbuf( ), 553

read( ), 549, 593

iostream read( ) and write( ), 739

reading raw bytes, 549

read-only memory (ROM), 251

realloc( ), 157, 227, 373, 376, 495

vs. new, 380

recursion, 306



967

recursive

method calls, 827

re-declaration of classes, preventing, 135

reducing recompilation, 189

re-entrant, 306

reference, 117, 299, 300, 992

and efficiency, 303

and exception handling, 769, 776

and run-time type identification, 791

const, 301, 341

external, 159

for functions, 300

NULL, 300

null references, 791

passing const, 317

pointer, 302

reference counting, 353, 474

rules, 300

reflection, 827

Java 1.1 reflection, 824

reflexivity, in operator overloading, 364

register, 281

register variables, 114

reinterpret_cast, 801, 805

relational operators, 122

reporting errors in book, 25

requirements analysis, 63

resolution

global scope, 174

scope, 191

scope resolution operator, 173

resolving references, 79

resumption, 759

termination vs. resumption, exception handling,
756

re-throwing an exception, 760

return

by value as const, 342

constructor return value, 197

efficiency when creating and returning objects,
342

operator overloading arguments and return
values, 341

overloaded operator return type, 325

overloading on return values, 215

passing and returning by value, C, 303

passing and returning large objects, 304

return by value, 299

return value semantics, 241

returning by const value, 238

returning references to local objects, 301

RETURN

assembly-language, 305

return value, void, 132

returning a value from a function, 131

reuse

code reuse, 399

source code reuse with templates, 467

right-shift operator (>>), 124

Rogue Wave, 503

ROM

read-only memory, 251

ROMability, 251

root, 776

rotate, 124

RTTI



968

eliminating from your design, 836

misuse of RTTI, 821, 833, 850

run-time type identification (RTTI), 451

Rumbaugh, James, 70

run-time binding, 432

run-time debugging flags, 143

run-time interpreter for printf( ), 542

run-time type identification, 451, 507, 740, 781

and efficiency, 794

and exception handling, 782

and multiple inheritance, 788, 792, 797

and nested classes, 787

and references, 791

and templates, 789

and upcasting, 782

and void pointers, 789

bad_cast, 791

bad_typeid, 792

before( ), 783

building your own, 797

casting to intermediate levels, 788

difference between dynamic_cast and typeid( ),
789

dynamic_cast, 783

mechanism & overhead, 797

misuse, 793

RTTI, abbreviation for, 782

shape example, 781

typeid( ), 782

typeid( ) and built-in types, 786

typeinfo, 782, 797

type-safe downcast, 783

vendor-defined, 782

VTABLE, 797

when to use it, 793

without virtual functions, 782, 787

run-time, access control, 189

runtime_error

Standard C++ library exception type, 772

rvalue, 120

Saks, Dan, 268, 915

saving space, 976

scheduling, software development, 64

Schwarz, Jerry, 294, 577

scope, 198, 376

file, 118, 280

of static member initialization, 288

resolution, 191

resolution operator, 162, 173, 996

resolution operator \:\:, 988

resolution operator, for calling base-class
functions, 403

resolution, global, 174

scoping, 111

and storage allocation, 372

and the preprocessor, 258

consts, 233

security, 189

sed, 579

seekg( ), 555

seeking in iostreams, 554

seekp( ), 555

selection, member function, 164

self-assignment

check for in operator overloading, 340

semantics, return value, 241



969

sending a message, 167, 436

separate compilation, 78, 134, 146

separate compilation, 80

separation of interface & implementation, 178

separation of interface and implementation, 31,
185

sequence point, 196, 202

serialization, 591

and persistence, 737

set

STL set class example, 602

set_new_handler, 507

set_terminate( ), 761

set_unexpected( )

exception handling, 757

setChanged( ), 817

setf( ), iostreams, 564, 589

setjmp( ), 198, 752

setw( ), 589

shape

example, 925

example, and run-time type identification, 781

hierarchy, 458

shift operators, 124

short, 110

side effect, 120, 126

signal( ), 752, 773

signed, 110

simple file manipulation, 90

Simula-67, 166, 185

simulating virtual constructors, 925

single-precision floating point, 108

singleton, 812

size

object, 376

of a struct, 168

of object, nonzero forcing, 438

size_t, 388

sizeof, 168, 740

storage, 154

size, built-in types, 108

sizeof, 129

slicing

object slicing, 451

object slicing and exception handling, 770, 771

Smalltalk, 28, 79, 464, 724

smart pointer operator->, 344, 482, 494

software development, process, 62

sort

bubble sort, 489

source-level debugger, 78

spaces in input, 103

specialization, 414

template specialization, 501

specification

exception, 756

incomplete type, 181, 190

system specification, 63

specifier

access, 178

access specifiers, 31

order for access, 179

specifiers, 110



970

specifying storage allocation, 113

stack, 171, 203, 372

a string class on the stack, 483

function-call stack frame, 305

pointer, 275

push-down, 189

stash and stack as templates, 474

standard

Standard C, 24

Standard C++, 24

Standard C++ libraries

algorithms library, 508

bit_string bit vector, 508

bits bit vector, 508

complex number class, 509

containers library, 508

diagnostics library, 507

general utilities library, 508

iterators library, 508

language support, 507

localization library, 508

numerics library, 509

standard exception classes, 507

standard library exception types, 771

standard template library (STL), 602

string class, 545

strings library, 508

standard for each class header file, 136

standard input, 89

standard library, 85

standard output, 86

standard template library

operations on, with algorithms, 508

set class example, 602

startup module, 85

stash

stash and stack as templates, 474

state, 980

stateless, 980

static, 115, 275, 980

array initialization, 289

class members, 984

const inside class, 290

data area, 275

data member, 359

data members inside a class, 287

defining storage for static data members, 287

destruction of objects, 278

downcast, 804

file, 281

initialization dependency, 293

initialization to zero, 294

initializer for a variable of a built-in type, 277

local object, 278

member function, 253, 311, 995

member functions, 291

object, initializing, 985

storage, 275

storage area, 372

storage area, and strings, 223

variables inside functions, 275

static type checking, 79

static_cast, 801, 802

stdio, 539

STDIO.H, 550

Stepanov, Alexander, 602



971

STL

C++ Standard Template Library, 877

standard template library, 602

storage

allocation, 202

auto storage class specifier, 281

defining storage for static data members, 287

extern storage class specifier, 280

register storage class specifier, 281

running out, 386

simple allocation system, 390

sizes, 154

static, 275

static area, 372

static storage class specifier, 280

static, and strings, 223

storage allocation functions for the STL, 508

storage class, 280

storing type information, 437

str( ), strstream, 561

stream, 545

output formatting, 563

streambuf, 553

and get( ), 554

streampos, moving, 554

stricmp( ), non-Standard C function, 485

string, 87

a string class on the stack, 483

constants, 223

heap-only string class, 377

literals, 237

preprocessor string concatenation, 269

Standard C++ library string class, 508, 545

string class example, 365

transforming character strings to typed values,
558

turning variable name into, 143

String

indexOf( ), 830

substring( ), 830

trim( ), 830

string concatenation, 89

string.h, 106

stringizing, 143

stringizing, preprocessor, 269, 569

strlen(), 106

strncpy( )

Standard C library function strncpy( ), 764

strongly typed language, 299

Stroustrup, Bjarne, 16, 23, 294, 466

strstr( ), 584

strstream, 412, 557, 584

and Standard C++ library string class, 508

automatic storage allocation, 560

ends, 559

freezing, 561

output, 559

str( ), 561

user-allocated storage, 557

zero terminator, 559

strstream.h, 108

strtok( )

Standard C library function, 650

strtok(), 106

struct



972

minimum size, 169

size of, 168

struct, 137

structural design patterns, 814

structure

aggregate initialization and structures, 210

C, 166

declaration, 181

declaring, 170

friend, 180

nested, 171

redeclaring, 170

subobject, 400, 402, 403, 410

duplicate subobjects in multiple inheritance, 726

substitution, value, 231

substring( ), 830

subtraction, 120

subtyping, 412

sugar, syntactic, 323

switch, 99, 202

system specification, 63

system() function, 90

tag name, 154

tellg( ), 554

tellp( ), 554

template

and header files, 469

and inheritance, 486

and multiple definitions, 470

and run-time type identification, 789

argument list, 471

C++ Standard Template Library (STL), 877

constants in templates, 472

container class templates and virtual functions,
494

controlling instantiation, 500

creating specific template types, 501

function templates, 494

generated classes, 468

in C++, 841

instantiation, 468

member function template, 500

preprocessor macros for parameterized types,
instead of templates, 466

preventing template bloat, 489

requirements of template classes, 488

specialization, 501

standard template library (STL), 602

stash and stack as templates, 474

temporary

object, 240, 313, 579

passing a temporary object to a function, 242

temporary objects and function references, 302

terminate( ), 507

uncaught exceptions, 760

termination

vs. resumption, exception handling, 756

terminator

zero for strstream, 559

ternary operator, 127

text analysis, 106

thinking about objects, 980

this, 164, 250, 291, 313, 374, 440, 989, 995

throwing an exception, 754

time, Standard C library, 264



973

token pasting, preprocessor, 269

toupper( ), 580

unexpected results, 258

trace information, adding to program, 356

transforming character strings to typed values,
558

translation unit, 159, 293

trim( ), 830

true, 122, 126, 128, 136

true and false in C, 93

true and false, bool, 109

try block, 755

tuple-making template function, 508

type

automatic type conversion, 361

automatic type conversions and exception
handling, 770

basic built-in, 108

built-in types and typeid( ), run-time type
identification, 786

checking, 117

conversion, 159

distinct data types, 223

finding exact type of a base pointer, 782

function type, 265

implicit conversion, 119

improved type checking, 165

incomplete type specification, 181, 190

new cast syntax, 801

parameterized type, 839

preventing automatic type conversion with the
keyword explicit, 362

run-time type identification (RTTI), 451, 781

storing type information, 437

type checking for enumerations, 247

type checking for unions, 247

type-safe downcast in run-time type
identification, 783

type-safe linkage, 215

type checking, 79

dynamic, 79

static, 79

type-check coding, 821

type-checking, 81

typedef, 161

and overloading, 109

typeid( )

and built-in types, run-time type identification,
786

and exceptions, 792

difference between dynamic_cast and typeid( ),
run-time type identification, 789

run-time type identification, 782

typeinfo

run-time type identification, 782

structure, 797

TYPEINFO.H, 790

ULONG_MAX, 579

UML, Unified Modeling Language, 64

unary

examples of all overloaded unary operators, 325

minus (-), 126

operator, 123

operators, 126

overloaded unary operators, 324

plus (+), 126

uncaught exceptions, 760

unexpected( ), 507



974

exception handling, 757

union

anonymous at file scope, 142

saving memory with, 139

unions, additional type checking, 247

unit buffering, iostream, 565

Unix, 147, 579

unnamed arguments, 131

unnamed namespace, 283

unsigned, 110

untagged enum, 245

untagged enumeration, 987

unusual operator overloading, 343

upcasting, 419, 430, 436, 820

and multiple inheritance, 727, 734

and run-time type identification, 782

by value, 442

Urlocker, Zack, 749

use case, 64

user-defined data type, 108

user-defined type, 93

user-defined types, 167

using

declaration, for namespaces, 286

keyword, namespaces, 283

using iostreams, 86

using libraries, 84

value

preprocessor value substitution, 231

transforming character strings to typed values,
558

values, minimum and maximum, 108

variable

automatic, 117

defining, 112

file scope, 115

global, 113

going out of scope, 111

initializer for a static variable of a built-in type,
277

lifetime of variables, 201

local, 114

point of definition, 199

register, 114

turning name into a string, 143

variable argument list, 543

variable argument list, 131

variable declaration syntax, 82

variance, 916

vector

bit vector, 221

Vector, 820

vector of change, 66, 812, 824, 853

vendor-defined run-time type identification,
782

virtual

abstract base classes and pure virtual functions,
444

adding new virtual functions in the derived class,
449

and efficiency, 443

and late binding, 436

assembly-language code generated by a virtual
function, 440

behavior of virtual functions inside constructors,
454

destructor, 478, 494



975

destructors and virtual destructors, 455

function, 430, 494

function overriding, 432

keyword, 432

picturing virtual functions, 438

pure virtual function definitions, 448

run-time type identification without virtual
functions, 782, 787

simulating virtual constructors, 925

size overhead of virtual functions, 437

virtual base classes, 728

virtual base classes with a default constructor,
731

virtual function calls in destructors, 457

virtual functions inside constructors, 453, 925

virtual keyword in derived-class declarations, 444

virtual memory, 374

visibility, 275

visitor pattern, 844

void, 132

argument list, 131

casting void pointers, 164

pointer, 154, 299, 377, 379, 382

void pointers and run-time type identification,
789

volatile, 120, 252

casting away const and/or volatile, 802

member functions, 996

objects and member functions, 999

vpointer, abbreviated as VPTR, 436

VPTR, 436, 439, 441, 453, 455, 740, 926

installing by constructor, 441

VTABLE, 436, 439, 441, 445, 450, 453, 455,
926

and run-time type identification, 797

inheritance and the VTABLE, 449

Waldrop, M. Mitchell, 53

while, 95

wild-card, 55

Wirfs-Brock, Rebecca, 69

wrapping, class, 539

write( ), 549

iostream read( ) and write( ), 739

ws, 572

XOR, 123

xor, ^ (bitwise exclusive-OR), 129

xor_eq, ^= (bitwise exclusive-OR-assignment),
129

zero terminator, strstream, 559



corrections suggested:

Subj: Error in STRFILE.CPP

Date: 96-08-28 20:09:27 EDT

From: todd@heaven.com (Todd Stephan)

To: eckel@aol.com

// File from page 215 in "Thinking in C++" by Bruce Eckel
//////////////////////////////////////////////////
// STRFILE.CPP -- Stream I/O with files
// The difference between get() & getline()
#include <fstream> // Includes iostream.h
#include <assert.h>
#define SZ 100 // Buffer size
main() {
 char buf[SZ];
 {
  ifstream in("strfile.in"); // Read
  assert(in); // Ensure successful open
    ofstream out("strfile.out"); // Write
    assert(out);
    int i = 1; // Line counter
    char ch;
    // A less-convenient approach for line input:
    while(in.get(buf, SZ)) { // Leaves \n in input
      // ********************************************
      // ERROR: get may have returned on SZ-1 characters,
leaving data, not \n
      // ********************************************
      cout << buf;
      ch = in.get();
      cout << ch;  // output next char, newline or not
      // File output just like standard I/O:
      out << i++ << ": " << buf << ch;
    }

Subj: Thinking in C++

Date: 96-08-30 17:58:28 EDT

From: tdsulli@sandia.gov (Thomas D. Sullivan)

Sender: tdsulli@raptor.sandia.gov

To: eckel@aol.com



977

Bruce,

I have downloaded the May ?? revision of code from oak.oakland.edu.

I believe that there are some logical errors in some of the code. The code compiles okay but
might not produce the desired results.

For example on page 164

for(int i = 0; i < StringStash.count() ; i++)
  printf(".....%s",i,(char(*)StringStash.fetch(i++));

With the autoincrement of i in the fetch call not all of the stashed

strings will be printed. Ever otherone stored will be skipped. But code will compile and run!

Next example is on page 191

BitVector::BitVector(char* binary){
  Bits = strlen(binary);
  numBytes = Bits / CHAR_BIT;
// If....
  if ( Bits % CHAR_BIT) numBytes++;
  bytes = (unsigned char*)calloc(numBytes, 1);

My understanding of strlen is that is returns the number of bytes in a string and not the
number of bits.

Revised code

BitVector::BitVector(char* binary) {
  numBytes = strlen(binary);
  Bits = numBytes * CHAR_BIT;
  bytes = (unsigned char*)calloc(numBytes, 1);

I am taking a class in C++ at my company and have gotten as far as chapter 4. As I progress
in the class I will be on the lookout for more such ERRORS.

Unique Features of C++
Functions
C++ functions have a number of improvements over C functions, designed to make them
easier to program and use.

Inline Functions
The preprocessor macro function introduced earlier in this chapter for the MATHOPS
program saves typing, improves readability, reduces errors and eliminates the overhead of a
function call. Preprocessor macro functions are popular in C, but they have the drawback that
they are not «real» functions, so the usual error checking doesn't occur during compilation.



978

C++ encourages (sometimes even requires) the use of small functions. The programmer
concerned with speed, however, might opt to use preprocessor macros rather than functions to
avoid the overhead of a function call. To eliminate the cost of calls to small functions, C++
has inline functions. These functions are specified with the inline keyword:

inline int one( ) { return 1; }

Notice the definition accompanies the inline keyword. When the compiler encounters an
inline definition, it doesn't generate code as it does with an ordinary function definition.
Instead, it remembers the code for the function. In an inline function call, (which looks like a
call to any other function), the compiler checks for proper usage as it does with any function
call, then substitutes the code for the function call. Thus, the efficiency of preprocessor
macros is combined with the error-checking of ordinary functions.

The inline function is another tough nut when it comes to terminology. Because the body of
the function doesn't actually reserve any storage for the function code, it is tempting to call it
a declaration rather than a definition. Indeed, you cannot «declare» an inline function in the
usual sense. In the «declaration»:

inline int one( );

the inline keyword has no effect — it does the compiler no good to know that a function is an
inline if it doesn't have the code to substitute when it encounters a function call. inline
function definitions must occur before they are used just like ordinary function declarations.
Generally, this is accomplished by putting the inline function definition in a header file. There
is nothing else that could be called a definition other than the place where the function body
is, so it is called a definition.

Saving space
Because an inline function duplicates the code for every function call, you might think it
automatically increases code space. For small functions (which inlines were designed for) this
isn't necessarily true. Keep in mind that a function call requires code to pass arguments and to
handle the return value; this code isn't present for an inline. If your inline function turns out to
be smaller than the amount of code necessary for arguments and the return value, you are
actually saving space. In addition, if the inline function is never called, no code is ever
generated. With an ordinary function, code for that function is there (only once) whether you
call it or not.

The inline keyword is actually just a hint to the compiler. The compiler may ignore the inline
and simply generate code for the function someplace.

inline abuse
A big advantage to inline functions is that they save a lot of typing — your function is
declared and defined in one place. The code is often clearer to the reader, as well. The result is
often an abuse of inline functions; they are used because they are easier and clearer rather
than because they are faster. This abuse is most rampant in (of all places) articles and books
on programming in C++. As you will see, some projects in this book push the boundaries of
good sense when using inlines.



979

You may wonder what the problem is. The C++ compiler must remember the definition for
the inline function, rather than simply compiling it and moving on as with an ordinary
function. Inline functions can take up a lot more space than the other items a compiler must
remember — enough space, in fact, to crash some implementations of C++ (This rarely
happens anymore because of the use of better memory-management techniques in compilers,
and the low cost of RAM).

The speed benefits of inline functions tend to diminish as the function grows in size. At some
point the overhead of the function call becomes small compared to the execution of the
function body, and the benefit is lost.

C++ function overloading
C++ introduces the concept of function overloading. This means you can call the same
function name in a variety of ways, depending on your needs. An overloaded print( ) function
might be able to handle floats, ints and strings:

print(3.14);
print(47);
print("this is a string");

Here, the function name print is overloaded with several different meanings.

The most useful place to overload functions is in classes, as we shall see later. You can also
overload ordinary functions by using the overload keyword in earlier releases of the language.
The keyword is still available, but obsolete, in modern releases of C++. You may still see it in
old code, but you should never use it.

The overload keyword is placed before any of the function declarations:

overload print; // Warn C++ we are overloading this name
void print(float);
void print(int);
void print(char*); // For strings; see chapter 4

In the last declaration, you see a new type of argument: char*. The «*» indicates that this
argument isn't an actual argument, but instead a pointer to the argument. Pointers are
discussed in detail in Chapter 4, but they are such an integral part of C & C++ that a brief
introduction is necessary here. A pointer is a variable that holds the address of another
variable. Because you don't know how long a string is at compile time, the compiler can't
know how to pass the string to the print( ) function. If we tell print( ) «where the string
lives» by passing the address, the function can figure out for itself where to get the characters
in the string and how long the string is (at run-time, instead of compile-time).

Distinguishing overloaded functions
For the compiler to tell the difference between one use of the function and another, each time
the function is overloaded it must have a unique set of arguments. These can even be the same
arguments, as long as the order is different:



980

//: C03:Overload.cpp
// Same parameters, different order
#include <iostream>
using namespace std;

void print(int x, char c) {
  cout << "first function : int, char" << endl;
}

void print(char c, int x) {
  cout << "second function : char, int" << endl;
}

int main() {
  int i = 0;
  char c = 'x';
  print(i,c);
  print(c,i);
} ///:~

Overloading functions and operators is covered in detail in Chapter 5. Improvements to
overloading are described in Chapter 11.

Is overloading "object-oriented?"
Object-Oriented programming can be perceived as one more step in the long process of
shifting the petty details of managing a program from the programmer onto the computer. The
motto might be: «let the programmer think more about the design, and let the computer
handle more of the implementation.» If you use this rather generous interpretation, then any
construct that allows the programmer to fire off a message and let the system figure out what
to do with the message is an object-oriented feature. Function overloading allows you to use
the same message name with different arguments and the compiler figures out how to handle
it. You don't have to remember as many message names — you do less work, the computer
does more work, so it's object-oriented, right?

It depends. Much of the history of object-oriented programming happened in an interpreted
environment, where all messages are resolved during program execution. Resolving messages
at compile-time rather than run-time is not considered an object-oriented feature if you come
from this background.

Resolving all messages at run-time introduces a lot of overhead to the system. In addition, the
compiler can't do static type-checking (and error detection). Both these drawbacks are counter
to C++'s design philosophy.

Whether function overloading is object-oriented really depends upon where you draw the
boundary. If you are willing to be casual and say «I write the code and the computer takes
care of it. I don't care how» then function overloading is object-oriented. If you insist that all



981

messages must be resolved at run-time then function overloading (as well as many other
implementation details of C++) isn't object-oriented.

Default arguments
C++ functions may have default arguments, which are substituted by the compiler if you don't
supply your own. Default arguments are specified in the function declaration:

void foo(int i = 0);

You can now call the function as foo( ) (which is the same as foo(0)) or foo(47). Default
arguments seem like function overloading to the client programmer. Note that the variable
name i is optional in the declaration, even with default arguments.

You can have more than one default argument in a list, but all the default arguments must be
at the end of the list:

void foo2(int q, int r, int u = 4, int v = 5, int w = 6);

The class: defining boundaries
Now you know enough about data types, operators and functions to understand the creation of
the central construct for object-oriented programming in C++: the class. Pre-defined classes
were used in the last chapter, and now you can start defining your own classes.

A class is a way to package associated pieces of data together with functions that operate on
that data. It allows you to hide data and functions, if desired, from the general purview. When
you create a class, you are creating a new type of data (an abstract data type) and the
operations for that type. It is a data type like a float is a data type. When you add two floats,
the compiler knows what to do. A class definition «teaches» the compiler what to do with
your new data type.

A class definition consists of the name of the class followed by a body, enclosed in braces,
followed by a semicolon (remember the semicolon —leaving it off causes strange errors). The
class body contains variable definitions and function declarations. These variables and
functions are an intimate part of the class, only used in association with an object belonging to
that class. Although the variable definitions look like the ordinary definitions of local
variables inside a function, no storage is allocated for them until a variable (object) of the
class type is created. When this happens, all the storage for the variables is allocated at once,
in a clump.

The variables and functions (collectively called members) of a class are normally hidden from
the outside world — the user cannot access them. These variables and functions are called
private. You make the privacy explicit with the private keyword; members in a class default
to private. To allow the client programmer access to members, use the public keyword.

Here's a simple class definition:

class Nurtz {



982

 int i; // Default to private
public: // Everything past here is public
 void set(int v) { i = v; } // inline function
 int read() { return i; } // inline function
};

Class Nurtz has three members: the data item i and two functions. You can only change the
value of i by calling the member function set( ); you can only read it by calling the member
function read( ). set( ) and read( ) are sometimes called access functions, since their sole
purpose is to provide access to the private data. It is important to remember that only member
functions (and friend functions, described later) may read or change the values of private
variables.

As you can see, set( ) and read( ) are inline functions, but the inline keyword isn't used!
Because a class is so unique, the compiler doesn't need any hints to know that a function is
inline. You can also overload functions inside a class without using the overload keyword
(you've always been able to do this, but overload is now obsolete).

To create and use some variables (objects) of class Nurtz, you define them just like you define
any other variables:

Nurtz A, B, C;

To use the objects, you call member functions using a dot:

A.set(2);
int q = A.read();

Member functions are not like ordinary functions — you can only call them in association
with an object.

Thinking about objects
You can think of an object as an entity with an internal state and external operations. The
«external operations» in C++ are member functions. The functions that execute the messages
in an object-oriented language are called methods. Messages are the actual function calls. The
concept of state means an object remembers things about itself when you are not using it. An
ordinary C function (one without any static variables) is stateless because it always starts at
the same point whenever you use it. Since an object has a state, however, you can have a
function that does something different each time you call it. For example:

//: C03:State.cpp
// A state-transition class
#include <iostream>
using namespace std;

// See "enum" defined later in this chapter for a better
// way to do this:
const idle = 0;
const pre_wash = 1;



983

const spin1 = 2;
const wash = 3;
const spin2 = 4;
const rinse = 5;
const spin3 = 6;
class WashingMachine {
  int current_cycle;
 public:
  void start() { current_cycle = idle; }
  void next();
};
void WashingMachine::next() {
  switch(current_cycle) {
    case idle : current_cycle = pre_wash; break;
    case pre_wash  : current_cycle = spin1; break;
    case spin1 : current_cycle = wash; break;
    case wash: current_cycle = spin2; break;
    case spin2 : current_cycle = rinse; break;
    case rinse: current_cycle = spin3; break;
    case spin3 : current_cycle = idle; break;
    default : current_cycle = idle;
  }
  cout << "current_cycle = " << current_cycle << endl;
}
int main() {
  WashingMachine WM;
  WM.start();
  for (int i = 0; i < 7; i++)
    WM.next();
} ///:~

The state variable WM shows a washing machine going through all its cycles, one for each
time you call next( ).

Design benefits
One of the design benefits of C++ is that it separates the interface from the implementation.
The interface in C++ is the class definition. The interface says: «here's what an object looks
like, and here are the methods for the object.» It doesn't specify (except in the case of inline
functions) how the methods work. The implementation shows how the methods work, and
consists of all the member function definitions. While the interface must have been seen by
the compiler anyplace you use the class, the implementation can only exist in one spot. If, at
some point in the future, the programmer wishes to improve the implementation, it doesn't
disturb the interface or all the code compiled using the interface. The implementation can be
changed, and the whole system re-linked (only the implementation code must be re-



984

compiled). Assuming the interface is well-planned, code changes are very isolated, which
prevents the propagation of bugs.

In a similar vein, you can design and code the interface and delay writing the implementation
code. The interface is used as if the implementation code exists («only the linker knows for
sure»). This means you can make the equivalent of a «rough sketch» of your system and
check to see that everything fits together properly by compiling all the modules that use the
interface.

Declaration vs. definition (again)
Although Standard C has established a clear picture of «declaration» and «definition» for C,
with the C++ class it again grows fuzzy. It can be argued that a class description reserves no
storage (except in the case of static members) and it is really just a model of a new data type
and not an actual variable, so it should be called a declaration.

The common terminology is as follows. A class name without a description of the class, such
as:

class NatureBoy;

will be called a name declaration. A name declaration followed by a body, such as:

class NatureBoy {
 int i;
 //..
};

is a class declaration

Constructors and destructors
(initialization & cleanup)

When you define an instance of a built-in type (such as an int), the compiler creates storage
for that variable. If you choose to assign a value when reserving storage for the variable, the
compiler does that too. In effect, the compiler constructs the variable for you.

When a variable of a built-in type goes out of scope, the compiler cleans up the storage for
that variable by freeing it, in effect, it destroys the variable.

C++ makes user-defined types (classes) as indistinguishable as possible from built-in types.
This means the compiler needs a function to call when the variable is created (a constructor)
and a function to call when the variable goes out of scope (a destructor). If the programmer
doesn't supply constructors (there can be more than one overloaded constructor) and a
destructor (there can only be one) for a class, the compiler assumes the simplest actions.

The constructor is a member function with the same name as the class. The constructor
assumes that the storage has been allocated for all the variables in the object's structure when
it is called. Here's an example of a constructor:



985

//: C03:Construc.cpp
// A class with constructors
#include <iostream>
using namespace std;

class ThizBin {
  int i, j, k;
public:
  ThizBin() { i = j = k = 0; }  // Constructor
  ThizBin(int q) { i = j = k = q; } // Overloaded
constructor
  ThizBin(int u, int v, int w) {
    i = u;
    j = v;
    k = w;
  }  // More overloading
  void print(char * msg) {
    cout << msg << ": " << endl;
    cout << "i = " << i << endl;
    cout << "j = " << j << endl;
    cout << "k = " << k << endl;
  }
};
int main() {
  ThizBin A;  // Calls constructor with no arguments
  ThizBin B(47); // Calls constructor with 1 argument
  ThizBin C(9,11,47); // Calls constructor with 3 arguments
  A.print("A -- no argument constructor");
  B.print("B -- 1 argument constructor");
  C.print("C -- 3 argument constructor");
} ///:~

Class ThizBin has three overloaded constructors, one that takes no arguments (used in the
definition of A), one that takes one int (used for B), and one that takes three ints (used for C).
The print( ) member function displays the private values of the objects after they are
initialized.

The name of the destructor is the class name with a tilde attached at the beginning. For the
above example, the destructor name would be ~ThizBin( ). The destructor never takes any
arguments; it is only called by the compiler and cannot be called explicitly by the programmer
(Except for one unusal situation, used when you place an object at a specific location in
memory. See explicit destructor calls in the index).

While you will almost always want to perform various types of initialization on an object, the
«default destructor» (doing nothing) is often sufficient and you may not need to define a
destructor. However, if your object initializes some hardware (e.g.: puts a window up on the



986

screen) or changes some global value, you may need to undo the effect of the object (e.g.:
close the window) when the object is destroyed. For this, you need a destructor.

As an example, this program keeps track of the number of objects in existence by modifying a
global variable:

//: C03:Objcount.cpp
// Counts objects in existence
#include <iostream>
using namespace std;

int count = 0;

class Obj {
 public:
  Obj() {
    count++;
    cout << "number of objects: " << count << endl;
  }
  ~Obj() {
    count--;
    cout << "number of objects: " << count << endl;
  }
};

int main() {
  Obj A, B, C, D, E;
  {
    Obj F;
  }
  {
    Obj G;
  }
} ///:~

As the objects are created, they increase the count and as they go out of scope they decrease
the count. Notice that after the first group of variables is created, F is created, then destroyed,
and G is created, then destroyed, then the rest of the variables are destroyed. When the closing
brace of a scope is encountered, destructors are called for each variable in the scope.

static class Members
Every time you define an object that belongs to a particular class, all the data elements in that
class are duplicated for the variable. It is possible, however, to define a variable in a class
such that only one instance of the variable is created for all the objects ever defined for that
class. Each object has access to this one piece of data, but the data is shared among all the



987

objects instead of being duplicated for each object. To achieve this effect, declare the variable
static (A third meaning of the keyword static).

You often use static member variables to communicate between objects. For example:

//: C03:Statvar.cpp
// Static member variable in a class
#include <iostream>
using namespace std;

class Common {
  static i;  // Declaration, NOT definition!
 public:
  Common() { i++; }
  ~Common() { i--; }
  void look_around() {
    if(i > 1)
      cout << "there are other objects of this class" <<
"endl";
    else
      cout << "no other objects of this class" << endl;
  }
};
// You must provide a definition for a static member:
int Common::i = 0;
int main() {
  Common a;
  a.look_around();
  {
    Common b;
    b.look_around();
  }  // b destroyed here
  a.look_around();
}  // a destroyed here ///:~

The above example also shows another need for the destructor: to keep track of information
about objects. For a more sophisticated example of this, look at the examples, see reference
counting in the index.

You must explicitly reserve storage for, and initialize, all static objects. Storage isn't created
for you, since only one piece of storage is needed for the whole program. You can't initialize a
class static variable as you do a function static variable:

class Bad {
 static int i = 33; // Won't compile
};



988

Instead, you must use the explicit syntax for static members. This repeats the type of the
object but uses the class name and the scope resolution operator with the identifier. Other than
that, it's the same as an ordinary global object definition:

int Bad::i = 33;

This definition and initialization occurs outside of all class and function bodies.

const class members
You can make a member of a class const, but the meaning reverts to that of C. That is, storage
is always allocated for a const data member, so a const occupies space inside a class. The
other rules of C++ still apply — in particular, a const must be initialized at the point it is
defined. What does this mean, in the case of a class? Storage isn't allocated for a variable until
an object is created, and that is the point where the const must be initialized. Therefore, the
meaning of const for class members is «constant for that object, for its lifetime.»

The initialization of a const must happen in the constructor. It is a special action, and must
happen in a special way, so that its value is guaranteed to be set at all times. This is performed
in the constructor initializer list, which occurs after the constructor's argument list but before
its body, to indicate that the code is executed before the constructor body is entered. The
constructor initializer list has a number of purposes, but one is to initialize const members,
like this:

//: C03:Constmem.cpp
// Constant data members of a class

class Counter {
  int count;
  const int max;  // 'int' is required
public:
  Counter(int Max = 10, int init = 0) : max(Max) {
    count = init;
  }
  int incr() {
    if(++count == max) return 1;
    return 0;
  }
};
int main() {
  Counter A, B(14), C(5,4);
  while(!B.incr())
    if(A.incr())
      C.incr();
} ///:~

The statement max(Max) performs the initialization. Notice that it looks like a constructor
call. It is indeed intended to mimic a constructor call, but the meaning of this syntax for built-



989

in types in the constructor initializer list is simply assignment. The assignment of count could
also have been moved to the constructor initializer list, like this:

Counter(int Max = 10, int init = 0)
  : max(Max), count(init) {}

True constants inside classes
The treatment of const inside classes creates an inconvenient situation when you're creating
an array inside a class (The array was briefly introduced in chapter 2). When dealing with
ordinary arrays (not inside classes) the best programming practice is to use a named constant
to define the size of the array, like this:

const int sz = 10;
char array[sz];

This way, any code which refers to the size of the array uses sz, and if you need to change the
size, you only change it in one place, at the const definition.

You cannot use a const data inside an array definition in a class, because the compiler must
know the size of the array when it is defined, and because a const inside a class always
allocates storage (the compiler cannot know the contents of a storage location).

Fortunately, there is a convenient workaround for this problem. The enumerated data type
enum (described later in this chapter) is designed to associate names with integral numbers.
Normally enum is used to distinguish a set of names by letting the compiler automatically
assign numbers to them. However, you can force a name to be associated with a particular
number, like this:

enum { sz = 100 };

This introduces a name called sz which has the integral value 100. Storage is never allocated
for enumeration names, so the compiler always has the values available. This provides a
technique (This is sometimes disparagingly referred to as the «enum hack.») to solve the
problem of using names for array sizes (without reverting back to the barbarity of the
preprocessor):

class Array {
  enum { size = 10 };
  int A[size];
};

Since enumerations can only be integral types, this technique is primarily useful for creating
arrays.



990

Defining class member
functions

All the member function definitions so far have been inline. In the general case, functions will
be defined in a separate code file. This section shows the specifics of defining member
functions.

The scope resolution operator ::
To define a member function, you must first tell the compiler that the function you are
defining is associated with a particular class. This is accomplished using the scope resolution
operator (::). For example:

//: C03:Scoperes.cpp
// Defining a non-inline member function
#include <iostream>
using namespace std;

class Example {
  int i, j, k;
 public:
  Example(); // Declare the function
  void print(); // Ditto
};
Example::Example() { // The constructor
  i = 12;
  j = 100;
  k = 47;
}
void Example::print() {
  cout << "i = " << i;
  cout << ", j = " << j;
  cout << ", k = " << k << endl;
}
int main() {
  Example test;
  test.print();
} ///:~

As you can see, the member function is associated with the class name by attaching the class
name followed by the scope resolution operator. The functions will now be compiled as
normal functions instead of inline functions.



991

Use the scope resolution operator any time you are not sure which definition the compiler will
use. You can also use scope resolution to select a definition other than the normal default. For
instance, if you create a class in which you define your own puts( ) function (puts( ) is an
Standard C library function that puts a string to standard output), you can select the global
puts( ) as follows:

//: C03:Display.cpp
// A class with it's own puts() function
#include <cstdio>  // Contains the puts() declaration
class Display {
 public:
  void puts(char *); // Declare the function
};
void Display::puts(char * msg) {
  std::puts("inside my puts function");
  std::puts(msg);
}
int main() {
  Display A;
  A.puts("calling A.puts()");
} ///:~

If, inside Display::puts( ), the puts( ) function was called without the scope resolution
operator, the compiler would call Display::puts( ) instead of the library function puts( ). If
the scope resolution operator is used with no name preceding it, it means «use the global
name.»

Calling other member functions
As the example above implies, you can call member functions from inside other member
functions. It was stated earlier that a member function can never be called unless it is
associated with an object, so this might look a bit confusing at first. If you are defining a
member function, that function is already associated with an object («the current object,» also
referred to with the keyword this). A member function can be called by simply using its name
inside another member function (no object name and dot is necessary inside a member
function). To illustrate, here's an example that creates a «smart array» (one that checks
boundaries).

//: C03:SmartArray.cpp
// An array which checks boundaries
#include <iostream>
#include <cstdlib> // For exit() declaration
using namespace std;

class Array {
  enum { size = 10 };



992

  int a[size];
  void check_index(const int index); // Private function
public:
  Array(const int initval = 0); // Default argument value
  void setval(const int index, const int value);
  int readval(const int index);
};
// Constructor (don't duplicate the default value!):
Array::Array(const int intval) {
  for (int i = 0; i < size; i++)
    setval(i, intval);  // Call another member function
}
void Array::check_index(const int index) {
  if(index < 0 || index >= size) { // Logical OR
    cerr << "Array error: setval index out of bounds" <<
endl;
    exit(1);  // Standard C library function; quits program
  }
}
void Array::setval(const int index, const int value) {
  check_index(index);
  a[index] = value;
}
int Array::readval(const int index) {
  check_index(index);
  return a[index];
}
int main() {
  Array A, B(47);
  // Out of bounds -- see what happens
  int x = B.readval(10);
} ///:~

Check_index( ) is a private member function that can only be called by other member
functions. Whenever the user wants to set or read a value, check_index( ) is called first to
make sure the array boundaries are not exceeded.

You can see that C and C++ try to make the definition of a variable mimic its use (this doesn't
always succeed). For an array, the definition might be:

int values[100];

To use the array, you write:

int y = values[4];

to read element 4, or:

values[99] = 128;



993

to assign to element 99. Remember that elements are counted from zero, so if you define an
array with 100 elements you must start at element 0 and stop at element 99.

friend : access to private elements of
another class

There are times when the program design just won't work out right. You can't always make
everything fit neatly into one class; sometimes other functions must have access to private
elements of your class for everything to work together harmoniously. You could make some
elements public, but this is a bad idea unless you really want the client programmer to change
the data.

The solution in C++ is to create friend functions. These are functions that are not class
members (although they can be members of some other class; in fact, an entire class can be
declared a friend). A friend has the same access privileges as a member function, but it isn't
associated with an object of the host class (so you can't call member functions of the host
class without associating the functions with objects). The host class has control over granting
friend privileges to other functions, so you always know who has the ability to change your
private data (it's much easier to trace bugs that way).

As an example, suppose you have two different classes, both of which keep some kind of
internal time: a watch and a microwave_oven, and you want to be able to synchronize the
clocks in the two separate classes:

//: C03:Friendly.cpp
// Demonstration of friend functions.
// The synchronize() function has arguments from both watch
// and microwave_oven.  The first time synchronize() is
declared
// as a friend in watch, the compiler won't know that
// microwave_oven exists unless we declare it's name first:
class MicrowaveOven;

class Watch {
  int time;  // A measure of time
  int alarm;  // When the alarm goes off
  int date;   // Other things a Watch should know
public:
  // Constructor sets starting state:
  Watch() { time = alarm = date = 0; }
  void tick() { time++; } // Very simple transition
  // Declare a friend function:
  // (see text for meaning of '&')
  friend void synchronize(Watch &, MicrowaveOven &);
};



994

class MicrowaveOven {
  int time;
  int start_time;
  int stop_time;
  int intensity;
public:
  MicrowaveOven() {
    time = 0;
    start_time = stop_time = 0;
    intensity = 0;
  }
  void tick() { time++; }
  friend void synchronize(Watch &, MicrowaveOven &);
};

void synchronize(Watch & objA, MicrowaveOven & objB) {
  objA.time = objB.time = 15;  // Set both to a common
state
}

int main() {
  Watch que_hora;
  MicrowaveOven nuke;
  que_hora.tick();
  que_hora.tick();
  nuke.tick();
  synchronize(que_hora,nuke);
} ///:~

Since synchronize( ) is a friend function to both Watch and MicrowaveOven, it has access
to the private elements of both. In a non-friend function, the references to objA.time and
objB.time would be illegal.

References
Something is introduced in this example: the '&' in the argument list for synchronize( ).
Normally, when you pass an argument to a function, the variable you specify in the argument
list is copied and handed to the function. If you change something in the copy, it has no effect
on the original. When the function ends, the copy goes out of scope and the original is
untouched. If you want to change the original variable, you must tell the function where the
original variable lives instead of making a copy of the original variable. As described earlier
in this chapter, a pointer is one way of telling a function where the original variable lives. In
that example, the address of a string was passed to a function called print(char *). It was
necessary to use the address because the compiler couldn't know how long the string was. A



995

reference, specified by the operator &, is the second way to pass an address. It is a much nicer
way to pass an address to a function, and it is only available in C++.

A reference quietly takes the address of an object. Inside the function, the reference lets you
treat the name as if it were a real variable, and not just the address of a variable.

As you can see in the definition for synchronize( ), the elements of objA and objB are
selected using the dot, just as if objA and objB were objects, and not addresses of objects. The
compiler takes care of everything else. References are described in detail in Chapter 4.

Notice that synchronize( ) can reach right in and modify the private elements of both objA
and objB. This is only true because synchronize( ) was declared a friend of both classes. An
alternative solution is to declare an entire class a friend, and make synchronize( ) one of the
member functions:

//: C03:Friend2.cpp
// Making an entire class a friend
class Watch {
  int time;  // A measure of time
  int alarm;  // When the alarm goes off
  int date;   // Other things a Watch should know
public:
  // Constructor sets starting state:
  Watch() { time = alarm = date = 0; }
  void tick() { time++; } // Very simple transition
  // Allow all members of MicrowaveOven access to private
  // Elements of Watch:
  friend class MicrowaveOven;
};

class MicrowaveOven {
  int time;
  int start_time;
  int stop_time;
  int intensity;
public:
  MicrowaveOven() {
    time = 0;
    start_time = stop_time = 0;
    intensity = 0;
  }
  void tick() { time++; }
  void synchronize(Watch & WA) {
    time = WA.time = 15;  // Set both to a common state
  }
};



996

int main() {
  Watch que_hora;
  MicrowaveOven nuke;
  que_hora.tick();
  que_hora.tick();
  nuke.tick();
  nuke.synchronize(que_hora);
} ///:~

This program is identical to FRIENDLY.CPP except synchronize( ) is a member function of
MicrowaveOven. Notice that synchronize( ) only takes one argument here, since a member
function already knows about the object it is called for. Also notice that the name declaration
for MicrowaveOven is unnecessary before class Watch, since it is included in the friend
declaration.

Often, the choice of whether to use member functions or non-member functions comes down
to your preference for the way the syntax should look.

Declaring a friend member function
It is also possible to select a single member function from another class to be a friend. Here,
however, the compiler must see everything in the right order. Here's the same example as
before with just the function synchronize as a friend:

//: C03:Friend3.cpp
// A friend member function
class Watch;  // Class name declaration
class MicrowaveOven {
  int time;
  int start_time;
  int stop_time;
  int intensity;
public:
  MicrowaveOven() {
    time = 0;
    start_time = stop_time = 0;
    intensity = 0;
  }
  void tick() { time++; }
  void synchronize(Watch & WA);
};
class Watch {
  int time;  // A measure of time
  int alarm;  // When the alarm goes off
  int date;   // Other things a Watch should know
public:
  // Constructor sets starting state:



997

  Watch() { time = alarm = date = 0; }
  void tick() { time++; } // Very simple transition
  // Allow all members of MicrowaveOven access to private
  // Elements of Watch:
  friend void MicrowaveOven::synchronize(Watch& WA);
};

void MicrowaveOven::synchronize(Watch & WA) {
    time = WA.time = 15;  // Set both to a common state
}

int main() {
  Watch que_hora;
  MicrowaveOven nuke;
  que_hora.tick();
  que_hora.tick();
  nuke.tick();
  nuke.synchronize(que_hora);
} ///:~

Other class-like items
There are several other constructs in C++ that have declarations similar to the class. Each of
these constructs has a different purpose. They include the «plain» structure struct, the
enumerated data type enum and the space-saving union.

static member functions
Static data members are useful because they work for the class as a whole, and not for a
particular instance/object of a class. One effect of a static data member is that it doesn't
occupy space in each object, so the size of each object is reduced.

Although member functions don't occupy space in an object, when a function is called that
function must somehow know which object data it is accessing. This is done by the compiler,
secretly, by passing the starting address of the object into the member function. You can
access the starting address while inside the member function using the keyword this. The
extra overhead of the member function call when passing this is analogous to the extra size in
an object when adding data members. In line with this analogy, you can remove the extra time
involved in a member function call by making the member function static.

Like a static data member, a static member function acts for the class as a whole, not for a
particular object of the class. The starting address of the object (this) is not passed to a static
member function, so it cannot access non-static data members (and the compiler will give you



998

an error if you try). The only data members which can be accessed by a static member
function are static data members.

You can call a static member function in the ordinary way, with the dot or the arrow, in
association with an object. However, you can also call a static member function by itself,
without any specific object, using the scope-resolution operator, like this:

class X {
public:
  static void f();
};
X::f();

When you see static member functions in a class, remember that the designer intended that
function to be conceptually associated with the class as a whole. That function will have the
faster calling time of an ordinary, global function but its name will be visible only within the
class, so it won't clash with global function names.

 const and volatile member
functions

C++ allows you to restrict the use of a particular member function so, as the programmer, you
can insure that the user can only use it in the appropriate context. This is accomplished with
the keywords const and volatile. You will see const member functions used far more often
than volatile member functions, but the syntax works the same way.

const objects
const tells the compiler that a variable will not change throughout its lifetime. This applies to
variables of built-in types, as you've seen. When the compiler sees a const like this, it stores
the value in its symbol table and inserts it directly, after performing type-checking (remember
that this is an improvement in C++, which acts differently than C). In addition, it prevents you
from changing the value of a const. The reason to declare an object of a built-in type as const
is so the compiler will insure that it isn't changed.

You can also tell the compiler that an object of a user-defined type is a const. Although it is
conceptually possible that the compiler could store such an object in its symbol table and
generate compile-time calls to member functions (so all the values associated with a const
object would be available at compile-time), in practice it isn't feasible. However, the other
aspect of a const — that it cannot be changed during its lifetime — is still valid and can be
enforced.



999

const member functions
The compiler can tell when you're trying to change a simple variable, and can generate an
error. The concept of constness can also be applied to an object of a user-defined type, and it
meanst the same thing: the internal state of a const object cannot be changes. This can only be
enforced if there is some way to insure that all operations performed on a const object won't
it. C++ provides a special syntax to tell the compiler that a member function doesn't change
an object.

The keyword const placed after the argument list of a member function tells the compiler that
this member function can only read data members, but it cannot write them. Creating a const
member function is actually a contract which the compiler enforces. If you declare a member
function like this:

class X {
  int i;
public:
  int f() const;
};

then f( ) can be called for any const object, and the compiler knows that it's a safe thing to do
because you've said the function is const. However, the compiler also insures that the function
definition conforms to the const specifier. Not only are you forced to use the const specifier
when you define the function (otherwise the compiler won't recognize that the function is a
member), but you cannot change any data members inside the function or the compiler will
generate an error:

int X::f() const { return i++; } // Compiler reports error

So the const function can be used on a const object because the declaration claims it is safe,
and the compiler insures that the definition conforms to this claim. Notice that the const
keyword must be used in both the declaration and the definition. This is illustrated in the
following program:

//: C03:Constf.cpp
// const member functions
// Compiler checks for proper use of const
class CMembers {
  int x;
public:
  CMembers(int X) { x = X; }
  int X() const { return x; }
  int XX() { return x; }  // Non-const, doesn't modify
//!  int incr() const { return ++x; } // Error
  void g() const; // Non-inline
};
void CMembers::g() const {
//!  x++;  // Error



1000

}
int main() {
  CMembers A(1);
  const CMembers B(2);
  A.X();  // Can call any member function for non-const
objects
  A.XX();
//!  A.incr();
  A.g();
  B.X(); // Can only call const members for const objects
//!  B.incr();
  B.g();
//!  B.XX();   // Error
} ///:~

Notice that even though XX( ) doesn't actually modify any data members, it hasn't been
defined as a const member function so it can't be used with B. Also, the compiler will verify
that a function doesn't modify any data members if you say it's a const, whether or not that
function is defined inline.

const member functions can be called for non-const objects, but non-const functions cannot
be called for const objects. Therefore, for the greatest flexibility of your classes, you should
declare functions as const when possible, since you never know when the user might want to
call such a function for a const object. This practice will be followed in this book.

Casting away const-ness
In some rare cases you may wish to modify certain members of an object, even if the object is
a const. That is, you may want to leave the const on all the members except a select few. You
can do this with a rather odd-looking cast. Remember that a cast tells the compiler to suspend
its normal assumptions and to let you take over the type-checking. Thus it is inherently
dangerous and not something you want to do casually. However, the need sometimes occurs.

To cast away the const-ness of an object, you select a member with the this pointer. Since this
is just the address of the current object, this seems redundant. However, by preceeding this
with a cast to itself, you implicitly remove the const (because const isn't part of the cast).
Here's an example:

//: C03:Castaway.cpp
// Casting away the const-ness of an object
class FishingPole {
  int rod, reel;
public:
  FishingPole() { rod = reel = 0; }
  void cast_away() const {
    (((FishingPole*)this)->reel)++;
  }
};



1001

int main() {
  const FishingPole fp;
  fp.cast_away();
} ///:~

Inside cast_away( ), the cast of this to type FishingPole (without the const) removes the
const-ness of reel, while leaving rod as a const. Of course, this isn't the most straightforward
code in the world, but when you do this kind of thing you're intentionally breaking the type-
safety mechanism, and that is usually an ugly process. You should know what it looks like,
but you should try not to do it.

volatile objects and member functions
A volatile object is one which may be changed by forces outside the program's control. For
example, in a data communication program or alarm system, some piece of hardware may
cause a change to a variable, while the program itself may never change the variable. The
reason it's important to be able to declare a variable volatile is to prevent the compiler from
making assumptions about code associated with that variable. The primary concern here is
optimizations. If you read a variable, and (without changing it) read it again sometime later,
the optimizer may assume that the variable hasn't changed and delete the second read. If the
variable was declared volatile, however, the optimizer won't touch any code associated with
the variable.

The syntax for const and volatile member functions is identical. Only volatile member
functions may be called for volatile objects. In addition, objects and member functions can be
both const and volatile, as shown here:

//: C03:Constvol.cpp
// Const AND volatile together
class Comm {
  unsigned char databyte;
public:
  Comm() { databyte = 0; }
  unsigned char read() const volatile {
    return databyte;
  }
};
int main() {
  const volatile Comm port;
  port.read();
} ///:~

databyte is ostensibly where the data is placed (by hardware, or perhaps an interrupt control
routine). Since port is both const and volatile, it can only be read and the compiler won't
optimize away any reads of that location.



1002

By the previous logic, you should declare as many functions as possible both const and
volatile so they would always be usable with objects which are const and/or volatile. In
practice, however, volatile is used far less frequently than const.

Debugging hints
When you're writing your own classes, you can use the features of C++ to your advantage and
build in debugging tools. In particular, each class should have a function called dump( ) (or
some similar name) that will display the contents of an object. This way you can dump( )
your objects at various points in your program to trace their progress. If you build the
dump( ) function in from the start, you won't have as much mental resistance to running a
trace.

This class has a built-in dump( ) function:

//: C03:Debug1.cpp
// A class with a dump() function
#include <iostream>
using namespace std;

class Debuggable {
  int counter; // Some sort of internal counter
  float a, b;  // Data the user is aware of
public:
  Debuggable(float x = 0.0, float y = 0.0) {
    a = x; b = y; counter = 2;
  }
  void set_a(float x) { a = x; counter++; }
  float read_a() { return a; counter++; }
  void set_b(float y) { b = y; counter++; }
  float read_b() { counter++; return b; }
  void dump(char * msg = "") {
    cout << msg << ":" << endl;
    cout << "a = " << a << endl;
    cout << "b = " << b << endl;
    cout << "counter = " << counter << endl;
  }
};
int main() {
  Debuggable U, V(3.14), W(1.1,2.2);
  U.set_a(99);
  U.dump("After 1 set_a");
  U.read_b();
  U.dump("After 1 read_b");
  // Other operations ...



1003

  V.dump("V");
  W.dump();  // string argument is optional
} ///:~

Because the argument msg is given a default value of an empty string, providing a message
when you call dump( ) is optional. In this program, the variable counter is normally
completely hidden from the user's view, and no functions are provided to access it. counter is
a variable to keep track of some sort of internal information. When debugging, this
information may be essential. It is best to provide as much information as possible, as well as
optional messages, in the dump( ) function.


