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Preface

Like any human language, C++ provides away to express
concepts. If successful, this medium of expression will be
significantly easier and more flexible than the alternatives as
problems grow larger and more complex.

You can't just look at C++ as a collection of features; some of the features make no sensein
isolation. Y ou can only use the sum of the partsif you are thinking about design, not smply
coding. And to understand C++ in thisway, you must understand the problems with C and
with programming in general. This book discusses programming problems, why they are
problems, and the approach C++ has taken to solve such problems. Thus, the set of features|
explain in each chapter will be based on the way | see a particular type of problem being
solved with the language. In thisway | hope to move you, alittle at atime, from
understanding C to the point where the C++ mindset becomes your native tongue.

Throughout, I'll be taking the attitude that you want to build amodel in your head that alows
you to understand the language all the way down to the bare metal; if you encounter a puzzle
you'll be able to feed it to your model and deduce the answer. | will try to convey to you the
insights which have rearranged my brain to make me start «thinking in C++.»

Prerequisites

In the first edition of this book, | decided to assume that someone else had taught you C and
that you have at least areading level of comfort with it. My primary focus was on simplifying
what | found difficult — the C++ language. In this edition | have added a chapter that isa
very rapid introduction to C, assuming that you have some kind of programming experience
aready. In addition, just as you learn many new words intuitively by seeing them in context
inanovel, it's possible to learn a great deal about C from the context in which it isused in the
rest of the book.

ThinkinginC
For those of you who need a gentler introduction to C than the chapter in this book, | have
created with Chuck Allison aCD ROM called «Thinking in C: foundations for Java and C++»
which will introduce you to the aspects of C that are necessary for you to move on to C++ or

Java (leaving out the nasty bits that C programmers must deal with on a day-to-day basis but
that the C++ and Java languages steer you away from). This CD can be ordered at
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http://www.BruceEckel.com. [Note: the CD will not be available until late Fall 98, at the
earliest —watch the Web site for updates)

Learning C++

| clawed my way into C++ from exactly the same position as | expect the readers of this book
will: AsaC programmer with a very no-nonsense, nuts-and-bolts attitude about
programming. Worse, my background and experience was in hardware-level embedded
programming, where C has often been considered a high-level language and an inefficient
overkill for pushing bits around. | discovered later that | wasn't even avery good C
programmer, hiding my ignorance of structures, malloc( ) & free(), setimp() & longimp(),
and other «sophisticated» concepts, scuttling away in shame when the subjects came up in
conversation rather than reaching out for new knowledge.

When | began my struggle to understand C++, the only decent book was Stroustrup’ s self-
professed «expert’s guide,X » so | was left to simplify the basic concepts on my own. This
resulted in my first C++ book,2 which was essentially a brain dump of my experience. That
was designed as areader’ s guide, to bring programmersinto C and C++ at the same time.
Both editions3 of the book garnered an enthusiastic response and | till feel it isavauable
resource.

At about the same time that Using C++ came out, | began teaching the language. Teaching
C++ has become my profession; I’ ve seen nodding heads, blank faces, and puzzled
expressions in audiences all over the world since 1989. As | began giving in-house training
with smaller groups of people, | discovered something during the exercises. Even those
people who were smiling and nodding were confused about many issues. | found out, by
chairing the C++ track at the Software Devel opment Conference for the last three years, that |
and other speakers tended to give the typical audience too many topics, too fast. So
eventualy, through both variety in the audience level and the way that | presented the
material, | would end up losing some portion of the audience. Maybe it's asking too much, but
because | am one of those people resistant to traditional lecturing (and for most people, |
believe, such resistance results from boredom), | wanted to try to keep everyone up to speed.

For atime, | was creating a number of different presentationsin fairly short order. Thus, |
ended up learning by experiment and iteration (atechnique that aso works well in C++
program design). Eventually | developed a course using everything | had learned from my
teaching experience, one | would be happy giving for along time. It tackles the learning

1 Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, 1986 (first edition).
2 Using C++, ibid.

3 Using C++ and C++ Inside & Out, ibid.

Preface 16



problem in discrete, easy-to-digest steps and for a hands-on seminar (the ideal learning
situation), there are exercises following each of the short lessons.

This book developed over the course of two years, and the material in this book has been
road-tested in many formsin many different seminars. The feedback that I’ ve gotten from
each seminar has helped me change and refocus the material until | feel it workswell asa
teaching medium. But it isn't just a seminar handout — | tried to pack as much information as
| could within these pages, and structure it to draw you through, onto the next subject. More
than anything, the book is designed to serve the solitary reader, struggling with a new
programming language.

Goals

My goasin this book are to:

1.

Present the material asimple step at atime, so the reader can easily digest
each concept before moving on.

Use examples that are as ssmple and short as possible. This sometimes
prevents me from tackling «real-world» problems,

but I’ ve found that beginners are usually happier when they can understand
every detail of an example rather than being impressed by the scope of the
problem it solves. Also, there' s a severe limit to the amount of code that can
be absorbed in a classroom situation. For this| will no doubt receive
criticism for using «toy examples,» but I'm willing to accept that in favor of
producing something pedagogically useful. Those who want more complex
examples can refer to the later chapters of C++ Inside & Out.#

Carefully sequence the presentation of features so that you aren’t seeing
something you haven't been exposed to. Of course, thisisn’t aways
possible; in those situations, a brief introductory description will be given.

Give you what | think is important for you to understand about the
language, rather than everything | know. | believe there is an «information
importance hierarchy,» and there are some facts that 95% of programmers
will never need to know, but would just confuse people and add to their
perception of the complexity of the language — and C++ is now considered
to be more complex than ADA! To take an example from C, if you
memorize the operator precedence table (I never did) you can write clever
code. But if you have to think about it, it will confuse the reader/maintainer

4 |bid.
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of that code. So forget about precedence, and use parentheses when things
aren’t clear. This same attitude will be taken with some information in the
C++ language, which | think is more important for compiler writers than for
programmers.

5. Keep each section focused enough so the lecture time — and the time
between exercise periods — is small. Not only does this keep the audience’
minds more active and involved during a hands-on seminar, but it gives the
reader a greater sense of accomplishment.

6. Provide the reader with a solid foundation so they can understand the issues
well enough to move on to more difficult coursework and books.

7. I’ ve endeavored not to use any particular vendor’s version of C++ because,
for learning the language, | don't fedl like the details of a particular
implementation are as important as the language itself. Most vendors
documentation concerning their own implementation specifics is adequate.

Chapters

C++ isalanguage where new and different features are built on top of an existing syntax.
(Because of thisit isreferred to as a hybrid object-oriented programming language.) As more
people have passed through the learning curve, we' ve begun to get afed for theway C
programmers move through the stages of the C++ language features. Because it appears to be
the natural progression of the C-trained mind, | decided to understand and follow this same
path, and accelerate the process by posing and answering the questions that cameto me as|
learned the language and that came from audiences as | taught it.

This course was designed with one thing in mind: the way people learn the C++ language.
Audience feedback helped me understand which parts were difficult and needed extra
illumination. In the areas where | got ambitious and included too many features all at once, |
came to know — through the process of presenting the material — that if you include alot of
new features, you have to explain them al, and the student’s confusion is easily compounded.
Asaresult, I've taken a great deal of trouble to introduce the features as few at atime as
possible; ideally, only one at a time per chapter.

The godl, then, is for each chapter to teach a single feature, or a small group of associated
features, in such away that no additional features are relied upon. That way you can digest
each piece in the context of your current knowledge before moving on. To accomplish this, |
leave many C features in place much longer than | would prefer. For example, | would like to
be using the C++ iostreams | O library right away, instead of using the printf( ) family of
functions so familiar to C programmers, but that would require introducing the subject
prematurely, and so many of the early chapters carry the C library functions with them. This
is aso true with many other features in the language. The benefit is that you, the C
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programmer, will not be confused by seeing all the C++ features used before they are
explained, so your introduction to the language will be gentle and will mirror the way you will
assimilate the featuresif left to your own devices.

Here isabrief description of the chapters contained in this book.

(0) The evolution of objects. When projects became too big and too complicated to easily
maintain, the «software crisis» was born, saying, «We can’t get projects done, and if we can
they’ re too expensive!» This precipitated a number of responses, which are discussed in this
chapter along with the ideas of object-oriented programming (OOP) and how it attemptsto
solve the software crisis. You'll also learn about the benefits and concerns of adopting the
language and suggestions for moving into the world of C++.

(1) Data abstraction. Most features in C++ revolve around this key concept: the ability to
create new data types. Not only does this provide superior code organization, but it lays the
ground for more powerful OOP ahilities. You'll see how thisideais facilitated by the simple
act of putting functions inside structures, the details of how to do it, and what kind of code it
creates.

(2) Hiding theimplementation. Y ou can decide that some of the data and functionsin your
structure are unavailable to the user of the new type by making them private. This means you
can separate the underlying implementation from the interface that the client programmer
sees, and thus alow that implementation to be easily changed without affecting client code.
The keyword classis aso introduced as afancier way to describe a new data type, and the
meaning of the word «object» is demystified (it's avariable on steroids).

(3) Initialization & cleanup. One of the most common C errors results from uninitialized
variables. The constructor in C++ alows you to guarantee that variables of your new data
type («objects of your class») will aways be properly initialized. If your objects aso require
some sort of cleanup, you can guarantee that this cleanup will always happen with the C++
destructor.

(4) Function overloading & default arguments. C++ isintended to help you build big,
complex projects. While doing this, you may bring in multiple libraries that use the same
function name, and you may also choose to use the same name with different meanings within
asingle library. C++ makes this easy with function overloading, which allows you to reuse
the same function hame as long as the argument lists are different. Default arguments allow
you to call the same function in different ways by automatically providing default values for
some of your arguments.

(5) Introduction to iostreams. One of the original C++ libraries — the one that provides the
essential 1/O facility — is caled iostreams. lostreams is intended to replace C's STDIO.H
with an 1/O library that is easier to use, more flexible, and extensible — you can adapt it to
work with your new classes. This chapter teaches you the ins and outs of how to make the
best use of the existing iostream library for standard 1/O, file I/O, and in-memory formatting.

(6) Constants. This chapter coversthe const and volatile keywords that have additional
meaning in C++, especially inside classes. It also shows how the meaning of const varies
inside and outside classes and how to create compile-time constants in classes.
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(7) Inline functions. Preprocessor macros eliminate function call overhead, but the
preprocessor also eliminates valuable C++ type checking. Theinline function gives you all
the benefits of a preprocessor macro plus all the benefits of area function call.

(8) Name control. Creating names is a fundamental activity in programming, and when a
project gets large, the number of names can be overwhelming. C++ allows you a great deal of
control over names: creation, visibility, placement of storage, and linkage. This chapter shows
how names are controlled using two techniques. First, the static keyword is used to control
visibility and linkage, and its special meaning with classesis explored. A far more useful
technique for controlling names at the global scope is C++’'s namespace feature, which
allows you to break up the global name space into distinct regions.

(9) References & the copy-constructor. C++ pointers work like C pointers with the
additional benefit of stronger C++ type checking. There's a new way to handle addresses,
from Algol and Pascal, C++ lifts the reference which lets the compiler handle the address
manipulation while you use ordinary notation. You'll also meet the copy-constructor, which
controls the way objects are passed into and out of functions by value. Finaly, the C++
pointer-to-member is illuminated.

(10) Operator overloading. Thisfeature is sometimes called «syntactic sugar.» It letsyou
sweeten the syntax for using your type by alowing operators as well as function calls. In this
chapter you'll learn that operator overloading isjust a different type of function call and how
to write your own, especialy the sometimes-confusing uses of arguments, return types, and
making an operator a member or friend.

(12) Dynamic object creation. How many planes will an air-traffic system have to handle?
How many shapes will a CAD system need? In the general programming problem, you can’t
know the quantity, lifetime or type of the objects needed by your running program. In this
chapter, you'll learn how C++'s new and delete elegantly solve this problem by safely
creating objects on the heap.

(12) Inheritance & composition. Data abstraction allows you to create new types from
scratch; with composition and inheritance, you can create new types from existing types. With
composition you assemble a new type using other types as pieces, and with inheritance you
create amore specific version of an existing type. In this chapter you' Il learn the syntax, how
to redefine functions, and the importance of construction and destruction for inheritance &
composition.

(13) Polymorphism & virtual functions. On your own, you might take nine months to
discover and understand this cornerstone of OOP. Through small, simple examples you' Il see
how to create afamily of types with inheritance and manipulate objects in that family through
their common base class. The virtual keyword allows you to treat al objectsin this family
generically, which means the bulk of your code doesn’t rely on specific type information.
This makes your programs extensible, so building programs and code maintenance is easier
and cheaper.

(14) Templates & container classes. Inheritance and composition allow you to reuse object
code, but that doesn’'t solve all your reuse needs. Templates allow you to reuse source code by
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providing the compiler with away to substitute type names in the body of a class or function.
This supports the use of container class libraries, which are important tools for the rapid,
robust development of object-oriented programs. This extensive chapter gives you a thorough
grounding in this essential subject.

(15) Multipleinheritance. This sounds smple at first: A new classisinherited from more
than one existing class. However, you can end up with ambiguities and multiple copies of
base-class objects. That problem is solved with virtual base classes, but the bigger issue
remains. When do you use it? Multiple inheritance is only essential when you need to
manipul ate an object through more than one common base class. This chapter explains the
syntax for multiple inheritance, and shows alternative approaches — in particular, how
templates solve one common problem. The use of multiple inheritance to repair a «damaged»
classinterface is demonstrated as a genuinely valuable use of this feature.

(16) Exception handling. Error handling has always been a problem in programming. Even
if you dutifully return error information or set a flag, the function caller may simply ignore it.
Exception handling is a primary feature in C++ that solves this problem by alowing you to
«throw» an object out of your function when acritical error happens. Y ou throw different
types of objects for different errors, and the function caller «catches» these objects in separate
error handling routines. If you throw an exception, it cannot be ignored, so you can guarantee
that something will happen in response to your error.

(17) Run-timetype identification. Run-time type identification (RTTI) lets you find the
exact type of an object when you only have a pointer or reference to the base type. Normally,
you'll want to intentionally ignore the exact type of an object and let the virtual function
mechanism implement the correct behavior for that type. But occasionaly it is very helpful to
know the exact type of an object for which you only have a base pointer; often this
information alows you to perform a special-case operation more efficiently. This chapter
explainswhat RTTI isfor and how to useit.

Appendix A: Etcetera. At thiswriting, the C++ Standard is unfinished. Although virtualy all
the features that will end up in the language have been added to the standard, some haven't
appeared in all compilers. This appendix briefly mentions some of the other features you
should look for in your compiler (or in future releases of your compiler).

Appendix B: Programming guidelines. This appendix is a series of suggestions for C++
programming. They’ve been collected over the course of my teaching and programming
experience, and also from the insights of other teachers. Many of these tips are summarized
from the pages of this book.

Appendix C: Simulating virtual constructors. The constructor cannot have any virtual
qualities, and this sometimes produces awkward code. This appendix demonstrates two
approaches to «virtual construction.»
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Exercises

I’ ve discovered that simple exercises are exceptionally useful during a seminar to complete a
student’ s understanding, so you'll find a set at the end of each chapter.

These are fairly simple, so they can be finished in a reasonable amount of time in a classroom
situation while the instructor observes, making sure all the students are absorbing the material.
Some exercises are a bit more challenging to keep advanced students entertained. They're al
designed to be solved in a short time and are only there to test and polish your knowledge
rather than present major challenges (presumably, you'll find those on your own — or more
likely they'll find you).

Source code

The source code for this book is copyrighted freeware, distributed via the web site
http://www.BruceEckel .com. The copyright prevents you from republishing the code in print
media without permission.

To unpack the code, you download the text version of the book and run the program
ExtractCode (from chapter 23), the source for which is aso provided on the Web site. The
program will create adirectory for each chapter and unpack the code into those directories. In
the starting directory where you unpacked the code you will find the following copyright
notice:

/1:! :CopyRi ght.txt

Copyright (c) Bruce Eckel, 1998

Source code file fromthe book "Thinking in C++"
Al rights reserved EXCEPT as all owed by the
following statements: You can freely use this file
for your own work (personal or commercial),

i ncluding nodifications and distribution in
executable formonly. Permssion is granted to use
this file in classroomsituations, including its
use in presentation materials, as long as the book
"Thinking in C++" is cited as the source.

Except in classroom situations, you cannot copy
and distribute this code; instead, the sole
distribution point is http://ww. BruceEckel.com
(and official mrror sites) where it is

freely avail able. You cannot renove this

copyright and notice. You cannot distribute

nodi fied versions of the source code in this
package. You cannot use this file in printed
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nmedi a wi thout the express perm ssion of the

aut hor. Bruce Eckel nakes no representation about
the suitability of this software for any purpose.
It is provided "as is" without express or inplied
warranty of any kind, including any inplied
warranty of merchantability, fitness for a
particul ar purpose or non-infringenent. The entire
risk as to the quality and performance of the
software is with you. Bruce Eckel and the
publ i sher shall not be liable for any danages
suffered by you or any third party as a result of
using or distributing software. In no event will
Bruce Eckel or the publisher be liable for any

| ost revenue, profit, or data, or for direct,

i ndi rect, special, consequential, incidental, or
puni tive danages, however caused and regardl ess of
the theory of liability, arising out of the use of
or inability to use software, even if Bruce Ecke
and the publisher have been advised of the
possibility of such damages. Shoul d the software
prove defective, you assune the cost of al
necessary servicing, repair, or correction. If you
think you've found an error, please subnit the
correction using the formyou will find at

www. BruceEckel . com (Pl ease use the sane

formfor non-code errors found in the book.)
I~

Y ou may use the code in your projects and in the classroom as long as the copyright noticeis
retained.

Coding standards

In the text of this book, identifiers (function, variable, and class names) will be set in bold.
Most keywords will also be set in bold, except for those keywords which are used so much
that the bolding can become tedious, like class and virtual.

| use aparticular coding style for the examples in this book. It was developed over a number
of years, and was inspired by Bjarne Stroustrup’s stylein his original The C++ Programming
Language.® The subject of formatting style is good for hours of hot debate, so I'll just say I'm
not trying to dictate correct style viamy examples; | have my own motivation for using the

5 Ibid.

Preface 23



style that | do. Because C++ is afree-form programming language, you can continue to use
whatever style you' re comfortable with.

The programs in this book are files that are automatically extracted from the text of the book,
which alows them to be tested to ensure they work correctly. (I use a special format on the
first line of each file to facilitate this extraction; the line begins with the characters*/ */" *’
and the file name and path information.) Thus, the code files printed in the book should all
work without compiler errors when compiled with an implementation that conforms to
Standard C++ (note that not all compilers support al language features). The errors that
should cause compile-time error messages are commented out with the comment //! so they
can be easily discovered and tested using automatic means. Errors discovered and reported to
the author will appesr first in the electronic version of the book (at www.BruceEckel.com)
and later in updates of the book.

One of the standardsin this book is that all programs will compile and link without errors
(although they will sometimes cause warnings). To this end, some of the programs, which
only demonstrate a coding example and don’t represent stand-al one programs, will have
empty main( ) functions, likethis

| main() {}
This allows the linker to complete without an error.

The standard for main( ) isto return an int, but Standard C++ states that if thereis no return
statement inside main( ), the compiler will automatically generate code to return 0. This
option will be used in this book (although some compilers may still generate warnings for
this).

L anguage standards

Throughout this book, when referring to conformance to the ANSI/ISO C standard, | will use
the term Standard C.

At this writing the ANSI/ISO C++ committee was finished working on the language. Thus, |
will use the term Standard C++.

L anguage support

Y our compiler may not support al the features discussed in this book, especialy if you don't
have the newest version of your compiler. Implementing alanguage like C++ isaHerculean
task, and you can expect that the features will appear in pieces rather than all at once. But if
you attempt one of the examples in the book and get alot of errors from the compiler, it's not
necessarily abug in the code or the compiler — it may simply not be implemented in your
particular compiler yet.
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Seminars & CD Roms

My company provides public hands-on training seminars based on the material in this book.
Selected material from each chapter represents alesson, which is followed by a monitored
exercise period so each student receives persona attention. Information and sign-up forms for
upcoming seminars can be found at http://www.BruceEckel.com. If you have specific
guestions, you may direct them to Bruce@Eckel Obj ects.com.

Errors

No matter how many tricks awriter uses to detect errors, some always creep in and these
often leap off the page for afresh reader. If you discover anything you believe to be an error,
please use the correction form you will find at http://www.BruceEckel.com. Your helpis
appreciated.
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1: Introduction
to objects

The genesis of the computer revolution was in a machine.
The genesis of our programming languages thus tends to
look like that machine.

But the computer is not so much a machine asit is amind amplification tool and a different
kind of expressive medium. As aresult, the tools are beginning to look less like machines and
more like parts of our minds, and more like other expressive mediums like writing, painting,
sculpture, animation or filmmaking. Object-oriented programming is part of this movement
toward the computer as an expressive medium.

This chapter will introduce you to the basic concepts of object-oriented programming (OOP),
followed by a discussion of OOP development methods. Finally, strategies for moving
yourself, your projects, and your company to object-oriented programming are presented.

This chapter is background and supplementary material. If you' re eager to get to the specifics
of the language, fedl freeto jump ahead to later chapters. Y ou can always come back here and
fill in your knowledge later.

The progress of abstraction

All programming languages provide abstractions. It can be argued that the complexity of the
problems you can solve is directly related to the kind and quality of abstraction. By «kind» |
mean: what is it that you are abstracting? Assembly language is a small abstraction of the
underlying machine. Many so-called «imperative» languages that followed (such as
FORTRAN, BASIC, and C) were abstractions of assembly language. These languages are big
improvements over assembly language, but their primary abstraction still requires you to think
in terms of the structure of the computer rather than the structure of the problem you are
trying to solve. The programmer must establish the association between the machine model
(in the «solution space») and the model of the problem that is actually being solved (in the
«problem space»). The effort required to perform this mapping, and the fact that it is extrinsic
to the programming language, produces programs that are difficult to write and expensive to
maintain, and as a side effect created the entire «programming methods» industry.
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The alternative to modeling the machine is to model the problem you're trying to solve. Early
languages such as LISP and APL chose particular views of the world («all problems are
ultimately lists» or «all problems are algorithmic»). PROLOG casts al problems into chains
of decisions. Languages have been created for constraint-based programming and for
programming exclusively by manipulating graphical symbols. (The latter proved to be too
restrictive.) Each of these approaches is a good solution to the particular class of problem
they’ re designed to solve, but when you step outside of that domain they become awkward.

The object-oriented approach takes a step farther by providing tools for the programmer to
represent elements in the problem space. This representation is general enough that the
programmer is not constrained to any particular type of problem. We refer to the elementsin
the problem space and their representations in the solution space as «objects.» (Of course, you
will aso need other objects that don’'t have problem-space analogs.) The ideais that the
program is alowed to adapt itself to the lingo of the problem by adding new types of objects,
so when you read the code describing the solution, you’ re reading words that also express the
problem. Thisis amore flexible and powerful language abstraction than what we' ve had
before. Thus OOP allows you to describe the problem in terms of the problem, rather thanin
the terms of the solution. There's still a connection back to the computer, though. Each object
looks quite a bit like alittle computer; it has a state, and it has operations you can ask it to
perform. However, this doesn’t seem like such a bad analogy to objectsin the real world; they
all have characteristics and behaviors.

Alan Kay summarized five basic characteristics of Smalltalk, the first successful object-
oriented language and one of the languages upon which C++ is based. These characteristics
represent a pure approach to object-oriented programming:

1. Everythingisan object. Think of an object asafancy variable; it
stores data, but you can also ask it to perform operations on itself by
making requests. In theory, you can take any conceptual component in
the problem you' re trying to solve (dogs, buildings, services, etc.) and
represent it as an object in your program.

2. A program isabunch of objectstelling each other what to do by
sending messages. To make arequest of an object, you «send a
message» to that object. More concretely, you can think of a message
asarequest to call afunction that belongsto a particular object.

3. Each object hasits own memory made up of other objects. Or, you
make a new kind of object by making a package containing existing
objects. Thus, you can build up complexity in a program while hiding
it behind the simplicity of objects.

4. Every object hasatype. Using the parlance, each object isan
instance of aclass, where «class» is synonymous with «type.» The
most important distinguishing characteristic of aclassis «what
messages can you send to it?»

5. All objectsof aparticular type can receive the same messages. This
isactudly avery loaded statement, as you will see later. Because an
object of type circleis aso an object of type shape, acircleis
guaranteed to receive shape messages. This means you can write code
that talks to shapes and automatically handle anything that fits the
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description of a shape. This substitutability is one of the most
powerful conceptsin OOP.
Some language designers have decided that object-oriented programming itself is not
adequate to easily solve all programming problems, and advocate the combination of various
approaches into multiparadigm programming languages.®

An object has an interface

Aristotle was probably the first to begin a careful study of the concept of type. He was known
to speak of «the class of fishes and the class of birds.» The concept that al objects, while
being unique, are also part of a set of objects that have characteristics and behaviorsin
common was directly used in the first object-oriented language, Simula-67, with its
fundamental keyword class that introduces a new type into a program (thus class and type are
often used synonymously’).

Simula, asits name implies, was created for developing simulations such as the classic «bank
teller problem.» In this, you have a bunch of tellers, customers, accounts, transactions, etc.
The members (elements) of each class share some commonality: every account has a balance,
every teller can accept a deposit, etc. At the same time, each member hasits own state; each
account has a different balance, each teller has a name. Thus the tellers, customers, accounts,
transactions, etc. can each be represented with a unique entity in the computer program. This
entity isthe object, and each object belongs to a particular class that defines its characteristics
and behaviors.

So, athough what we really do in object-oriented programming is create new data types,
virtually all object-oriented programming languages use the «class» keyword. When you see
the word «type» think «class» and vice versa.

Once atype is established, you can make as many objects of that type as you like, and then
manipul ate those objects as the elements that exist in the problem you are trying to solve.
Indeed, one of the challenges of object-oriented programming is to create a one-to-one
mapping between the elements in the problem space (the place where the problem actually
exists) and the solution space (the place where you' re modeling that problem, such asa
computer).

But how do you get an object to do useful work for you? There must be away to make a
request of that object so it will do something, such as complete a transaction, draw something
on the screen or turn on a switch. And each object can satisfy only certain requests. The
requests you can make of an object are defined by itsinterface, and the type is what
determines the interface. The idea of type being equivaent to interface is fundamental in
object-oriented programming.

6 See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley 1995).

7 Some people make a distinction, stating that type determines the interface while classis a
particular implementation of that interface.
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A simple example might be a representation of alight bulb:
| Light It;

TypeName | Light
on()

Interface | Off()
brighten()

| It.on();

The name of the type/classis Light, and the requests that you can make of a Light object are
to turn it on, turn it off, make it brighter or make it dimmer. Y ou create a L ight object simply
by declaring a name (It) for that identifier. To send a message to the object, you state the
name and connect it to the message name with a period (dot). From the standpoint of the user
of apre-defined class, that’s pretty much al there isto programming with objects.

The hidden implementation

Itishelpful to break up the playing field into class creators (those who create new data types)
and client programmers8 (the class consumers who use the data types in their applications).
The godl of the client programmer is to collect atoolbox full of classes to use for rapid
application development. The goal of the class creator isto build a class that exposes only
what’ s hecessary to the client programmer and keeps everything else hidden. Why? If it's

A\

hidden, the client programmer can’t use it, which means that the class creator can change the
hidden portion at will without worrying about the impact to anyone else.

81’ m indebted to my friend Scott Meyers for this term.
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The interface establishes what requests you can make for a particular object. However, there
must be code somewhere to satisfy that request. This, along with the hidden data, comprises
the implementation. From a procedural programming standpoint, it's not that complicated. A
type has a function associated with each possible request, and when you make a particular
request to an object, that function is called. This processis often summarized by saying that
you «send a message» (make a request) to an object, and the object figures out what to do
with that message (it executes code).

In any relationship it’s important to have boundaries that are respected by al parties involved.
When you create alibrary, you establish a relationship with the client programmer, who is
another programmer, but one who is putting together an application or using your library to
build a bigger library.

If al the members of a class are available to everyone, then the client programmer can do
anything with that class and there’ s no way to force any particular behaviors. Even though
you might really prefer that the client programmer not directly manipulate some of the
members of your class, without access control there’s no way to prevent it. Everything's
naked to the world.

There are two reasons for controlling access to members. Thefirst is to keep client
programmers hands off portions they shouldn’t touch — parts that are necessary for the
internal machinations of the data type but not part of the interface that users need to solve
their particular problems. Thisis actually a service to users because they can easily see what's
important to them and what they can ignore.

The second reason for access control isto alow the library designer to change the internal
workings of the structure without worrying about how it will affect the client programmer.
For example, you might implement a particular classin a simple fashion to ease development,
and then later decide you need to rewrite it to make it run faster. If the interface and
implementation are clearly separated and protected, you can accomplish this and require only
arelink by the user.

C++ uses three explicit keywords and one implied keyword to set the boundariesin a class:
public, private, protected and the implied «friendly,» which is what you get if you don’t
specify one of the other keywords. Their use and meaning are remarkably straightforward.
These access specifiers determine who can use the definition that follows. public means the
following definition is available to everyone. The private keyword, on the other hand, means
that no one can access that definition except you, the creator of the type, inside function
members of that type. privateisabrick wall between you and the client programmer. If
someone tries to access a private member, they’ Il get a compile-time error. «Friendly» has to
do with something called a «package,» which is C++'sway of making libraries. If something
is «friendly» it's available only within the package. (Thus this access level is sometimes
referred to as «package access.») protected actsjust like private, with the exception that an
inheriting class has access to protected members, but not private members. Inheritance will
be covered shortly.
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Reusing
the Implementation

Once a class has been created and tested, it should (ideally) represent a useful unit of code. It
turns out that this reusability is not nearly so easy to achieve as many would hope; it takes
experience and insight to achieve a good design. But once you have such a design, it begsto
be reused. Code reuse is arguably the greatest leverage that object-oriented programming
languages provide.

The simplest way to reuse a classisto just use an object of that class directly, but you can aso
place an object of that class inside anew class. We call this «creating a member object.» Y our
new class can be made up of any number and type of other objects, whatever is necessary to
achieve the functionality desired in your new class. This concept is called composition, since
you are composing a new class from existing classes. Sometimes composition is referred to as
a «has-a» relationship, asin «acar has atrunk.»

Composition comes with agreat deal of flexibility. The member objects of your new class are
usually private, making them inaccessible to client programmers using the class. This allows
you to change those members without disturbing existing client code. Y ou can aso change the
member objects at run time, which provides great flexibility. Inheritance, which is described
next, does not have this flexibility since the compiler must place restrictions on classes
created with inheritance.

Because inheritance is so important in object-oriented programming it is often highly
emphasized, and the new programmer can get the idea that inheritance should be used
everywhere. This can result in awkward and overcomplicated designs. Instead, you should
first look to composition when creating new classes, since it is simpler and more flexible. If
you take this approach, your designs will stay cleaner. It will be reasonably obvious when you
need inheritance.

|nheritance:
reusing the interface

By itself, the concept of an object is a convenient tool. It allows you to package data and
functionality together by concept, so you can represent an appropriate problem-space idea
rather than being forced to use the idioms of the underlying machine. These concepts are
expressed in the primary idea of the programming language as a data type (using the class
keyword).

It seems a pity, however, to go to al the trouble to create a data type and then be forced to
create a brand new one that might have similar functionality. It s nicer if we can take the
existing datatype, clone it and make additions and modifications to the clone. Thisis
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effectively what you get with inheritance, with the exception that if the origina class (called
the base or super or parent class) is changed, the modified «clone» (called the derived or
inherited or sub or child class) also reflects the appropriate changes. Inheritance is
implemented in C++ using a specia syntax that names another class as what is commonly
referred to as the «base» class.

When you inherit you create a new type, and the new type contains not only all the members
of the existing type (although the private ones are hidden away and inaccessible), but more
importantly it duplicates the interface of the base class. That is, all the messages you can send
to objects of the base class you can also send to objects of the derived class. Since we know
the type of a class by the messages we can send to it, this means that the derived classis the
same type as the base class. This type equivalence viainheritance is one of the fundamental
gateways in understanding the meaning of object-oriented programming.

Since both the base class and derived class have the same interface, there must be some
implementation to go along with that interface. That is, there must be some code to execute
when an object receives a particular message. If you simply inherit a class and don’'t do
anything else, the methods from the base-class interface come right along into the derived
class. That means objects of the derived class have not only the same type, they aso have the
same behavior, which doesn’'t seem particularly interesting.

Y ou have two ways to differentiate your new derived class from the original base class it
inherits from. The first is quite straightforward: you ssimply add brand new functions to the
derived class. These new functions are not part of the base class interface. This means that the
base class ssimply didn’'t do as much as you wanted it to, so you add more functions. This
simple and primitive use for inheritance is, at times, the perfect solution to your problem.
However, you should look closely for the possibility that your base class might need these
additional functions.

Overriding base-class functional ity

Although inheritance may sometimes imply that you are going to add new functions to the
interface, that’s not necessarily true. The second way to differentiate your new classisto
change the behavior of an existing base-class function. Thisis referred to as overriding that
function.

To override afunction, you simply create a new definition for the function in the derived
class. You're saying «I’m using the same interface function here, but | want it to do
something different for my new type.»

|s-avs. is-like-a relationships

There' s a certain debate that can occur about inheritance: Should inheritance override only
base-class functions? This means that the derived type is exactly the same type as the base
class sinceit has exactly the same interface. As aresult, you can exactly substitute an object
of the derived class for an object of the base class. This can be thought of as pure substitution.
In asense, thisistheideal way to treat inheritance. We often refer to the relationship between
the base class and derived classesin this case as an is-a relationship, because you can say «a
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circleisa shape» A test for inheritance is whether you can state the is-a relationship about
the classes and have it make sense.

There are times when you must add new interface elements to a derived type, thus extending
the interface and creating a new type. The new type can till be substituted for the base type,
but the substitution isn't perfect in a sense because your new functions are not accessible from
the base type. This can be described as an is-like-a relationship; the new type has the interface
of the old type but it also contains other functions, so you can't really say it's exactly the
same. For example, consider an air conditioner. Suppose your house is wired with all the
controls for cooling; that is, it has an interface that alows you to control cooling. Imagine that
the air conditioner breaks down and you replace it with a heat pump, which can both heat and
cool. The heat pump is-like-an air conditioner, but it can do more. Because your house is
wired only to control cooling, it is restricted to communication with the cooling part of the
new object. The interface of the new object has been extended, and the existing system
doesn’t know about anything except the original interface.

When you see the substitution principleit’s easy to feel like that’s the only way to do things,
andinfact it isniceif your design works out that way. But you'll find that there are times
when it’'s equally clear that you must add new functions to the interface of a derived class.
With inspection both cases should be reasonably obvious.

| nterchangeabl e objects
with polymorphism

Inheritance usually ends up creating afamily of classes, al based on the same uniform
interface. We express this with an inverted tree diagram:®

9 This uses the Unified Notation, which will primarily be used in this book.
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Shape
draw()

ar acafl )\

Crcle Squar e Li ne
draw() draw() draw()
nr acnfl )\ ar acafl )\ ar acafl )\

One of the most important things you do with such afamily of classesisto treat an object of a
derived class as an object of the base class. Thisisimportant because it means you can write a
single piece of code that ignores the specific details of type and talks just to the base class.
That code is then decoupled from type-specific information, and thus is simpler to write and
easier to understand. And, if anew type—aTriangle, for example —is added through
inheritance, the code you write will work just as well for the new type of Shape asit did on
the existing types. Thus the program is extensible.

Consider the above example. If you write afunction in C++:

voi d doSt uf f (Shape* s) {
s->erase();
...
s->draw() ;
}
This function speaks to any Shape, so it isindependent of the specific type of object it's
drawing and erasing. If in some other program we use the doStuff( ) function:

Crcle* ¢c = newCrcle();
Triangle* t = new Triangle();
Line* | = new Line();
doStuff(c);

doStuff(t);

doStuff(l);

The callsto doStuff( ) automatically work right, regardless of the exact type of the object.

Thisis actualy a pretty amazing trick. Consider the line:
doStuff(c);
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What' s happening here is that a Cir cle pointer is being passed into afunction that’s expecting
a Shape pointer. Since aCircleis a Shape it can be treated as one by doStuff( ). That is, any
message that doStuff() can send to a Shape, a Circle can accept. So it is acompletely safe
and logical thing to do.

We call this process of treating a derived type as though it were its base type upcasting. The
name cast is used in the sense of casting into a mold and the up comes from the way the
inheritance diagram is typically arranged, with the base type at the top and the derived classes
fanning out downward. Thus, casting to a base type is moving up the inheritance diagram:
upcasting.

An object-oriented program contains some upcasting somewhere, because that’ s how you
decouple yourself from knowing about the exact type you’ re working with. Look at the code
in doStuff( ):

s.erase();

...

s.draw();
Notice that it doesn’t say «If you're a Circle, do this, if you're a Squar e, do that, etc.» If you
write that kind of code, which checks for al the possible types a Shape can actualy be, it's
messy and you need to change it every time you add a hew kind of Shape. Here, you just say
«You're ashape, | know you can erase( ) yourself, do it and take care of the details
correctly.»

Dynamic binding
What's amazing about the code in doStuff( ) is that somehow the right thing happens. Calling
draw( ) for Circle causes different code to be executed than when calling draw( ) for a
Square or aLine, but when the draw( ) message is sent to an anonymous Shape, the correct
behavior occurs based on the actual type that the Shape pointer happens to be connected to.
Thisis amazing because when the C++ compiler is compiling the code for doStuff( ), it
cannot know exactly what typesit is dealing with. So ordinarily, you'd expect it to end up
calling the version of erase( ) for Shape, and draw( ) for Shape and not for the specific
Circle, Square, or Line. And yet the right thing happens. Here's how it works.

When you send a message to an object even though you don’t know what specific typeit is,
and the right thing happens, that’s called polymor phism. The process used by object-oriented
programming languages to implement polymorphism is called dynamic binding. The compiler
and run-time system handle the details; all you need to know is that it happens and more
importantly how to design with it.

Some languages require you to use a special keyword to enable dynamic binding. In C++ this
keyword isvirtual. In C++, you must remember to add a keyword because by default
member functions are not dynamically bound. If a member function is virtual, then when you
send a message to an object, the object will do the right thing, even when upcasting is
involved.
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Abstract base classes and interfaces

Often in a design, you want the base class to present only an interface for its derived classes.
That is, you don’t want anyone to actually create an object of the base class, only to upcast to
it so that its interface can be used. Thisis accomplished by making that class abstract by
giving it a least one pure virtual function. Y ou can recognize a pure virtual function because
it usesthe virtual keyword and isfollowed by = 0. If anyone tries to make an object of an
abstract class, the compiler prevents them. Thisisatool to enforce a particular design.

When an abstract classisinherited, all pure virtua functions must be implemented, or the
inherited class becomes abstract as well. Creating a pure virtual function allows you to put a
member function in an interface without being forced to provide a possibly meaningless body
of code for that member function.

Objects. characteristics + behaviors®e

The first object-oriented programming language was Simula-67, developed in the sixtiesto
solve, as the name implies, ssimulation problems. A classic simulation is the bank teller
problem, which involves a bunch of tellers, customers, transactions, units of money — alot of
«objects.» Objects that are identical except for their state during a program’ s execution are
grouped together into «classes of objects» and that’ s where the word class came from.

A class describes a set of objects that have identical characteristics (data el ements) and
behaviors (functionality). So aclassisreally a data type because a floating point number (for
example) aso has a set of characteristics and behaviors. The difference is that a programmer
defines a class to fit a problem rather than being forced to use an existing data type that was
designed to represent a unit of storage in a machine. Y ou extend the programming language
by adding new data types specific to your needs. The programming system welcomes the new
classes and gives them all the care and type-checking that it givesto built-in types.

This approach was not limited to building simulations. Whether or not you agree that any
program is a simulation of a system you design, the use of OOP techniques can easily reduce
alarge set of problemsto asimple solution. This discovery spawned a number of OOP
languages, most notably Smalltalk — the most successful OOP language until C++.

Abstract datatyping is afundamenta concept in object-oriented programming. Abstract data
types work almost exactly like built-in types: Y ou can create variables of atype (called
objects or instances in object-oriented parlance) and manipulate those variables (called
sending messages or requests; you send a message and the object figures out what to do with

it).

10 parts of this descri ption were adapted from my introduction to The Tao of Objects by Gary
Entsminger, M& T/Holt, 1995.
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Inheritance: type relationships

A type does more than describe the constraints on a set of objects; it also has arelationship
with other types. Two types can have characteristics and behaviors in common, but one type
may contain more characteristics than another and may a so handle more messages (or handle
them differently). Inheritance expresses this similarity between types with the concept of base
types and derived types. A base type contains all the characteristics and behaviors that are
shared among the types derived from it. Y ou create a base type to represent the core of your
ideas about some objects in your system. From the base type, you derive other types to
express the different ways that core can be realized.

For example, a garbage-recycling machine sorts pieces of garbage. The base typeis
«garbage,» and each piece of garbage has aweight, a value, and so on and can be shredded,
melted, or decomposed. From this, more specific types of garbage are derived that may have
additional characteristics (a bottle has a color) or behaviors (an auminum can may be
crushed, a steel can is magnetic). In addition, some behaviors may be different (the value of
paper depends on its type and condition). Using inheritance, you can build a type hierarchy
that expresses the problem you' re trying to solve in terms of its types.

A second example is the classic shape problem, perhaps used in a computer-aided design
system or game simulation. The base type is «shape,» and each shape has asize, acolor, a
position, and so on. Each shape can be drawn, erased, moved, colored, and so on. From this,
specific types of shapes are derived (inherited): circle, square, triangle, and so on, each of
which may have additional characteristics and behaviors. Certain shapes can be flipped, for
example. Some behaviors may be different (calculating the area of a shape). The type
hierarchy embodies both the similarities and differences between the shapes.

Casting the solution in the same terms as the problem is tremendously beneficial because you
don’t need alot of intermediate models (used with procedural languages for large problems)
to get from a description of the problem to a description of the solution; in pre-object-oriented
languages the solution was inevitably described in terms of computers. With objects, the type
hierarchy is the primary model, so you go directly from the description of the system in the
real world to the description of the system in code. Indeed, one of the difficulties people have
with object-oriented design is that it’'s too simple to get from the beginning to the end. A mind
trained to look for complex solutions is often stumped by this simplicity at first.

Polymorphism

When dealing with type hierarchies, you often want to treat an object not as the specific type
that it is but as a member of its base type. This alows you to write code that doesn’t depend
on specific types. In the shape exampl e, functions manipulate generic shapes without respect
to whether they’re circles, squares, triangles, and so on. All shapes can be drawn, erased, and
moved, so these functions simply send a message to a shape object; they don’t worry about
how the object copes with the message.

Such code is unaffected by the addition of new types, which is the most common way to
extend an object-oriented program to handle new situations. For example, you can derive a
new subtype of shape called pentagon without modifying the functions that deal only with
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generic shapes. The ability to extend a program easily by deriving new subtypes isimportant
because it greatly reduces the cost of software maintenance. (The so-called «software crisis»
was caused by the observation that software was costing more than people thought it ought
to.)

There' s aproblem, however, with attempting to treat derived-type objects as their generic
base types (circles as shapes, bicycles as vehicles, cormorants as birds). If afunction is going
to tell ageneric shapeto draw itself, or a generic vehicle to steer, or ageneric bird to fly, the
compiler cannot know at compile-time precisely what piece of code will be executed. That's
the point — when the message is sent, the programmer doesn’t want to know what piece of
code will be executed; the draw function can be applied equally to acircle, square, or triangle,
and the object will execute the proper code depending on its specific type. If you add a new
subtype, the code it executes can be different without changes to the function call. The
compiler cannot know precisely what piece of code is executed, so what does it do?

The answer is the primary twist in object-oriented programming: The compiler cannot make a
function call in the traditional sense. The function call generated by a non-OOP compiler
causes what is called early binding, aterm you may not have heard before because you' ve
never thought about it any other way. It means the compiler generates a call to a specific
function name, and the linker resolves that call to the absolute address of the code to be
executed. In OOP, the program cannot determine the address of the code until run-time, so
some other scheme is necessary when a message is sent to a generic object.

To solve the problem, object-oriented languages use the concept of late binding. When you
send amessage to an object, the code being called isn’t determined until run-time. The
compiler does ensure that the function exists and performs type checking on the arguments
and return value (alanguage where thisisn't trueis called weakly typed), but it doesn’t know
the exact code to execute.

To perform late binding, the compiler inserts a specia bit of code in lieu of the absolute call.
This code calculates the address of the function body to execute at run-time using information
stored in the object itself (this subject is covered in great detail in Chapter 13). Thus, each
object can behave differently according to the contents of that pointer. When you send a
message to an object, the object actually does figure out what to do with that message.

Y ou state that you want a function to have the flexibility of late-binding properties using the
keyword virtual. Y ou don't need to understand the mechanics of virtual to use it, but without
it you can't do object-oriented programming in C++. Virtua functions allow you to express
the differences in behavior of classesin the same family. Those differences are what cause
polymorphic behavior.

Manipulating concepts. what an OOP
program looks like

Y ou know what a procedural program in C looks like: data definitions and function cals. To
find the meaning of such a program you have to work alittle, looking through the function
callsand low-level concepts to create amodel in your mind. Thisis the reason we need
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intermediate representations for procedural programs — they tend to be confusing because the
terms of expression are oriented more toward the computer than the problem you’ re solving.

Because C++ adds many new concepts to the C language, your natural assumption may be
that, of course, the main( ) in a C++ program will be far more complicated than the
equivalent C program. Here, you'll be pleasantly surprised: A well-written C++ program is
generaly far smpler and much easier to understand than the equivalent C program. What
you'll see are the definitions of the objects that represent conceptsin your problem space
(rather than the issues of the computer representation) and messages sent to those objects to
represent the activities in that space. One of the delights of object-oriented programming is
that it's generally very easy to understand the code by reading it. Usually there’' salot less
code, as well, because many of your problems will be solved by reusing existing library code.

Object landscapes
and lifetimes

Technically, OOP isjust about abstract data typing, inheritance and polymorphism, but other
issues can be at least as important. The remainder of this section will cover these issues.

One of the most important factors is the way objects are created and destroyed. Where isthe
datafor an object and how is the lifetime of the object controlled? There are different
philosophies at work here. C++ takes the approach that control of efficiency isthe most
important issue, so it gives the programmer a choice. For maximum run-time speed, the
storage and lifetime can be determined while the program is being written, by placing the
objects on the stack (these are sometimes called automatic or scoped variables) or in the static
storage area. This places a priority on the speed of storage allocation and release, and control
of these can be very valuable in some situations. However, you sacrifice flexibility because
you must know the exact quantity, lifetime and type of objects while you' re writing the
program. If you are trying to solve a more general problem such as computer-aided design,
warehouse management or air-traffic control, thisistoo restrictive.

The second approach is to create objects dynamically in a pool of memory called the heap. In
this approach you don’t know until run time how many objects you need, what their lifetime
isor what their exact typeis. Those are determined at the spur of the moment while the
program is running. If you need a new object, you simply make it on the heap at the point that
you need it. Because the storage is managed dynamically, at run time, the amount of time
required to allocate storage on the heap is significantly longer than the time to create storage
on the stack. (Creating storage on the stack is often a single assembly instruction to move the
stack pointer down, and another to move it back up.) The dynamic approach makes the
generaly logical assumption that objects tend to be complicated, so the extra overhead of
finding storage and releasing that storage will not have an important impact on the creation of
an object. In addition, the greater flexibility is essentia to solve the general programming
problem.
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C++ dlows you to determine whether the objects are created while you write the program or
at run timeto allow the control of efficiency. Y ou might think that sinceit’s more flexible,
you'd always want to create objects on the heap rather than the stack. There' s another issue,
however, and that' s the lifetime of an object. If you create an object on the stack or in static
storage, the compiler determines how long the object lasts and can automatically destroy it.
However, if you create it on the heap the compiler has no knowledge of itslifetime. A
programmer has two options for destroying objects: you can determine programmatically
when to destroy the object, or the environment can provide a feature called a garbage
collector that automatically discovers when an object is no longer in use and destroysiit. Of
course, a garbage collector is much more convenient, but it requires that all applications must
be able to tolerate the existence of the garbage collector and the other overhead for garbage
collection. This does not meet the design requirements of the C++ language and so it was not
included, but C++ does have a garbage collector (as does Smalltalk; Delphi does not but one
could be added. Third-party garbage collectors exist for C++).

Therest of this section looks at additional factors concerning object lifetimes and landscapes.

Containers and iterators

If you don’t know how many objects you’ re going to need to solve a particular problem, or
how long they will last, you aso don’t know how to store those objects. How can you know
how much space to create for those objects? Y ou can't, since that information isn’t known
until run time.

The solution to most problems in object-oriented design seems flippant: you create another
type of object. The new type of object that solves this particular problem holds objects, or
pointers to objects. Of course, you can do the same thing with an array, which isavailablein
most languages. But there’ s more. This new type of object, which istypically referred toin
C++ asacontainer (also called a collection in some languages), will expand itself whenever
necessary to accommodate everything you place inside it. So you don’t need to know how
many objects you're going to hold in a collection. Just creste a collection object and let it take
care of the details.

Fortunately, a good OOP language comes with a set of containers as part of the package. In
C++, it'sthe Standard Template Library (STL). Object Pascal has containersin its Visual
Component Library (VCL). Smalltalk has a very complete set of containers. Java has a
standard set of containers. In some libraries, a generic container is considered good enough
for al needs, and in others (C++ in particular) the library has different types of containersfor
different needs: a vector for consistent accessto all elements, and alinked list for consistent
insertion at all elements, for example, so you can choose the particular type that fits your
needs. These may include sets, queues, hash tables, trees, stacks, etc.

All containers have some way to put things in and get things out. The way that you place
something into a container is fairly obvious. There's afunction called «push» or «add» or a
similar name. Fetching things out of a container is not always as apparent; if it's an array-like
entity such as a vector, you might be able to use an indexing operator or function. But in
many situations this doesn’t make sense. Also, a single-selection function is restrictive. What
if you want to manipulate or compare a set of elementsin the container instead of just one?
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The solution is an iterator, which is an object whose job isto select the elements within a
container and present them to the user of theiterator. Asaclass, it also provides alevel of
abstraction. This abstraction can be used to separate the details of the container from the code
that’ s accessing that container. The container, viathe iterator, is abstracted to be smply a
sequence. Theiterator allows you to traverse that sequence without worrying about the
underlying structure — that is, whether it's avector, alinked list, a stack or something else.
This gives you the flexibility to easily change the underlying data structure without disturbing
the code in your program.

From the design standpoint, all you really want is a sequence that can be manipulated to solve
your problem. If asingle type of sequence satisfied all of your needs, there'd be no reason to
have different kinds. There are two reasons that you need a choice of containers. First,
containers provide different types of interfaces and external behavior. A stack has a different
interface and behavior than that of a queue, which is different than that of aset or alist. One
of these might provide a more flexible solution to your problem than the other. Second,
different containers have different efficiencies for certain operations. The best exampleisa
vector and alist. Both are simple sequences that can have identical interfaces and external
behaviors. But certain operations can have radically different costs. Randomly accessing
elementsin avector is a constant-time operation; it takes the same amount of time regardless
of the element you select. However, in alinked list it is expensive to move through the list to
randomly select an element, and it takes longer to find an element if it is further down thelist.
On the other hand, if you want to insert an element in the middle of a sequence, it's much
cheaper in alist than in avector. These and other operations have different efficiencies
depending upon the underlying structure of the sequence. In the design phase, you might start
with alist and, when tuning for performance, change to a vector. Because of the abstraction
viaiterators, you can change from one to the other with minimal impact on your code.

In the end, remember that a container is only a storage cabinet to put objectsin. If that cabinet
solves al of your needs, it doesn’t really matter how it is implemented (a basic concept with
most types of objects). If you're working in a programming environment that has built-in
overhead due to other factors (running under Windows, for example, or the cost of a garbage
collector), then the cost difference between a vector and alinked list might not matter. You
might need only one type of sequence. Y ou can even imagine the «perfect» container
abstraction, which can automatically change its underlying implementation according to the
way it isused.

Exception handling:
dealing with errors

Ever since the beginning of programming languages, error handling has been one of the most
difficult issues. Because it's so hard to design a good error-handling scheme, many languages
simply ignore the issue, passing the problem on to library designers who come up with

halfway measures that can work in many situations but can easily be circumvented, generally
by just ignoring them. A major problem with most error-handling schemes is that they rely on
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programmer vigilance in following an agreed-upon convention that is not enforced by the
language. If the programmer is not vigilant, which is often if they arein a hurry, these
schemes can easily be forgotten.

Exception handling wires error handling directly into the programming language and
sometimes even the operating system. An exception is an object that is «thrown» from the site
of the error and can be «caught» by an appropriate exception handler designed to handle that
particular type of error. It'sasif exception handling is a different, parallel path of execution
that can be taken when things go wrong. And because it uses a separate execution path, it
doesn’t need to interfere with your normally-executing code. This makes that code simpler to
write since you aren’t constantly forced to check for errors. In addition, athrown exceptionis
unlike an error value that’ s returned from a function or aflag that's set by afunction in order
to indicate an error condition, These can be ignored. An exception cannot be ignored so it’s
guaranteed to be dealt with at some point. Finally, exceptions provide away to reliably
recover from abad situation. Instead of just exiting you are often able to set things right and
restore the execution of a program, which produces much more robust programs.

It's worth noting that exception handling isn’t an object-oriented feature, although in object-
oriented languages the exception is normally represented with an object. Exception handling
existed before object-oriented languages.

| ntroduction to methods

A method is a set of processes and heuristics used to break down the complexity of a
programming problem. Especialy in OOP, methodology is afield of many experiments, so it
isimportant to understand the problem the method istrying to solve before you consider
adopting one. Thisis particularly true with C++, where the programming language itself is
intended to reduce the complexity involved in expressing a program. This may in fact
alleviate the need for ever-more-complex methodologies. Instead, smpler ones may sufficein
C++ for amuch larger class of problems than you could handle with simple methods for
procedural languages.

Its also important to realize that the term «methodology» is often too grand and promises too
much. Whatever you do now when you design and write a program is a method. It may be
your own method, and you may not be conscious of doing it, but it is a process you go
through as you create. If it is an effective process, it may need only a small tune-up to work
with C++. If you are not satisfied with your productivity and the way your programs turn out,
you may want to consider adopting a formal method.

Complexity
To anayze this situation, | shall start with a premise:

Computer programming is about managing complexity by imposing
discipline.

This discipline appears two ways, each of which can be examined separately:
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8. Internal disciplineis seen in the structure of the program itself, through the
expressiveness of the programming language and the cleverness and insight
of the programmers.

9. External discipline is seen in the meta-information about the program,
loosely described as «design documentation» (not to be confused with
product documentation).

| maintain these two forms of discipline are at odds with each other: one is the essence of a
program, driven by the need to make the program work the first time, and the other is the
analysis of a program, driven by the need to understand and maintain the program in the
future. Both creation and maintenance are fundamental properties of a program’s lifetime, and
auseful programming method will integrate both in the most expedient fashion, without going
overboard in one direction or another.

Internal discipline

The evolution of computer programming (in which C++ isjust a step on the path) began by
imposing internal discipline on the programming model, allowing the programmer to aias
names to machine locations and machine instructions. This was such ajump from numerical
machine programming that it spawned other developments over the years, generally involving
further abstractions away from the low-level machine and toward a model more suited to
solving the problem at hand. Not all these developments caught on; often the ideas originated
in the academic world and spread into the computing world at large depending on the set of
problems they were well suited for.

The creation of named subroutines as well as linking techniques to support libraries of these
subroutines was a huge leap forward in the 50’ s and spawned two languages that would be
heavy-hitters for decades: FORTRAN («FORmula-TRANSlation») for the scientific crowd
and COBOL («COmmon Business-Oriented Language») for the business folks. The
successful language in «pure» computer science was Lisp («List-Processing»), while the more
mathematically oriented could use APL («A Programming Language»).

All of these languages had in common their use of procedures. Lisp and APL were created
with language elegance in mind — the «mission statement» of the language is embodied in an
engine that handles all cases of that mission. FORTRAN and COBOL were created to solve
specific types of problems, and then evolved when those problems got more complex or hew
ones appeared. Even in their twilight years they continue to evolve: Versions of both
FORTRAN and COBOL are appearing with object-oriented extensions. (A fundamental tenet
of post-modern philosophy is that any organization takes on an independent life of its own; its
primary goal becomes to perpetuate that life.)

The named subroutine was recognized as a major leverage point in programming, and
languages were designed around the concept, Algol and Pascal, in particular. Other languages
also appeared, successfully solved a subset of the programming problem, and took their place
in the order of things. Two of the most interesting of these were Prolog, built around an
inference engine (something you see popping up in other languages, often asalibrary) and
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FORTH, which is an extensible language. FORTH allows the programmer to re-form the
language itself until it fits the problem, a concept akin to object-oriented programming.
However, FORTH also alows you to change the base language itself. Because of this, it
becomes a maintenance nightmare and is thus probably the purest expression of the concept
of internal discipline, where the emphasis is on the one-time solution of the problem rather
than the maintenance of that solution.

Numerous other languages have been invented to solve a portion of the programming
problem. Usually, these languages begin with a particular objective in mind. BASIC
(«Beginners All-purpose Symbolic Instruction Code»), for example, was designed in the 60's
to make programming simpler for the beginner. APL was designed for mathematical
manipulations. Both languages can solve other problems, but the question becomes whether
they are the most ideal solutions for the entire problem set. The jokeis, «To athree-year-old
with ahammer, everything looks like a nail ,» but it displays an underlying economic truth: If
your only language is BASIC or APL, then that’s probably the best solution for your problem,
especialy if the deadline is short term and the solution has a limited lifetime.

However, two factors eventually creep in: the management of complexity, and maintenance
(discussed in the next section). Of course, complexity iswhat the language was created to
manage in the first place, and the programmer, loath to give up the years of timeinvested in
fluency with the language, will go to greater and greater lengths to bend the language to the
problem at hand. In fact, the boundary of chaosis fuzzy rather than clear: who's to say when
your language begins to fail you? It doesn’'t, not all at once.

The solution to a problem begins to take longer and becomes more of a challenge to the
programmer. More clevernessis required to get around the limitations of the language, and
this cleverness becomes standard lore, things you «just have to do to make the language
work.» This seems to be the way humans operate; rather than grumbling every time we
encounter a flaw, we stop calling it aflaw.

But eventually the programming problems became too difficult to solve and to maintain —
that is, the solutions were too expensive. It was finaly clear that the complexity was more
than we could handle. Although alarge class of programming problems involves doing most
of the work during development and creating a solution that requires minimal maintenance (or
might simply be thrown away or replaced with a different solution), thisis only a subset of the
genera problem. In the general problem, you view the software as providing a service to
people. As the needs of the users evolve, that service must evolve with it. Thus a project is not
finished when version one ships; it isaliving entity that continuesto evolve, and the
evolution of a program becomes part of the general programming problem.

External discipline

The need to evolve a program requires new ways of thinking about the problem. It's not just
«How do we make it work?» but «<How do we make it work and make it easy to change?»
And there's a new problem: When you're just trying to make a program work, you can
assume that the team is stable (you can hope, anyway), but if you're thinking in terms of a
program’s lifetime, you must assume that team members will change. This means that a new
team member must somehow learn the essentials about a program that previous team
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members communicated to each other (probably using spoken words). Thus the program
needs some form of design documentation.

Because documentation is not essential to making a program work, there are no rules for its
creation as there are rules imposed by a programming language on a program. Thus, if you
require your documentation to satisfy a particular need, you must impose an externa
discipline. Whether documentation «works» or not is much more difficult to determine (and
requires a program’s lifetime to verify), so the «best» form of external discipline can be more
hotly debated than the «best» programming language.

The important question to keep in mind when making decisions about external disciplineis,
«What problemam | trying to solve? The essence of the problem was stated above: «How do
we make it work and make it easy to change? However, this question has often gone through
S0 many interpretations that it becomes «How can | conform to the FoobleBlah
documentation specifications so the government will pay me for this project? That is, the
goal of the external discipline becomes the creation of a document rather than a good,
maintainable program design; the document may become more important than the program
itself.

When asking questions about the directions of the future in general, and computing in
particular, | start by applying an economic Occam’s Razor: Which solution costs |ess?
Assuming the solution satisfies the needs, is the price difference enough to motivate you out
of your current, comfortable way of doing things? If your method involves saving every
document ever created during the analysis and design of the project and maintaining al those
documents as the project evolves, then you will have a system that maximizes the overhead of
evolving aproject in favor of complete understanding by new team members (assuming
there’ s not so much documentation that it becomes daunting to read). Taken to an extreme,
such amethod can conceivably cost as much for program creation and maintenance as the
approachesit isintended to replace.

At the other end of the external-structure spectrum are the minimalist methods. Perform
enough of an analysis to be able to come up with adesign, then throw the analysis away so
you don’t spend time and money maintaining it. Do enough of a design to begin coding, then
throw the design away, again, so you don’t spend time and money to maintain the document.
(The following may or may not be ironic, depending on your situation.) Then the code is so
elegant and clear that it needs minima comments. The code and comments together are
enough for the new team member to get up to speed on the project. Because lesstime is spent
with al that tedious documentation (which no one really understands anyway), new members
integrate faster.

Throwing everything away, however, is probably not the best idea, although if you don't
maintain your documents, that’s effectively what you do. Some form of document is usually
necessary. (See the description of scripting, described later in this chapter.)

Communication

Expecting your code to suffice as documentation for alarger project is not particularly
reasonable, even though it happens more often than not in practice. But it contains the essence
of what we really want an external discipline to produce: communication. You'd liketo
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communicate just enough to a new team member that she can help evolve the program. But
you'd also like to keep the amount of money you spend on externa discipline to a minimum
because ultimately people are paying for the service the program provides, not the design
documentation behind it. And to be truly useful, the external discipline should do more than
just generate documentation — it should be away for team members to communicate about
the design as they're creating it. The goal of theideal externa disciplineisto facilitate
communication about the analysis and design of a program. This helps the people working on
the program now and those who will work on the program in the future. The focusis not just
to enable communication, but to create good designs.

Because people (and programmers, in particular) are drawn to computers because the machine
does work for you — again, an economic motivation — external disciplines that require the
developer to do alot of work for the machine seem doomed from the beginning. A successful
method (that is, one that gets used) has two important features:

10. It helps you analyze and design. That is, it's much easier to think about and
communicate the analysis and design with the method than without it. The
difference between your current productivity and the productivity you'll
have using the method must be significant; otherwise you might as well stay
where you are. Also, it must be simple enough to use that you don’'t need to
carry a handbook. When you’ re solving your problem, that’s what you want
to think about, not whether you' re using symbols or techniques properly.

11. It doesn’t impose overhead without short-term payback. Without some
short-term reward in the form of visible progress toward your goal, you
aren’t going to feel very productive with a method, and you' re going to find
ways to avoid it. This progress cannot be in the guise of the transformation
of one intermediate form to another. Y ou’ ve got to see your classes appear,
along with the messages they send each other. To someone creating a
method this may seem like an arbitrary constraint, but it's simple
psychology: People want to feel like they're doing real creative work, and if
your method keeps them from a goal rather than helping them gallop toward
it, they’ Il find away to get around your method.

Magnitude

One of the arguments against my view on the subject of methodologiesis, «Well, yes, you can
get away with anything as long as you' re working with small projects,» with «small»
apparently meaning anything the listener is capable of imagining. Although this attitude is
often used to intimidate the unconverted, there is akernd of truth inside: What you need may
depend on the scale of the problem you' re attempting to solve. Tiny projects need no externa
discipline at al other than the patterns of problem solving learned in the lifetime of the
individual programmer. Big projects with many people have little communication among
those people and so must have aformal way for that communication to occur effectively and
accurately.
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The gray areais the projects in between. Their needs may vary depending on the complexity
of the project and the experience of the developers. Certainly all medium-sized projects don’t
require adherence to a full-blown method, generating many reports, lots of paper, and lots of
work. Some probably do, but many can get away with «methodology lite» (more code, less
documentation). The complexity of all the methodologies we are faced with may fall under an
80% — 20% (or less) rule: We are being deluged with details of methodologies that may be
needed for less than 20% of the programming problems being solved. If your designs are
adequate and maintenance is not a nightmare, maybe you don’t need it, or not all of it

anyway.
Structured OOP?

An even more significant question arises. Suppose a methodology is needed to facilitate
communication. This meta-communication about the program is necessary because the
programming language is inadequate — it is too oriented toward the machine paradigm and is
not very helpful for talking about the problem. The procedural-programming model of the
world, for example, requires you to talk about a program in terms of data and functions that
transform the data. Because this is not the way we discuss the real problem that’s being
solved, you must tranglate back and forth between the problem description and the solution
description. Once you get a solution description and implement it, proper etiquette requires
that you make changes to the problem description anytime you change the solution. This
means you must trandlate from the machine paradigm backward into the problem space. To
get atruly maintainable program that can be adapted to changes in the problem space, thisis
necessary. The overhead and organization regquired seem to demand an externa discipline of
some sort. The most important methodology for procedural programming is the structured
techniques.

Now consider this: What if the language in the solution space were uprooted from the
machine paradigm? What if you could force the solution space to use the same terminology as
the problem space? For example, an air conditioner in your climate-controlled building
becomes an air conditioner in your climate-control program, athermostat becomes a
thermostat, and so on. (Thisiswhat you do, not coincidentally, with OOP.) Suddenly,
trandating from the problem space to the solution space becomes a minor issue. Conceivably,
each phase in the analysis, design, and implementation of a program could use the same
terminology, the same representation. So the question becomes, «Do we still need a document
about the document, if the essential document (the program) can adequately describe itself?»
If OOP does what it claims, then the shape of the programming problem may have changed to
the point that all the difficulties solved by the structured techniques might not exist in this
new world.

Thisisnot just afanciful argument, as a thought experiment will reveal. Suppose you need to
write alittle utility, for example, one that performs an operation on atext file like those you'll
find in the latter pages of Chapter 5. Some of those took afew minutes to write; the most
difficult took afew hours. Now suppose you' re back in the 50's and the project must be done
in machine language or assembly, with minimal libraries. It goes from afew minutes for one
person to weeks or months and many people. In the 50’'s you' d need alot of external
discipline and management; now you need none. Clearly, the devel opment of tools has greatly
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increased the complexity of the problems we' re able to solve without external discipline (and
just as clearly, we go find problems that are more complicated).

Thisis not to suggest that no external discipline is necessary, simply that a useful external
discipline for OOP will solve different problems than those solved by a useful external
discipline for procedural programming. In particular, the goal of an OOP method must be first
and foremost to generate a good design. Not only do good designs of any kind promote reuse,
but the need for agood design is directly in line with the needs of developers at all levels of a
project. Thus, they will be more likely to adopt such a system.

With these pointsin mind, let’s consider some of the issues of an OOP design method.

Five stages of object design

The design life of an object is not limited to the period of time when you’ re writing the
program. Instead, the design of an object appears to happen over a sequence of stages. It's
helpful to have this perspective because you stop expecting perfection right away; instead,
you realize that the understanding of what an object does and what it should look like happens
over time. Thisview aso applies to the design of various types of programs; the pattern for a
particular type of program emerges through struggling again and again with that problem.11
Objects, too, have their patterns that emerge through understanding, use, and reuse.

The following is a description, not a method. It is simply an observation of when you can
expect design of an object to occur.

1. Object discovery

This phase occurs during the initial analysis of a program. Objects may be discovered by
looking for external factors and boundaries, duplication of elements in the system, and the
smallest conceptual units. Some objects are obvious if you aready have a set of class
libraries. Commonality between classes suggesting base classes and inheritance may appear
right away, or later in the design process.

2. Object assembly

Asyou're building an object you'll discover the need for new members that didn’t appear
during discovery. The internal needs of the object may require new classes to support it.

3. System construction

Once again, more regquirements for an object may appear at thislater stage. Asyou learn, you
evolve your objects. The need for communication and interconnection with other objectsin
the system may change the needs of your classes or require new classes.

11 see Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gammaet
al., Addison-Wedey, 1995.
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4. System extension

Asyou add new features to a system you may discover that your previous design doesn’t
support easy system extension. With this new information, you can restructure parts of the
system, very possibly adding new classes.

5. Object reuse

Thisistherea stresstest for aclass. If someonetriesto reuseit in an entirely new situation,
they’ll probably discover some shortcomings. As you change a class to adapt to more new
programs, the general principles of the class will become clearer, until you have atruly
reusable object.

Guidelines for object development
These stages suggest some guidelines when thinking about devel oping your classes:

12. Let a specific problem generate a class, then let the class grow and mature
during the solution of other problems.

13. Remember, discovering the classes you need is the mgjority of the system
design. If you aready had those classes, thiswould be atrivia project.

14. Don't force yourself to know everything at the beginning; learn as you go.
That's the way it will happen anyway.

15. Start programming; get something working so you can prove or disprove
your design. Don't fear procedural-style spaghetti code — classes partition
the problem and help control anarchy and entropy. Bad classes do not break
good classes.

16. Always keep it smple. Little clean objects with obvious utility are better
than big complicated interfaces. Y ou can always start small and simple and
expand the class interface when you understand it better. It can be
impossible to reduce the interface of an existing class.

What a method promises

For various reasons methods have often promised a lot more than they can deliver. Thisis
unfortunate because programmers are aready a suspicious lot when it comes to strategies and
unresalistic expectations; the bad reputation of some methods can cause others to be discarded
out of hand. Because of this, valuable techniques can be ignored at significant financial and
productivity costs.
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A manager’ s silver bullet

The worst promise isto say, «This method will solve all your problems.» Such a promise will
more likely come couched in the idea that a method will solve problems that don’t really have
asolution, or at least not in the domain of program design: An impoverished corporate
culture; exhausted, alienated, or adversarial team members; insufficient schedule and
resources, or attempting to solve a problem that may in fact be insoluble (insufficient
research). The best methodology, regardiess of what it promises, will solve none of these
problems or any problemsin the same class. For that matter, OOP and C++ won't help either.
Unfortunately, a manager in such a situation is precisely the person that’s most vulnerable to
the siren song of the silver bullet.12

A tool for productivity

Thisiswhat a method should be. Increased productivity should come not only in the form of
easy and inexpensive maintenance but especially in the creation of a good design in the first
place. Because the motivating factor for the creation of methodol ogies was improved
maintenance, some methods ignore the beauty and integrity of the program design in favor of
maintenance issues. Instead, a good design should be the foremost goal; a good OOP design
will have easy maintenance as a side-effect.

What a method should deliver

Regardless of what claims are made for a particular method, it should provide a number of
essential features, covered in this section: A contract to alow you to communicate about what
the project will accomplish and how it will do it; a system to support the structuring of that
project; and a set of tools to represent the project in some abstract form so you can easily view
and manipulate it. A more subtle issue, covered last, is the «attitude» of the method
concerning that most precious of al resources, The enthusiasm of the team members.

A communication contract

For very small teams, you can keep in such close contact that communication happens
naturally. Thisistheidea situation. One of the great benefits of C++ isthat it allows projects
to be built with fewer team members, so this intimate style of communication can be
maintained, which means communication overhead is lower and projects can be built more
quickly.

The situation is not always so ideal. There can come a point where there are too many team
members or the project istoo complex, and some form of communication disciplineis
necessary. A method provides away to form a «contract» between the members of ateam.
Y ou can view the concept of such a contract in two ways:

12 A referenceto vampires made in The Mythical Man-Month, by Fred Brooks, Addison-
Wesley, 1975.
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17. Adversarial. The contract is an expression of suspicion between the parties
involved, to make sure that no one gets out of line and everyone does what
they’ re supposed to. The contract spells out the bad things that happen if
they don't. If you are looking at any contract this way, you' ve aready lost
the game because you already think the other party is not trustworthy. If you
can't trust someone, a contract won't ensure good behavior.

18. Informational. The contract is an attempt to make sure everyone knows
what we' ve agreed upon. It is an aid to communication so everyone can
look at it and say, «Yes, that'swhat | think we' re going to do.» It'san
expression of an agreement after the agreement has been made, just to clean
up misunderstandings. This sort of contract can be minimalist and easy to
read.

A useful method will not foment an adversarial contract; the emphasis will be on
communication.

A structuring system

The structure is the heart of your system. If a method accomplishes nothing else it must be
ableto tell programmers:

19. What classes you need.

20. How you hook them together to build aworking system.

A method generates these answers through a process that begins with an analysis of the
problem and ends with some sort of representation of the classes, the system, and the
messages passed between the classes in the system.

Tools for representation

The model should not be more complex than the system it represents. A good model presents
an abstraction.

You are certainly not constrained to using the representation tools that come with a particular
method. Y ou can make up your own to suit your needs. (For example, later in this chapter
there's a suggested notation for use with a commercial word processor.) Following are
guidelines for a useful notation:

21. Include no more detail than necessary. Remember the «seven plus or minus
two» rule of complexity. (You can only hold that many itemsin your mind
at one moment.) Extra detail becomes baggage that must be maintained and
COosts money.

22. Y ou should be able to get as much information as you need by probing
deeper into the representation levels. That is, levels can be created if
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necessary, hidden at higher levels of abstraction and made visible on
demand.

23. The notation should be as minimal as possible. «Too much magic causes
software rot.»

24. System design and class design are separate issues. Classes are reusable
tools, while systems are solutions to specific problems (although a system
design, too, may be reusable). The notation should focus first on system
design.

25. Is a class design notation necessary? The expression of classes provided by
the C++ language seems to be adequate for most situations. If a notation
doesn’t give you a significant boost over describing classesin their native
language, then it’s a hindrance.

26. The notation should hide the implementation internals of the objects. Those
are generally not important during design.

27. Keep it smple. The analysisis the design. Basicaly, al you want to do in
your method is discover your objects and how they connect with each other
to form a system. If a method and notation require more from you, then you
should question whether that method is spending your time wisely.

Don't deplete
the most important resource

My friend Michaegl Wilk, after allowing that he came from academia and perhaps wasn'’t
qualified to make ajudgment (the type of preamble you hear from someone with afresh
perspective), observed that the most important resource that a project, team, or company has
is enthusiasm. It seems that no matter how thorny the problem, how badly you' ve failed in the
past, the primitiveness of your tools or what the odds are, enthusiasm can overcome the
obstacle.

Unfortunately, various management techniques often do not consider enthusiasm at al, or,
because it cannot easily be measured, consider it an «unimportant» factor, thinking that if
enough management structure isin place, the project can be forced through. This sort of
thinking has the effect of damping the enthusiasm of the team, because they can fedl like no
more than a means to a company’s profit motive, a cog. Once this happens a team member
becomes an «employee,» watching the clock and seeking interesting distractions.

A method and management technique built upon motivation and enthusiasm as the most
precious resources would be an interesting experiment indeed. At least, you should consider
the effect that an OOP design method will have on the morale of your team members.
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«Required» reading

Before you choose any method, it’s helpful to gain perspective from those who are not trying
to sell one. It's easy to adopt a method without really understanding what you want out of it or
what it will do for you. Others are using it, which seems a compelling reason. However,
humans have a strange little psychological quirk: If they want to believe something will solve
their problems, they'll try it. (Thisis experimentation, which is good.) But if it doesn’t solve
their problems, they may redouble their efforts and begin to announce loudly what a great
thing they’ ve discovered. (Thisis denia, which is not good.) The assumption here may be
that if you can get other people in the same boat, you won't be lonely, even if it's going
nowhere.

Thisis not to suggest that all methodol ogies go nowhere, but that you should be armed to the
teeth with mental tools that help you stay in experimentation mode («It’s not working; let's
try something else») and out of denial mode («No, that's not really a problem. Everything's
wonderful, we don’t need to change»). | think the following books, read before you choose a
method, will provide you with these tools.

Software Creativity, by Robert Glass (Prentice-Hall, 1995). Thisis the best book I’ ve seen
that discusses per spective on the whole methodology issue. It’'s a collection of short essays
and papers that Glass has written and sometimes acquired (P.J. Plauger is one contributor),
reflecting his many years of thinking and study on the subject. They’ re entertaining and only
long enough to say what’ s necessary; he doesn’t ramble and lose your interest. He's not just
blowing smoke, either; there are hundreds of references to other papers and studies. All
programmers and managers should read this book before wading into the methodol ogy
mire.13

Peopleware, by Tom Demarco and Timothy Lister (Dorset House, 1987). Although they have
backgrounds in software development, this book is about projects and teams in general. But
the focusis on the people and their needs rather than the technology and its needs. They talk
about creating an environment where people will be happy and productive, rather than
deciding what rules those people should follow to be adequate components of a machine. This
latter attitude, | think, is the biggest contributor to programmers smiling and nodding when
XY Z method is adopted and then quietly doing whatever they’ ve aways done.

Complexity, by M. Mitchell Waldrop (Simon & Schuster, 1992). This chronicles the coming
together of agroup of scientists from different disciplines in Santa Fe, New Mexico, to
discuss rea problems that the individual disciplines couldn’t solve (the stock market in
economics, theinitial formation of life in biology, why people do what they do in sociology,
etc.). By crossing physics, economics, chemistry, math, computer science, sociology, and
others, amultidisciplinary approach to these problemsis devel oping. But more importantly, a
different way of thinking about these ultra-complex problemsis emerging: Away from
mathematical determinism and the illusion that you can write an equation that predicts all
behavior and toward first observing and looking for a pattern and trying to emulate that

13 Another good «perspective» book is Object Lessons by Tom Love, SIGS Books, 1993.
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pattern by any means possible. (The book chronicles, for example, the emergence of genetic
algorithms.) This kind of thinking, | believe, is useful as we observe ways to manage more
and more complex software projects.

Scripting:
aminimal method

I'll start by saying thisis not tried or tested anywhere. | make no promises — it's a starting
point, a seed for other ideas, and a thought experiment, albeit after a great deal of thought and
afair amount of reading and observation of myself and others in the process of development.
It was inspired by awriting class | took called «Story Structure,» taught by Robert McKee, 14
primarily to aspiring and practicing screenwriters, but also for novelists and playwrights. It
later occurred to me that programmers have alot in common with that group: Our concepts
ultimately end up expressed in some sort of textual form, and the structure of that expression
iswhat determines whether the product is successful or not. There are afew amazingly well-
told stories, many stories that are uninspired but competent and get the job done, and alot of
badly told stories, some of which don’t get published. Of course, stories seem to want to be
told while programs demand to be written.

Writers have an additional constraint that does not always appear in programming: They
generally work alone or possibly in groups of two. Thus they must be very economical with
their time, and any method that does not bear significant fruit is discarded. Two of McKee's
goals were to reduce the typical amount of time spent on a screenplay from one year to six
months and to significantly increase the quality of the screenplaysin the process. Similar
goals are shared by software developers.

Getting everyone to agree on anything is an especially tough part of the startup process of a
project. The minimal nature of this system should win over even the most independent of
programmers.

Premises
I’m basing the method described here on two significant premises, which you must carefully
consider before you adopt the rest of the ideas:

28. C++, unlike typical procedural languages (and most existing languages, for
that matter) has many guardsin the language and language features so you
can build in your own guards. These guards are intended to prevent the
program you create from losing its structure, both during the process of
creating it and over time, as the program is maintained.

14 Through Two Arts, Inc., 12021 Wilshire Blvd. Suite 868, Los Angeles, CA 90025.
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29. No matter how much analysis you do, there are some things about a system
that won't reveal themselves until design time, and more things that won't
reveal themselves until a program is up and running. Because of this, it's
critical to move fairly quickly through analysis and design to implement a
test of the proposed system. Because of Point 1, thisis far safer than when
using procedural languages, because the guardsin C++ are instrumenta in
preventing the creation of «spaghetti code.»

This second point is worth emphasizing. Because of the history we've had with procedural
languages, it is commendable that a team will want to proceed carefully and understand every
minute detail before moving to design and implementation. Certainly, when creating a
DBMS, it pays to understand a customer’ s needs thoroughly. But aDBMSisin aclass of
problems that is very well-posed and well-understood. The class of programming problem
discussed in this chapter is of the «wild-card» variety, whereit isn't simply re-forming awell-
known solution, but instead involves one or more wild-card factors — elements where there is
no well-understood previous solution, and research is necessary.1> Attempting to thoroughly
analyze awild-card problem before moving into design and implementation resultsin
analysis paralysis because you don’'t have enough information to solve this kind of problem
during the analysis phase. Solving such a problem requires iteration through the whole cycle,
and that requires risk-taking behavior (which makes sense, because you' re trying to do
something new and the potential rewards are higher). It may seem like the risk is compounded
by «rushing» into a preliminary implementation, but it can instead reduce the risk in awild-
card project because you're finding out early whether a particular design is viable.

The goal of this method isto attack wild-card projects by producing the most rapid
development of a proposed solution, so the design can be proved or disproved as early as
possible. Y our efforts will not be lost. It's often proposed that you «build one to throw away.»
With OOP, you may still throw part of it away, but because code is encapsulated into classes,
you will inevitably produce some useful class designs and develop some worthwhile ideas
about the system design during the first iteration that do not need to be thrown away. Thus,
the first rapid pass at a problem not only produces critical information for the next analysis,
design, and implementation iteration, it also creates a code foundation for that iteration.

Another important feature of this method is support for brainstorming at the early part of a
project. By keeping the initial document small and concise, it can be created in afew sessions
of group brainstorming with aleader who dynamically creates the description. This not only
solicits input from everyone, it also fostersinitial buy-in and agreement by everyone on the
team. Perhaps most importantly, it can kick off a project with alot of enthusiasm (as noted
previously, the most essential resource).

15 My rule of thumb for estimating such projects: If there’s more than one wild card, don’t
even try to plan how long it’'s going to take or how much it will cost. There are too many
degrees of freedom.
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Representation

The writer’s most valuable computer tool is the word processor, because it easily supports the
structure of a document. With programming projects, the structure of the program is usually
supported and described by some form of separate documentation. As the projects become
more complex, the documentation is essential. This raises a classic problem, stated by

Brooks: 16

A basic principle of data processing teaches the folly of
trying to maintain independent filesin synchronism ... Yet
our practice in programming documentation violates our
own teaching. We typically attempt to maintain a
machine-readabl e form of a program and an independent
set of human-readable documentation ....»

A good tool will connect the code and its documentation.

| consider it very important to use familiar tools and modes of thinking; the change to OOPis
challenging enough by itself. Early OOP methodol ogies have suffered by using elaborate
graphical notation schemes. Y ou inevitably change your design alot, so expressing it with a
notation that's difficult to modify is aliability because you'll resist changing it to avoid the
effort involved. Only recently have tools been appearing that manipulate these graphical
notations. Tools for easy use of a design notation must already be in place before you can
expect people to use a method. Combining this with the fact that documents are usually
expected during the software design process, the most logical tool is a full-featured word
processor.1? Virtually every company already has these in place (so there's no cost to trying
this method), most programmers are familiar with them, and as programmers they are
comfortable creating tools using the underlying macro language. This follows the spirit of
C++, where you build on your existing knowledge and tool base rather than throwing it away.

The mode of thinking used by this method also follows that spirit. Although a graphical
notation is useful18 to express a design in areport, it is not fast enough to support
brainstorming. However, everyone understands outlining, and most word processors have
some sort of outlining mode that allows you to grab pieces of the outline and quickly move
them around. Thisis perfect for rapid design evolution in an interactive brainstorming session.
In addition, you can expand and collapse outlines to see various levels of granularity in the
system. And (as described later), as you create the design, you create the design document, so

16 The Mythical Man-Month, ibid.

17 My observations here are based on what | am most familiar with: the extensive capabilities
of Microsoft Word, which was used to produce the camera-ready pages of this book.

18 encourage the choice of one that uses simple boxes, lines, and symbols that are available
in the drawing package of the word processor, rather than amorphous shapes that are difficult
to produce.
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areport on the state of the project can be produced with a process not unlike running a
compiler.

1. High concept

Any system you build, no matter how complicated, has a fundamental purpose, the business
that it'sin, the basic need that it satisfies. If you can look past the user interface, the
hardware- or system-specific details, the coding algorithms and the efficiency problems, you
will eventually find the core of its being, simple and straightforward. Like the so-called high
concept from a Hollywood movie, you can describe it in one or two sentences. This pure
description is the starting point.

The high concept is quite important because it sets the tone for your project; it'samission
statement. Y ou won't necessarily get it right the first time (you may be developing the
treatment or building the design before it becomes completely clear), but keep trying until it
feelsright. For example, in an air-traffic control system you may start out with a high concept
focused on the system that you' re building: «The tower program keeps track of the aircraft.»
But consider what happens when you shrink the system to a very small airfield; perhaps
there's only a human controller or none at al. A more useful model won't concern the
solution you' re creating as much as it describes the problem: «Aircraft arrive, unload, service
and reload, and depart.»

2. Treatment

A treatment of a script is asummary of the story in one or two pages, a fleshing out of the
high concept. The best way to develop the high concept and treatment for a computer system
may bein a group situation with afacilitator who has writing ability. |deas can be suggested
in a brainstorming environment, while the facilitator tries to express the ideas on a computer
that’ s networked with the group or projected on screen. The facilitator takes the role of a
ghostwriter and doesn’t judge the ideas but instead simply tries to make them clear and keep
them flowing.

The treatment becomes the jumping-off point for the initial object discovery and first rough
cut at design, which can also be performed in a group setting with afacilitator.

3. Structuring

Structure is the key to the system. Without structure you have a random collection of
meaningless events. With structure you have a story. The structure of a story is expressed
through characters, which correspond to objects, and plot, which corresponds to system
design.

Organizing the system

As mentioned earlier, the primary representation tool for this method is a sophisticated word
processor with outlining facility.
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Y ou start with level-1 sections for high concept, treatment, objects, and design. Asthe
objects are discovered, they are placed as level-2 subsections under objects. Object interfaces
are added as level-3 subsections under the specific type of object. If essential descriptive text
comes up, it is placed as normal text under the appropriate subsection.

Because this technique involves typing and outlining, with no drawing, the brainstorming
processis not hindered by the speed of creating the representation.

Characters: initial object discovery

The treatment contains nouns and verbs. Asyou find these, the nouns will suggest classes,
and the verbs will become either methods for those classes or processes in the system design.
Although you may not be comfortable that you' ve found everything after this first pass,
remember that it's an iterative process. Y ou can add additiona classes and methods at further
stages and later design passes, as you understand the problem better. The point of this
structuring isthat you don’t currently understand the problem, so don’t expect the design to
be revealed to you all at once.

Start by simply moving through the treatment and creating a level-2 subsection in objects for
each unique noun that you find. Take verbs that are clearly acting upon an object and place
them as level-3 method subsections beneath the appropriate noun. Add the argument list (even
if it'sinitially empty) and return type for each method. Thiswill give you arough cut and
something to talk about and push around.

If aclassisinherited from another class, its level-2 subsection should be placed as close as
possible after the base class, and its subsection name should indicate the inheritance
relationship just as you would when writing the code: derived : public base. This allowsthe
code to be properly generated.

Although you can set your system up to express methods that are hidden from the public
interface, the intent here isto create only the classes and their public interfaces; other
elements are considered part of the underlying implementation and not the high-level design.
If expressed, they should appear as text-level notes beneath the appropriate class.

When decision points come up, use a modified Occam’s Razor approach: Consider the
choices and select the one that is simplest, because simple classes are amost always best. It's
easy to add more elements to a class, but astime goes on, it's difficult to take them away.

If you need to seed the process, look at the problem from alazy programmer’s standpoint:
What objects would you like to magically appear to solve your problem? It' s aso helpful to
have references on hand for the classes that are available and the various system design
patterns, to clarify proposed classes or designs.

Y ou won't stay in the objects section the entire time; instead, you'll move back and forth
between objects and system design as you anayze the treatment. Also, a any time you may
want to write some normal text beneath any of the subsections as ideas or notes about a
particular class or method.
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Plot: initial system design

From the high concept and treatment, a number of «subplots» should be apparent. Often they
may be as simple as «input, process, output,» or «user interface, actions.» Each subplot hasits
own level-2 subsection under design. Most stories follow one of a set of common plots; in
OOP the analogy is being called a «pattern.» Refer to resources on OOP design patternsto aid
in searching for plots.

At this point, you're just trying to create a rough sketch of the system. During the
brainstorming session, people in the group make suggestions about activities they think occur
in the system, and each activity is recorded individually, without necessarily working to
connect it to the whole. It's especially important to have the whole team, including
mechanical design (if necessary), marketing, and managers, included in this session, not only
s0 everyone is comfortable that the issues have been considered, but because everyone' s input
isvaluable at this point.

A subplot will have a set of stages or states that it moves through, conditions for moving
between stages, and the actions involved in each transition. Each stage is given its own level-3
subsection under that particular subplot. The conditions and transitions can be described as
text under the stage subhead. Idedlly, you'll eventually (as the design iteration proceeds) be
able to write the essentials of each subplot as the creation of objects and sending messagesto
them. This becomes the initial code body for that subplot.

The design discovery and object discovery processes will stimulate each other, so you'll be
adding subentries to both sections during the session.

4. Development

Thisistheinitia conversion from the rough design to a compiling body of code that can be
tested, and especially that will prove or disprove your design. Thisis not a one-pass process,
but rather the beginning of a series of writes and rewrites, so the emphasisis on converting
from the document into a body of code in such away that the document can be regenerated
using any changes to the structure or associated prose in the code. This way, generating
design documentation after coding begins (and the inevitable changes occur) becomes
reasonably effortless, and the design document can become atool for reporting on the
progress of the project.

Initial trandation

By using the standard section names obj ects and design at level-1 section headings, you can
key your tools to lift out those sections and generate your header files from them. You
perform different activities depending on what major section you're in and the level of
subsection you' re working on. The easiest approach may be to have your tool or macro break
the document into pieces and work on each one appropriately.

Each level-2 section in obj ects should have enough information in the section name (the
name of the class and its base class, if any) to generate the class declaration automatically,
and each level-3 subsection beneath the class name should have enough information in the
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section name (member function name, argument list, and return type) to generate the member
function declaration. Y our tool will simply move through these and create the class
declarations.

For smplicity, asingle class declaration will appear in each header file. The best approach to
naming the header filesis probably to include the file name as tagged information in the level-
2 section name for that class.

Plotting can be more subtle. Each subplot may produce an independent function, called from
inside main( ), or smply asection in main( ). Start with something that gets the job done; a
more refined pattern may emerge in future iterations.

Code generation
Using automatic tools (most word-processor scripting tools are adequate for this),

30. Generate a header file for each class described in your objects section,
creating a class declaration for each one, with all the public interface
functions and their associated description blocks, surrounding each with
special tags that can be easily parsed later.

31. Generate a header file for each subplot and copy its description as a
commented block at the beginning of the file, followed by function
declarations.

32. Mark each subplot, class, and method with its outline heading level asa
tagged, commented identifier: //#1], //#2], etc.). All generated files have
document comments in specially identified blocks with tags. Class names
and function declarations also retain comment markers. Thisway, a
reversing tool can go through, extract all the information and regenerate the
source document, preferably, in a document-description language like Rich
Text Format (RTF).

33. The interfaces and plots should be compilable at this point (but not
linkable), so syntax checking can occur. Thiswill ensure the high-level
integrity of the design. The document can be regenerated from the correctly
compiling files.

34. At this point, two things can happen. If the design is still very early, it's
probably easiest to work on the document (rather than the code) in
brainstorming sessions, or on subparts of the document in groups
responsible for them. However, if the design is complete enough, you can
begin coding. If interface elements are added during coding, they must be
tagged by the programmer along with tagged comments, so the regeneration
program can use the new information to produce the document.

If you had the front end to a compiler, you could certainly do this for classes and functions
automatically, but that’s a big job and the language is evolving. Using explicit tagsis fairly
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fail-safe, and commercia browsing tools can be used to verify that all public functions have
made it into the document (that is, they were tagged).

5. Rewriting

Thisisthe analogy of rewriting a screenplay to refine it and make it shine. In programming,
it's the process of iteration. It's where your program goes from good to great, and where those
issues that you didn’t really understand in the first pass become clear. It’'s also where your
classes can evolve from single-project usage to reusable resources.

From atool standpoint, reversing the processis a bit more complicated. Y ou want to be able
to decompose the header files so they can be reintegrated into the design document, including
all the changes that have been made during coding. Then, if any changes are made to the
design in the design document, the header files must be completely rebuilt, without losing any
of the work that was done to get the header file to compile in the first iteration. Thus, your
tool must not only look for your tagged information to turn into section levels and text, it must
also find, tag, and store the other information such as the #includes at the beginning of each
file. If you keep in mind that the header file expresses the class design and that you must be
able to regenerate the header from your design document, you'll be OK.

Also notice that the text level notes and discussions, which were turned into tagged comments
on the initial generation, have more than likely been modified by the programmer asthe
design evolved. It's essential that these are captured and put into their respective places, so the
design document reflects the new information. This allows you to change that information,
and it’s carried back to the generated header files.

For the system design (main( ) and any supporting functions) you may want to capture the
whole file, add section identifierslike A, B, C, and so on, as tagged comments (do not use line
numbers, because these may change), and attach your section descriptions (which will then be
carried back and forth into the main( ) file as tagged, commented text).

Y ou have to know when to stop when iterating the design. Ideally, you achieve target
functionality and are in the process of refinement and addition of new features when the
deadline comes along and forces you to stop and ship that version. (Remember, softwareisa
subscription business.)

Logistics
Periadically, you'll want to get an idea of where the project is by reintegrating the document.
This process can be painlessif it's done over a network using automatic tools. Regularly
integrating and maintai ning the master design document is the responsihility of the project
leader or manager, while teams or individuals are responsible for subparts of the document
(that is, their code and comments).

Supplemental features, such as class diagrams, can be generated using third-party tools and
automatically included in the document.
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A current report can be generated at any time by simply «refreshing» the document. The state
of al parts of the program can then be viewed; this aso provides immediate updates for
support groups, especialy end-user documentation. The document is also critically valuable
for rapid start-up of new team members.

A single document is more reasonable than all the documents produced by some anaysis,
design, and implementation methods. Although one smaller document islessimpressive, it's
«alive» whereas an analysis document, for example, is only valuable for a particular phase of
the project and then rapidly becomes obsolete. It's hard to put alot of effort into a document
that you know will be thrown away.

Analysis and design

The object-oriented paradigm is a new and different way of thinking about programming and
many folks have trouble at first knowing how to approach a project. Now that you know that
everything is supposed to be an object, you can create a «good» design, one that will take
advantage of all the benefits that OOP has to offer.

Books on OOP analysis and design are coming out of the woodwork. Most of these books are
filled with lots of long words, avkward prose and important-sounding pronouncements.1° |
come away thinking the book would be better as a chapter or at the most a very short book
and feeling annoyed that this process couldn’t be described simply and directly. (It disturbs
me that people who purport to specialize in managing complexity have such trouble writing
clear and simple books.) After all, the whole point of OOP is to make the process of software
development easier, and athough it would seem to threaten the livelihood of those of us who
consult because things are complex, why not make it simple? So, hoping I’ ve built a healthy
skepticism within you, | shall endeavor to give you my own perspective on analysis and
design in as few paragraphs as possible.

Staying on course

While you' re going through the development process, the most important issue is this: don’t
get lost. It's easy to do. Most of these methodol ogies are designed to solve the largest of
problems. (This makes sense; these are the especially difficult projects that justify calling in
that author as consultant, and justify the author’ s large fees.) Remember that most projects
don't fit into that category, so you can usually have a successful analysis and design with a
relatively small subset of what a methodology recommends. But some sort of process, no
matter how limited, will generally get you on your way in a much better fashion than simply
beginning to code.

19 The best introduction is still Grady Booch’s Object-Oriented Design with Applications, 2™
edition, Wiley & Sons 1996. His insights are clear and his prose is straightforward, although
his notations are needlessly complex for most designs. (Y ou can easily get by with a subset.)-
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That said, if you're looking at a methodology that contains tremendous detail and suggests
many steps and documents, it’s still difficult to know when to stop. Keep in mind what you're
trying to discover:

1. What are the objects? (How do you partition your project into its component parts?)

2. What are their interfaces? (What messages do you need to be able to send to each
object?)

If you come up with nothing more than the objects and their interfaces then you can write a
program. For various reasons you might need more descriptions and documents than this, but
you can't really get away with any less.

The process can be undertaken in four phases, and a phase 0 which isjust theinitial
commitment to using some kind of structure.

Phase O: Let’s make aplan

Thefirst step is to decide what steps you’ re going to have in your process. It sounds simple
(in fact, all of this sounds simple) and yet, often, people don’'t even get around to phase one
before they start coding. If your planis «let’s jump in and start coding,» fine. (Sometimes
that’ s appropriate when you have awell-understood problem.) At least agree that thisisthe
plan.

Y ou might also decide at this phase that some additional process structure is necessary but not
the whole nine yards. Understandably enough, some programmers like to work in «vacation
maode» in which no structure is imposed on the process of developing their work: «It will be
done when it's done.» This can be appealing for awhile, but I’ ve found that having afew
milestones along the way helps to focus and galvanize your efforts around those milestones
instead of being stuck with the single goal of «finish the project.» In addition, it divides the
project into more bite-sized pieces and make it seem less threatening.

When | began to study story structure (so that | will someday write anovel) | wasinitialy
resistant to the idea, feeling that when | wrote | simply let it flow onto the page. What | found
was that when | wrote about computers the structure was simple enough so | didn’t need to
think much about it, but | was till structuring my work, albeit only semi-consciously in my
head. So even if you think that your plan isto just start coding, you till go through the
following phases while asking and answering certain questions.

Phase 1. What are we making?

In the previous generation of program design (procedural design), this would be called
«creating the requirements analysis and system specification.» These, of course, were places
to get lost: intimidatingly-named documents that could become big projects in their own right.
Their intention was good, however. The requirements analysis says «<Make alist of the
guidelines we will use to know when the job is done and the customer is satisfied.» The
system specification says «Here' s a description of what the program will do (not how) to
satisfy the requirements.» The requirements analysisis really a contract between you and the
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customer (even if the customer works within your company or is some other object or
system). The system specification is atop-level exploration into the problem and in some
sense a discovery of whether it can be done and how long it will take. Since both of these will
require consensus among people, | think it's best to keep them as bare as possible —idedlly, to
lists and basic diagrams —to save time. Y ou might have other constraints that require you to
expand them into bigger documents.

It's necessary to stay focused on the heart of what you' re trying to accomplish in this phase:
determine what the system is supposed to do. The most valuable tool for thisis a collection of
what are called «use-cases.» These are essentially descriptive answers to questions that start
with «What does the system do if ...» For example, «What does the auto-teller do if a
customer has just deposited a check within 24 hours and there’ s not enough in the account
without the check to provide the desired withdrawa ?» The use-case then describes what the
auto-teller does in that case.

You try to discover afull set of use-cases for your system, and once you' ve done that you've
got the core of what the system is supposed to do. The nice thing about focusing on use-cases
isthat they always bring you back to the essentials and keep you from drifting off into issues
that aren't critical for getting the job done. That is, if you have afull set of use-cases you can
describe your system and move onto the next phase. Y ou probably won’t get it all figured out
perfectly at this phase, but that’s OK. Everything will reveal itself in the fullness of time, and
if you demand a perfect system specification at this point you'll get stuck.

It helpsto kick-start this phase by describing the system in afew paragraphs and then looking
for nouns and verbs. The nouns become the objects and the verbs become the methods in the
object interfaces. You'll be surprised at how useful atool this can be; sometimesit will
accomplish the lion’s share of the work for you.

Although it’'s ablack art, at this point some kind of scheduling can be quite useful. Y ou now
have an overview of what you're building so you'll probably be able to get some idea of how
long it will take. A lot of factors comeinto play here: if you estimate along schedule then the
company might not decide to build it, or a manager might have already decided how long the
project should take and will try to influence your estimate. But it's best to have an honest
schedule from the beginning and deal with the tough decisions early. There have been alot of
attempts to come up with accurate scheduling techniques (like techniques to predict the stock
market), but probably the best approach isto rely on your experience and intuition. Get a gut
feeling for how long it will really take, then double that and add 10 percent. Y our gut feeling
is probably correct; you can get something working in that time. The «doubling» will turn that
into something decent, and the 10 percent will deal with final polishing and details. However
you want to explain it, and regardless of the moans and manipulations that happen when you
reveal such a schedule, it just seems to work out that way.

Phase 2: How will we build 1t?

In this phase you must come up with a design that describes what the classes look like and
how they will interact. A useful diagramming tool that has evolved over timeis the Unified
Modeling Language (UML). Y ou can get the specification for UML at www.rational .com.
UML can aso be helpful as adescriptive tool during phase 1, and some of the diagrams you
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create there will probably show up unmodified in phase 2. Y ou don't need to use UML, but it
can be helpful, especialy if you want to put a diagram up on the wall for everyone to ponder,
which isagood idea. An dternative to UML isatextual description of the objects and their
interfaces (as | described in Thinking in C++), but this can be limiting.

The most successful consulting experiences I’ ve had when coming up with an initial design
involves standing in front of ateam, who hadn’t built an OOP project before, and drawing
objects on awhiteboard. We talked about how the objects should communicate with each
other, and erased some of them and replaced them with other objects. The team (who knew
what the project was supposed to do) actually created the design; they «owned» the design
rather than having it given to them. All | was doing was guiding the process by asking the
right questions, trying out the assumptions and taking the feedback from the team to modify
those assumptions. The true beauty of the process was that the team learned how to do object-
oriented design not by reviewing abstract examples, but by working on the one design that
was most interesting to them at that moment: theirs.

You'll know you're done with phase 2 when you have described the objects and their
interfaces. Well, most of them — there are usually a few that dip through the cracks and don’'t
make themselves known until phase 3. But that’s OK. All you are concerned with is that you
eventually discover al of your objects. It’s nice to discover them early in the process but OOP
provides enough structure so that it’s not so bad if you discover them later.

Phase 3: Let’s build it!

If you're reading this book you' re probably a programmer, so now we're at the part you've
been trying to get to. By following a plan — no matter how simple and brief —and coming up
with design structure before coding, you'll discover that things fall together far more easily
than if you dive in and start hacking, and this provides a great deal of satisfaction. Getting
code to run and do what you want is fulfilling, even like some kind of drug if you look at the
obsessive behavior of some programmers. But it's my experience that coming up with an
elegant solution is deeply satisfying at an entirely different level; it feels closer to art than
technology. And elegance always pays off; it's not a frivolous pursuit. Not only does it give
you a program that’s easier to build and debug, but it's aso easier to understand and maintain,
and that’ s where the financial vauelies.

After you build the system and get it running, it'simportant to do areality check, and here's
where the regquirements analysis and system specification comes in. Go through your program
and make sure that all the requirements are checked off, and that all the use-cases work the
way they’re described. Now you're done. Or are you?

Phase 4: Iteration

Thisisthe point in the development cycle that has traditionally been called «maintenance,» a
catch-all term that can mean everything from «getting it to work the way it wasreally
supposed to in the first place» to «adding features that the customer forgot to mention before»
to the more traditional «fixing the bugs that show up» and «adding new features as the need
arises.» So many misconceptions have been applied to the term «maintenance» that it has
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taken on a dightly deceiving quality, partly because it suggests that you' ve actually built a
pristine program and that al you need to do is change parts, oil it and keep it from rusting.
Perhaps there' s a better term to describe what’ s going on.

Theterm isiteration. That is, «You won't get it right the first time, so give yourself the
latitude to learn and to go back and make changes.» Y ou might need to make alot of changes
as you learn and understand the problem more deeply. The elegance you' Il produce if you
iterate until you've got it right will pay off, both in the short and the long run.

What it meansto «get it right» isn’t just that the program works according to the requirements
and the use-cases. It also means that the internal structure of the code makes sense to you, and
feelslike it fits together well, with no awkward syntax, oversized objects or ungainly exposed
bits of code. In addition, you must have some sense that the program structure will survive the
changes that it will inevitably go through during its lifetime, and that those changes can be
made easily and cleanly. Thisis no small feat. Y ou must not only understand what you're
building, but also how the program will evolve (what | call the vector of change). Fortunately,
object-oriented programming languages are particularly adept at supporting this kind of
continuing modification — the boundaries created by the objects are what tend to keep the
structure from breaking down. They are also what allow you to make changes that would
seem drastic in a procedural program without causing earthquakes throughout your code. In
fact, support for iteration might be the most important benefit of OOP.

With iteration, you create something that at least approximates what you think you're
building, and then you kick the tires, compare it to your requirements and see where it falls
short. Then you can go back and fix it by redesigning and re-implementing the portions of the
program that didn’t work right.20 Y ou might actually need to solve the problem, or an aspect
of the problem, severa times before you hit on the right solution. (A study of Design
Patterns, described in Chapter 16, is usually helpful here.)

Iteration also occurs when you build a system, see that it matches your requirements and then
discover it wasn't actually what you wanted. When you see the system, you realize you want
to solve adifferent problem. If you think this kind of iteration is going to happen, then you
owe it to yourself to build your first version as quickly as possible so you can find out if it's
what you want.

Iteration is closely tied to incremental devel opment. Incremental devel opment means that you
start with the core of your system and implement it as a framework upon which to build the
rest of the system piece by piece. Then you start adding features one at atime. The trick to
thisisin designing aframework that will accommodate all the features you plan to add to it.
(See Chapter 16 for moreinsight into thisissue.) The advantage is that once you get the core
framework working, each feature you add is like a small project in itself rather than part of a
big project. Also, new features that are incorporated later in the development or maintenance

20 This is something like «rapid prototyping,» where you were supposed to build a quick-and-dirty

version so that you could learn about the system, and then throw away your prototype and build it right. |
The trouble with rapid prototyping is that people didn’t throw away the prototype, but instead built upon

it. Combined with the lack of structure in procedural programming, this often leads to messy;expensive-
to-maintain systems that are expensive to maintain.
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phases can be added more easily. OOP supports incremental devel opment because if your
program is designed well, your increments will turn out to be discrete objects or groups of
objects.

Plans pay off

Of course you wouldn’t build a house without alot of carefully-drawn plans. If you build a
deck or adog house, your plans won't be so elaborate but you'll still probably start with some
kind of sketches to guide you on your way. Software development has gone to extremes. For a
long time, people didn’t have much structure in their development, but then big projects
began failing. In reaction, we ended up with methodol ogies that had an intimidating amount
of structure and detail. These were too scary to use — it looked like you'd spend al your time
writing documents and no time programming. (This was often the case.) | hope that what I’ ve
shown you here suggests a middle path — a dliding scale. Use an approach that fits your needs
(and your personality). No matter how minimal you choose to make it, some kind of plan will
make a big improvement in your project as opposed to no plan at al. Remember that, by some
estimates, over 50 percent of projects fail.

Other methods

There are currently alarge number (more than 20) of forma methods available for you to
choose from.21 Some are not entirely independent because they share fundamental ideas, but
at some higher level they are al unique. Because at the lowest levels most of the methods are
constrained by the default behavior of the language, each method would probably suffice for a
simple project. The true benefit is claimed to be at the higher levels; one method may excel at
the design of real-time hardware controllers, but that method may not as easily fit the design
of an archival database.

Each approach has its cheerleading squad, but before you worry too much about alarge-scale
method, you should understand the language basics a little better, to get afeel for how a
method fits your particular style, or whether you even need a method at al. The following
descriptions of three of the most popular methods are mainly for flavor, not comparison
shopping. If you want to learn more about methods, there are many books and courses
available.

21 These are summarized in Object Analysis and Design: Description of Methods, edited by
Andrew T.F. Hutt of the Object Management Group (OMG), John Wiley & Sons, 1994.
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Booch

The Booch?2 method is one of the original, most basic, and most widely referenced. Because
it was developed early, it was meant to be applied to a variety of programming problems. It
focuses on the unique features of OOP: classes, methods, and inheritance. The steps are as

follows:

35.

36.

37.

I dentify classes and objects at a certain level of abstraction. Thisis
predictably a small step. Y ou state the problem and solution in natural
language and identify key features such as nouns that will form the basis for
classes. If you're in the fireworks business, you may want to identify
Workers, Firecrackers, and Customers; more specifically you'll need
Chemists, Assemblers, and Handlers; AmateurFirecrackers and
ProfessionalFirecrackers; Buyers and Spectators. Even more specifically,
you could identify Y oungSpectators, OldSpectators, TeenageSpectators, and
ParentSpectators.

I dentify their semantics. Define classes at an appropriate level of
abstraction. If you plan to create a class, you should identify that class's
audience properly. For example, if you create a class Firecracker, who is
going to observeit, a Chemist or a Spectator? The former will want to know
what chemicals go into the construction, and the latter will respond to the
colors and shapes released when it explodes. If your Chemist requests a
firecracker’s primary color-producing chemicals, it had better not get the
reply, «<Some really cool greens and reds.» Similarly, a Spectator would be
puzzled at a Firecracker that spouted only chemical equations when it was
lit. Perhaps your program is for a vertical market, and both Chemists and
Spectators will useit; in that case, your Firecracker will have both objective
and subjective attributes, and will be able to appear in the appropriate guise
for the observer.

I dentify relationships between them (CRC cards). Define how the
classes interact with other classes. A common method for tabulating the
information about each class uses the Class, Responsibility, Collaboration
(CRC) card. Thisisasmall card (usually anindex card) on which you write
the state variables for the class, the responsibilities it has (i.e., the messages
it gives and receives), and references to the other classes with which it
interacts. Why an index card? The reasoning is that if you can't fit all you
need to know about a class on asmall card, the class istoo complex. The
ideal class should be understood at a glance; index cards are not only
readily available, they aso happen to hold what most people consider a

22 5ee Object-Oriented Design with Applications by Grady Booch, Benjamin/Cummings,
1991. A more recent edition focuses on C++.
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38.

39.

reasonable amount of information. A solution that doesn’t involve amajor
technical innovation is one that's available to everyone (like the document
structuring in the scripting method described earlier in this chapter).

Implement the classes. Now that you know what to do, jump in and code
it. In most projects the coding will affect the design.

Iterate the design. The design process up to this point has the feeling of the
classic waterfall method of program development. Now it diverges. After a
preliminary pass to see whether the key abstractions allow the classes to be
separated cleanly, iterations of the first three steps may be necessary. Booch
writes of a «round-trip gestalt design process.» Having a gestalt view of the
program should not be impossible if the classes truly reflect the natural
language of the solution. Perhaps the most important thing to remember is
that by default — by definition, really — if you modify a class its super-
and subclasses will still function. Y ou need not fear modification; it cannot
break the program, and any change in the outcome will be limited to
subclasses and/or specific collaborators of the class you change. A glance at
your CRC card for the class will probably be the only clue you need to
verify the new version.

Responsibility-Driven Design (RDD)

This method?3 also uses CRC cards. Here, as the name implies, the cards focus on delegation
of responsibilities rather than appearance. To illustrate, the Booch method might produce an
Employee-BankEmployee-BankManager hierarchy; in RDD this might come out Manager-
FinanceM anager-BankManager. The bank manager’s primary responsibilities are managerial,
s0 the hierarchy reflects that.

More formally, RDD involves the following:

40.
41.

42.

Data or state. A description of the data or state variables for each class.

Sinks and sour ces. |dentification of data sinks and sources, classes that
process or generate data.

Observer or view. View or observer classes that separate hardware
dependencies.

23 See Designing Object-Oriented Software by Rebecca Wirfs-Brock et al., Prentice Hall,

1990.
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43. Facilitator or helper. Facilitator or helper classes, such as alinked list, that
contain little or no state information and simply help other classesto
function.

Object Modeling Technique (OMT)

Object Modeling Technique?4 (OMT) adds one more level of complexity to the process.
Booch’s method emphasizes the fundamental appearance of classes and defines them simply
as outgrowths of the natural language solution. RDD takes that one step further by
emphasizing the class responsibility more than its appearance. OMT describes not only the
classes but various states of the system using detailed diagramming, as follows:

44, Object model, «what,» object diagram. The object model is similar to that
produced by Booch’s method and RDD. Object classes are connected by
responsibilities.

45, Dynamic model, «when,» state diagram. The dynamic model describes
time-dependent states of the system. Different states are connected by
transitions. An example that contains time-dependent states is area -time
sensor that collects data from the outside world.

46. Functional model, «<how,» data flow diagram. The functional model
traces the flow of data. The theory is that because the real work at the
lowest level of the program is accomplished using procedures, the low-level
behavior of the program is best understood by diagramming the data flow
rather than by diagramming its objects.

Why C++ succeeds

Part of the reason C++ has been so successful isthat the goal was not just to turn C into an
OOP language (athough it started that way), but to solve many other problems facing
developerstoday, especialy those who have large investmentsin C. Traditionally, OOP
languages have suffered from the attitude that you should dump everything you know and
start from scratch with a new set of concepts and a new syntax, arguing that it’s better in the
long run to lose all the old baggage that comes with procedural languages. This may be true,
in the long run. But in the short run, alot of that baggage was valuable. The most valuable
elements may not be the existing code base (which, given adequate tools, could be trand ated),
but instead the existing mind base. If you're a functioning C programmer and must drop
everything you know about C in order to adopt a new language, you immediately become
nonproductive for many months, until your mind fits around the new paradigm. Whereas if

24 5ee Object-Oriented Modeling and Design by James Rumbaugh et al., Prentice Hall, 1991.
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you can leverage off of your existing C knowledge and expand upon it, you can continue to be
productive with what you aready know while moving into the world of object-oriented
programming. As everyone has his’/her own mental model of programming, this moveis
messy enough as it is without the added expense of starting with a new language model from
square one. So the reason for the success of C++, in anutshell, is economic: It still coststo
move to OOP, but C++ costsalot |ess.

The goal of C++ isimproved productivity. This productivity comesin many ways, but the
language is designed to aid you as much as possible, while hindering you asllittle as possible
with arbitrary rules or any requirement that you use a particular set of features. The reason
C++ issuccessful isthat it is designed with practicality in mind: Decisions are based on
providing the maximum benefits to the programmer.

A better C

Y ou get an instant win even if you continue to write C code because C++ has closed the holes
in the C language and provides better type checking and compile-time analysis. You're forced
to declare functions so the compiler can check their use. The preprocessor has virtually been
eliminated for value substitution and macros, which removes a set of difficult-to-find bugs.
C++ has afeature called references that allows more convenient handling of addresses for
function arguments and return values. The handling of names isimproved through function
overloading, which allows you to use the same name for different functions. Namespaces also
improve the control of names. There are numerous other small features that improve the
safety of C.

Y ou're already on the learning curve

The problem with learning a new language is productivity: No company can afford to
suddenly lose a productive software engineer because she's learning a new language. C++ is
an extension to C, not a complete new syntax and programming model. It allows you to
continue creating useful code, applying the features gradually as you learn and understand
them. This may be one of the most important reasons for the success of C++.

In addition, all your existing C codeis still viable in C++, but because the C++ compiler is
pickier, you'll often find hidden errors when recompiling the code.

Efficiency

Sometimes it is appropriate to trade execution speed for programmer productivity. A financial
model, for example, may be useful for only a short period of time, so it's more important to
create the model rapidly than to execute it rapidly. However, most applications require some
degree of efficiency, so C++ always errs on the side of greater efficiency. Because C
programmers tend to be very efficiency-conscious, thisis aso away to ensure they won't be
able to argue that the language istoo fat and slow. A number of featuresin C++ are intended
to alow you to tune for performance when the generated code isn’t efficient enough.
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Not only do you have the same low-level control asin C (and the ability to directly write
assembly language within a C++ program), but anecdotal evidence suggests that the program
speed for an object-oriented C++ program tends to be within £10% of a program writtenin C,
and often much closer. The design produced for an OOP program may actually be more
efficient than the C counterpart.

Systems are easier
to express and understand

Classes designed to fit the problem tend to expressiit better. This means that when you write
the code, you' re describing your solution in the terms of the problem space («put the grommet
in the binx») rather than the terms of the computer, which is the solution space («set the bit in
the chip that means that the relay will close»). Y ou deal with higher-level concepts and can do
much more with asingle line of code.

The other benefit of this ease of expression is maintenance, which (if reports can be believed)
takes a huge portion of the cost over a program’ s lifetime. If aprogram is easier to
understand, then it’'s easier to maintain. This can also reduce the cost of creating and
maintaining the documentation.

Maximal leverage with libraries

The fastest way to create a program isto use code that’s already written: alibrary. A major
god in C++ isto make library use easier. Thisis accomplished by casting librariesinto new
data types (classes), so bringing in alibrary is adding a new data type to the language.
Because the compiler takes care of how the library is used — guaranteeing proper
initialization and cleanup, ensuring functions are called properly — you can focus on what
you want the library to do, not how you haveto do it.

Because names can be sequestered to portions of your program, you can use as many libraries
as you want without the kinds of name clashes you'd run into with C.

Source-code reuse with templates

Thereisasignificant class of types that require source-code modification in order to reuse
them effectively. The template performs the source code modification automatically, making
it an especialy powerful tool for reusing library code. A type you design using templates will
work effortlessly with many other types. Templates are especially nice because they hide the
complexity of thistype of code reuse from the client programmer.

Error handling

Error handling in C is a notorious problem, and one that is often ignored — finger-crossing is
usualy involved. If you're building alarge, complex program, there's nothing worse than
having an error buried somewhere with no vector telling you where it came from. C++
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exception handling (the subject of Chapter 16) is away to guarantee that an error is noticed
and that something happens as a result.

Programming in the large

Many traditional languages have built-in limitations to program size and complexity. BASIC,
for example, can be great for pulling together quick solutions for certain classes of problems,
but if the program gets more than a few pages long or ventures out of the normal problem
domain of that language, it’s like trying to run through an ever-more viscous solution. C, too,
has these limitations. For example, when a program gets beyond perhaps 50,000 lines of code,
name collisions start to become a problem. In short, you run out of function and variable
names. Another particularly bad problem isthe little holes in the C language — errors can get
buried in alarge program that are extremely difficult to find.

There' s no clear line that tells when your language is failing you, and even if there were,
you'd ignoreit. You don't say, «My BASIC program just got too big; I'll have to rewriteitin
Cl» Instead, you try to shoehorn afew more linesin to add that one extra feature. So the extra
Ccosts come cregping up on youl.

C++ isdesigned to aid programming in the large, that is, to erase those creeping-complexity
boundaries between a small program and alarge one. Y ou certainly don’t need to use OOP,
templates, namespaces, and exception handling when you' re writing a hello-world-class
utility program, but those features are there when you need them. And the compiler is
aggressive about ferreting out bug-producing errors for small and large programs alike.

Strategies for transition

If you buy into OOP, you next question is probably, «How can | get my

manager/coll eagues/department/peers to start using objects?> Think about how you — one
independent programmer — would go about learning to use a new language and a new
programming paradigm. Y ou’' ve done it before. First comes education and examples; then
comes atria project to give you afeel for the basics without doing anything too confusing;
then you try to do a «real world» project that actually does something useful. Throughout
your first projects you continue your education by reading, asking questions of gurus, and
trading hints with friends. In essence, this is the approach many authors suggest for the switch
from C to C++. Switching an entire company will of course introduce certain group dynamics,
but it will help at each step to remember how one person would do it.

Stepping up to OOP
Here are some guidelines to consider when making the transition to OOP and C++:

1. Training

Thefirst step is some form of education. Remember the company’ sinvestment in plain C
code, and try not to throw it al into disarray for 6 to 9 months while everyone puzzles over
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how multiple inheritance works. Pick a small group for indoctrination, preferably one
composed of people who are curious, work well together, and can function as their own
support network while they’re learning C++.

An dternative approach that is sometimes suggested is the education of all company levels at
once, including overview courses for strategic managers as well as design and programming
courses for project builders. Thisis especially good for smaller companies making
fundamental shiftsin the way they do things, or at the division level of larger companies.
Because the cost is higher, however, some may choose to start with project-level training, do
apilot project (possibly with an outside mentor), and let the project team become the teachers
for the rest of the company.

2. Low-risk project

Try alow-risk project first and alow for mistakes. Once you’ ve gained some experience, you
can either seed other projects from members of thisfirst team or use the team members as an
OOP technical support staff. Thisfirst project may not work right the first time, so it should
be not very important in the grand scheme of things. It should be simple, self-contained, and
instructive; this means that it should involve creating classes that will be meaningful to the
other programmers in the company when they get their turn to learn C++.

3. Modd from success

Seek out examples of good object-oriented design before starting from scratch. There'sa
good probability that someone has solved your problem already, and if they haven’t solved it
exactly you can probably apply what you' ve learned about abstraction to modify an existing
design to fit your needs. Thisis the general concept of design patterns.2>

4. Use existing classlibraries

The primary economic motivation for switching to C++ is the easy use of existing code in the
form of class libraries; the shortest application development cycle will result when you don’t
have to write anything but main( ) yourself. However, some new programmers don’'t
understand this, are unaware of existing class libraries, or through fascination with the
language desire to write classes that may already exist. Y our success with OOP and C++ will
be optimized if you make an effort to seek out and reuse other peopl€’'s code early in the
transition process.

5. Don't rewrite existing code in C++

Although compiling your C code in C++ usually produces (sometimes great) benefits by
finding problemsin the old code, it is hot usually the best use of your time to take existing,
functional code and rewrite it in C++. There are incremental benefits, especidly if the codeis
dated for reuse. But chances are you aren’t going to see the dramatic increases in productivity

25 See Gammacet dl., ibid.
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that you hope for in your first few projects unless that project is a new one. C++ and OOP
shine best when taking a project from concept to redlity.

Management obstacles

If you're a manager, your job isto acquire resources for your team, to overcome barriers to
your team’ s success and in general to try to provide the most productive and enjoyable
environment so your team is most likely to perform those miracles that are always being
asked of you. Moving to C++ falsin all three of these categories, and it would be wonderful
if it didn’t cost you anything as well. Although it is arguably cheaper than the OOP
aternatives for team of C programmers (and probably for programmersin other procedural
languages), it isn't free, and there are obstacles you should be aware of before trying to sell
the move to C++ within your company and embarking on the move itself.

Startup costs

The cost is more than just the acquisition of a C++ compiler. Y our medium- and long-term
costs will be minimized if you invest in training (and possibly mentoring for your first
project) and aso if you identify and purchase class libraries that solve your problem rather
than trying to build those libraries yourself. These are hard-money costs that must be factored
into arealistic proposal. In addition, there are the hidden costsin loss of productivity while
learning a new language and possibly a new programming environment. Training and
mentoring can certainly minimize these but team members must overcome their own struggles
to understand the issues. During this process they will make more mistakes (thisis a feature,
because acknowledged mistakes are the fastest path to learning) and be less productive. Even
then, with some types of programming problems, the right classes, and the right devel opment
environment, it's possible to be more productive while you're learning C++ (even considering
that you' re making more mistakes and writing fewer lines of code per day) than if you'd
stayed with C.

Performance issues

A common question is, «<Doesn’t OOP automatically make my programs a lot bigger and
slower?» The answer is, «It depends.» Most traditional OOP languages were designed with
experimentation and rapid prototyping in mind rather than |ean-and-mean operation. Thus,
they virtually guaranteed a significant increase in size and decrease in speed. C++, however,
is designed with production programming in mind. When your focusis on rapid prototyping,
you can throw together components as fast as possible while ignoring efficiency issues. If
you're using any third-party libraries, these are usually aready optimized by their vendors; in
any caseit’s not an issue while you're in rapid-development mode. When you have a system
you like, if it's small and fast enough, then you' re done. If not, you begin tuning with a
profiling tool, looking first for speedups that can be done with simple applications of built-in
C++ features. If that doesn’t help, you look for modifications that can be madein the
underlying implementation so no code that uses a particular class needs to be changed. Only if
nothing else solves the problem do you need to change the design. The fact that performance
in that portion of the design is so critical is an indicator that it must be part of the primary
design criteria. Y ou have the benefit of finding this out early through rapid prototyping.
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As mentioned earlier in this chapter, the number that is most often given for the differencein

size and speed between C and C++ is £10%, and often much closer to par. Y ou may actually

get asignificant improvement in size and speed for C++ over C because the design you make
for C++ could be quite different from the one you'd make for C.

The evidence for size and speed comparisons between C and C++ is so far al anecdotal and is
likely to remain so. Regardless of the number of people who suggest that a company try the
same project using C and C++, no company is likely to waste money that way, unlessit’s very
big and interested in such research projects. Even then it seems like the money could be better
spent. Almost universally, programmers who have moved from C (or some other procedural
language) to C++ have had the personal experience of a great acceleration in their
programming productivity, and that’s the most compelling argument you can find.

Common design errors

When starting your team into OOP and C++, programmers will typically go through a series
of common design errors. This often happens because of too little feedback from experts
during the design and implementation of early projects, because no experts have been
developed within the company. It's easy to feel that you understand OOP too early in the
cycle and go off on a bad tangent; something that’s obvious to someone experienced with the
language may be a subject of great internal debate for a novice. Much of this trauma can be
skipped by using an outside expert for training and mentoring.

Summary

This chapter attempts to give you afeel for the broad issues of object-oriented programming
and C++, including why OOP is different, and why C++ in particular is different; concepts of
OOP methods and why you should (or should not) use one; a suggestion for a minimal
method that I’ ve developed to allow you to get started on an OOP project with minimal
overhead; discussions of other methods; and finally the kinds of issues you will encounter
when moving your own company to OOP and C++.

OOP and C++ may not be for everyone. It's important to evaluate your own needs and decide
whether C++ will optimally satisfy those needs, or if you might be better off with another
programming system. If you know that your needs will be very specialized for the foreseeable
future and if you have specific constraints that may not be satisfied by C++, then you owe it
to yourself to investigate the alternatives. Even if you eventually choose C++ as your
language, you'll at least understand what the options were and have a clear vision of why you
took that direction.
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2: Making & using
obJ ects

This chapter will introduce enough of the concepts of C++
and program construction to allow you to write and run a
simple object-oriented program. In the following chapter we
will cover the basic syntax of C & C++ in detail.

Classes that someone el se has created are often packaged into alibrary. This chapter uses the
iostream library of classes, which comes with all C++ implementations. |ostreams are avery
useful way to read from files and the keyboard, and to write to files and the display. After
covering the basics of building a program in C and C++, iostreams will be used to show how
easy it isto utilize a pre-defined library of classes.

To create your first program you must understand the tools used to build applications.

The process of language
tranglation

All computer languages are tranglated from something that tends to be easy for a human to
understand (source code) into something that is executed on a computer (machine
instructions). Traditionally, trandators fall into two classes: interpreters and compilers.

| nterpreters

An interpreter trang ates source code (written in the programming language) into activities
(which may comprise groups of machine instructions) and immediately executes those
activities. BASIC is the most popular interpreted language. BASIC interpreters trandate and
execute one line at atime, and then forget the line has been trandated. This makes them slow,
since they must re-trandlate any repeated code. More modern interpreters trandate the entire
program into an intermediate language, that is executed by a much faster interpreter.
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Interpreters have many advantages. The transition from writing code to executing codeis
almost immediate, and the source code is always available so the interpreter can be much
more specific when an error occurs. The benefits often cited for interpreters are ease of
interaction and rapid development (but not execution) of programs.

Interpreters usually have severe limitations when building large projects. The interpreter (or a
reduced version) must always be in memory to execute the code, and even the fastest
interpreter may introduce unacceptable speed restrictions. Most interpreters require that the
complete source code be brought into the interpreter all at once. Not only does this introduce a
space limitation, it can also cause more difficult bugsif the language doesn’t provide facilities
to localize the effect of different pieces of code.

Compilers

A compiler tranglates source code directly into assembly language or machine instructions.
Thisisan involved process, and usually takes severa steps. The transition from writing code
to executing code is significantly longer with a compiler.

Depending on the acumen of the compiler writer, programs generated by a compiler tend to
require much less space to run, and run much more quickly. Although size and speed are
probably the most often cited reasons for using a compiler, in many situations they aren’t the
most important reasons. Some languages (such as C) are designed to allow pieces of a
program to be compiled independently. These pieces are eventually combined into a final
executable program by a program called the linker. Thisis called separate compilation.

Separate compilation has many benefits. A program that, taken all at once, would exceed the
limits of the compiler or the compiling environment can be compiled in pieces. Programs can
be built and tested a piece at atime. Once a piece is working, it can be saved and forgotten.
Collections of tested and working pieces can be combined into libraries for use by other
programmers. As each piece is created, the complexity of the other piecesis hidden. All these
features support the creation of large programs.

Compiler debugging features have improved significantly. Early compilers only generated
machine code, and the programmer inserted print statements to see what was going on. Thisis
not always effective. Recent compilers can insert information about the source code into the
executable program. This information is used by powerful source-level debuggersto show
exactly what is happening in a program by tracing its progress through the source code.

Some compilers tackle the compilation-speed problem by performing in-memory compilation.
Most compilers work with files, reading and writing them in each step of the compilation
process. In-memory compiler keep the program in RAM. For small programs, this can seem
asresponsive as an interpreter.
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The compilation process

If you are going to create large programs, you heed to understand the steps and toolsin the
compilation process. Some languages (C and C++, in particular) start compilation by running
a preprocessor on the source code. The preprocessor is a simple program that replaces
patterns in the source code with other patterns the programmer has defined (using
preprocessor directives). Preprocessor directives are used to save typing and to increase the
readability of the code (Later in the book, you'll learn how the design of C++ is meant to
discourage much of the use of the preprocessor, since it can cause subtle bugs). The pre-
processed code is written to an intermediate file.

Compilers often do their work in two passes. The first pass parses the pre-processed code.
The compiler breaks the source code into small units and organizesit into a structure called a
tree. Inthe expression «A + B» thedlements‘A’, ‘+" and ‘B’ are leaves on the parse tree. The
parser generates a second intermediate file containing the parse tree.

A global optimizer is sometimes used between the first and second passes to produce smaller,
faster code.

In the second pass, the code generator walks through the parse tree and generates either
assembly language code or machine code for the nodes of the tree. If the code generator
creates assembly code, the assembler isrun. The end result in both casesis an object module
(afile with an extension of .0 or .obj). A peephole optimizer is sometimes used in the second
passto look for pieces of code containing redundant assembly-language statements.

The use of the word «object« to describe chunks of machine code is an unfortunate artifact.
The word came into use before anyone thought of object-oriented programming. «Object» is
used in the same sense as «goal» when discussing compilation, while in object-oriented
programming it means «a thing with boundaries.»

The linker combines alist of object modules into an executable program that can be loaded
and run by the operating system. When a function in one object module makes a reference to
afunction or variable in another object module, the linker resolves these references. The
linker bringsin a specia object module to perform start-up activities.

The linker can also search through special files called libraries. A library contains a collection
of object modulesin asinglefile. A library is created and maintained by a program called a
librarian.

Static type checking

The compiler performs type checking during the first pass. Type checking tests for the proper
use of arguments in functions, and prevents many kinds of programming errors. Since type
checking occurs during compilation rather than when the program isrunning, it is called static
type checking.

Some object-oriented languages (notably Smalltalk) perform all type checking at run-time
(dynamic type checking). Dynamic type checking is less restrictive during development, since
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you can send any message to any object (the object figures out, at run time, whether the
message is an error). It aso adds overhead to program execution and |eaves the program open
for run-time errors that can only be detected through exhaustive testing.

C++ uses static type checking because the language cannot assume any particular run-time
support for bad messages. Static type checking notifies the programmer about misuse of types
right away, and maximizes execution speed. Asyou learn C++ you will see that most of the
language design decisions favor the same kind of high-speed, robust, production-oriented
programming the C language is famous for.

Y ou can disable static type checking. Y ou can aso do your own dynamic type checking —
you just need to write the code.

Tools for separate compilation

Separate compilation is particularly important when building large projects. In C and C++, a
program can be created in small, manageable, independently tested pieces. To create a
program with multiple files, functions in one file must access functions and data in other files.
When compiling afile, the C or C++ compiler must know about the functions and datain the
other files: their names and proper usage. The compiler insures the functions and data are
used correctly. This process of "telling the compiler" the names of external functions and data
and what they should look like is called declaration. Once you declare afunction or variable,
the compiler knows how to check to make sureit is used properly.

At the end of the compilation process, the executable program is constructed from the object
modules and libraries. The compiler produces object modules from the source code. These are
files with extensions of .0 or .obj, and should not be confused with object-oriented
programming "objects.”

The linker must go through all the object modules and resolve al the external references, i.e.,
make sure that all the external functions and data you claimed existed via declarations during
compilation actually exist.

Declarations vs. definitions

A declaration tells the compiler "this function or this piece of data exists somewhere else, and
hereiswhat it should look like." A definition tells the compiler: "make this piece of data here"
or "make this function here." Y ou can declare a piece of data or afunction in many different
places, but there must only be one definition in C and C++. When the linker is uniting all the
object modules, it will complain if it finds more than one definition for the same function or
piece of data.

Almost al C/C++ programs require declarations. Before you can write your first program,
you need to understand the proper way to write a declaration.
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Function declaration syntax

A function declaration in Standard C and C++ gives the function name, the argument types
passed to the function, and the return value of the function. For example, hereis a declaration
for afunction called funcl that takes two integer arguments (integers are denoted in C/C++
with the keyword int) and returns an integer:

int funcl(int,int);
C programmers should note that thisis different from function declarationsin K&R C. The
first keyword you see isthe return value, al by itself: int. The arguments are enclosed in
parentheses after the function name, in the order they are used. The semicolon indicates the

end of astatement; in this case, it tells the compiler "that's all -- there is no function definition
here!"

C/C++ declarations attempt to mimic the form of theitem's use. For example, if A is another
integer the above function might be used this way:

| A = funcl(2,3);
Since funcl( ) returns an integer, the C or C++ compiler will check the use of funcl( ) to
make sure that A is an integer and both arguments are integers.

In C and C++, arguments in function declarations may have names. The compiler ignores the
names but they can be helpful as mnemonic devices for the user. For example, we can declare
funcl() in adifferent fashion that has the same meaning:

| int funcl(int length, int wdth);

A gotcha

Thereisasignificant difference between C (both Standard C and K& R) and C++ for
functions with empty argument lists. In C, the declaration:

| int func2();

means "a function with any number and type of argument.” This prevents type-checking, soin
C++ it means "a function with no arguments.” If you declare a function with an empty
argument list in C++, remember it's different from what you may be used to in C.

Function definitions

Function definitions look like function declarations except they have bodies. A body isa
collection of statements enclosed in braces. Braces denote the beginning and ending of a
block of code; they have the same purpose as the begin and end keywords in Pascal. To give
funcl() adefinition which is an empty body (a body containing no code), write this:

| int funcl(int length, int width) { }
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Notice that in the function definition, the braces replace the semicolon. Since braces surround
a statement or group of statements, you don't need a semicolon. Notice also that the
arguments in the function definition must have names if you want to use the argumentsin the
function body (since they are never used here, they are optional).

Function definitions are explored |ater in the book.

Variable declaration syntax

The meaning attributed to the phrase "variable declaration™” has historically been confusing
and contradictory, and it's important that you understand the correct definition so you can read
code properly. A variable declaration tells the compiler what avariable looks like. It says "l
know you haven't seen this name before, but | promise it exists someplace, and it's avariable
of X type."

In afunction declaration, you give atype (the return value), the function name, the argument
list, and a semicolon. That's enough for the compiler to figure out that it's a declaration, and
what the function should look like. By inference, a variable declaration might be atype
followed by a name. For example:

int A

could declare the variable A as an integer, using the above logic. Here's the conflict: thereis
enough information in the above code for the compiler to create space for an integer called A,
and that's what happens. To resolve this dilemma, a keyword was necessary for C and C++ to
say "thisis only adeclaration; it's defined elsewhere." The keyword is extern. It can mean the
definition is external to thefile, or later in thefile.

Declaring a variable without defining it means using the extern keyword before a description
of the variable, likethis:

| extern int A
extern can also apply to function declarations. For funcl(), it looks like this:
| extern int funcl(int length, int wdth);

This statement is equivaent to the previous funcl( ) declarations. Since there is no function
body, the compiler must treat it as afunction declaration rather than afunction definition. The
extern keyword is superfluous and optional for function declarations. It is probably
unfortunate that the designers of C did not require the use of extern for function declarations;
it would have been more consistent and less confusing (but would have required more typing,
which certainly explains what they did).

Including headers

Most libraries contain significant numbers of functions and variables. To save work and
ensure consistency when making the external declarations for these items, C/C++ uses a
device called the header file. A header file is afile containing the external declarations for a
library; it conventionally has afile name extension of 'h', such as headerfile.h (You may aso
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see some older code using different extensions like .hxx or .hpp, but thisis rapidly becoming
Very rare)

The programmer who creates the library provides the header file. To declare the functions and
external variablesin the library, the user smply includes the header file. To include a header
file, use the #include preprocessor directive. Thistells the preprocessor to open the named
header file and insert its contents where the #include statement appears. Files may be named
in a#include statement in two ways: in double quotes, or in angle brackets (< >). File names
in double quotes, such as:

#i ncl ude "l ocal . h"

tell the preprocessor to search the current directory for the file and report an error if thefile
does not exist. File names in angle bracketstell the preprocessor to ook through a search path
specified in the environment. Setting the search path varies between machines, operating
systems and C++ implementations. To include the iostream header file, you say:

#i ncl ude <i ostreanp

The preprocessor will find the iostream header file (often in a subdirectory called INCLUDE)
and insert it.

In C, aheader file should not contain any function or data definitions because the header can
be included in more than one file. At link time, the linker would then find multiple definitions
and complain. In C++, there are two exceptions:. inline functions and const constants
(described later in the book) can both be safely placed in header files.

New include format

As C++ has evolved, different compiler vendors chose different extensions for file names. In
addition, various operating systems have different restrictions on file names, in particular on
name length. To smooth over these rough edges, the standard adopts a new format that allows
file names longer than the notorious eight characters and eliminates the extension. For
example, including iostream.h becomes

#i ncl ude <i ostreanp

The trandator can implement the includes in away to suit the needs of that particular
compiler and operating system, if necessary truncating the name and adding an extension. Of
course, you can aso copy the headers given you by your compiler vendor to ones without
extensions if you want to use this style before a vendor has provided support for it.

The libraries that have been inherited from Standard C are still available with the .h extension.
However, you can aso use them in the C++ include style by prepending a «c» before the
name. Thus:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

Become:
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#i ncl ude <cstdi o>
#i ncl ude <cstdlib>

And so on, for all the Standard C headers. This provides a nice distinction to the reader
indicating when you're using C versus C++ libraries.

Linking
The linker collects object modules (with file name extensions of .o or .obj), generated by the

compiler, into an executable program the operating system can load and run. It isthe last
phase of the compilation process.

Linker characterigtics vary from system to system. Generally, you just tell the linker the
names of the object modules and libraries you want linked together, and the name of the
executable, and it goes to work. Some systems require you to invoke the linker yourself. With
most C++ packages you invoke the linker through C++. In many situations, the linker is
invoked for you, invisibly.

Many linkers won't search object files and libraries more than once, and they search through

the list you give them from left to right. This means that the order of object filesand libraries
can be important. If you have a mysterious problem that doesn't show up until link time, one

possibility isthe order in which the files are given to the linker.

Using libraries
Now that you know the basic terminology, you can understand how to use alibrary. Touse a
library:

1. Include the library's header file

2. Use the functions and variables in the library

3. Link the library into the executable program
These steps also apply when the object modules aren't combined into alibrary. Including a
header file and linking the object modules are the basic steps for separate compilation in both
C and C++.

How the linker searches alibrary

When you make an exter nal reference to afunction or variable in C or C++, the linker, upon
encountering this reference, can do one of two things. If it has not already encountered the
definition for the function or variable, it adds it to its list of "unresolved references.” If the
linker has already encountered the definition, the reference is resolved.

If the linker cannot find the definition in the list of object modules, it searches the libraries.
Libraries have some sort of indexing so the linker doesn't need to look through all the object
modulesin the library -- it just looks in the index. When the linker finds a definition in a
library, the entire object module, not just the function definition, is linked into the executable
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program. Note that the whole library isn't linked, just the object module in the library that
contains the definition you want (otherwise programs would be unnecessarily large). If you
want to minimize executable program size, you might consider putting a single function in
each source code file when you build your own libraries. This requires more editing, but it can
be helpful to the user.

Because the linker searches filesin the order you give them, you can pre-empt the use of a
library function by inserting afile with your own function, using the same function name, into
the list before the library name appears. Since the linker will resolve any referencesto this
function by using your function before it searches the library, your function is used instead of
the library function.

Secret additions

When a C or C++ executable program is created, certain items are secretly linked in. One of
these is the startup module, which contains initialization routines that must be run any time a
C or C++ program executes. These routines set up the stack and initialize certain variablesin
the program.

The linker always searches the standard library for the compiled versions of any "standard"
functions called in the program. The iostream functions, for example, are in the standard C++
library.

Because the standard library is always searched, you can use any function (or class, in C++)
inthelibrary by simply including the appropriate header file in your program. To use the
iostream functions, you just include the iostream.h header file.

In non-standard implementations of C (and C++ C-code generators that use non-standard
implementations of C), commonly used functions are not always contained in the library that
is searched by default. Math functions, in particular, are often kept in a separate library. You
must explicitly add the library name to the list of files handed to the linker.

Using plain C libraries

Just because you are writing code in C++, you are not prevented from using C library
functions. There has been a tremendous amount of work done for you in these functions, so
they can save you alot of time. Y ou should hunt through the manuals for your C and/or C++
compiler before writing new functions.

This book will use C library functions when convenient (Standard C library functions will be
used to increase the portability of the programs).

Using pre-defined C library functionsis quite simple: just include the appropriate header file
and use the function.

NOTE: since Standard C header files use function prototyping, their function declarations
agree with C++. If, however, your C header files use the older K&R C "empty-argument-list"
style for function declarations, you will have trouble because the C++ compiler takes these to
mean "functions with no arguments." To fix the problem, you must create new header files
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and either put the proper argument listsin the declarations or smply put elipses(...) in the
argument list, which mean "any number and type of arguments.”

Y our first C++ program

Y ou now know enough of the basics to create and compile a program. The program will use
the pre-defined C++ iostream classes that comes with all C++ packages. The iostreams class
handles input and output for files, with the console, and with "standard" input and output
(which may be redirected to files or devices). In this very simple program, a stream object
will be used to print a message on the screen.

Using the iostreams class

To declare the functions and exter nal datain the iostreams class, include the header file with
the statement

| #i ncl ude <i ostreanr

The first program uses the concept of standard output, which means "a general-purpose place

to send output." Y ou will see other examples using standard output in different ways, but here
it will just go to the screen. The iostream package automatically defines a variable (an object)

called cout that accepts al data bound for standard output.

To send data to standard output, use the operator <<. C programmers know this operator as
the bitwise left shift. C++ allows operators to be overloaded. When you overload an operator,
you give it anew meaning when that operator is used with an object of a particular type. With
iostream objects, the operator << means "send to." For example:

cout << "howdy!";
sends the string "howdy!" to the object called cout.
Chapter XX covers operator overloading in detail.

Fundamentals of program structure

A C/C++ program is a collection of variables, function definitions and function calls. When
the program starts, it executes initialization code and calls a specia function, "main( )." You
put the primary code for the program here. (All functions in this book use parentheses after
the function name.)

A function definition consists of areturn value type (which defaultsto integer if noneis
specified), afunction name, an argument list in parentheses, and the function code contained
in braces. Here is a sample function definition:

| int function() {
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/1 Function code here (this is a comment)
}
The above function has an empty argument list, and a body that only contains a comment.

There can be many sets of braces within a function definition, but there must aways be at
least one set surrounding the function body. Since main( ) isafunction, it must follow these
rules. Unless you intend to return a value from your program (some operating systems can
utilize areturn value from a program), main( ) should have areturn type of void, so the
compiler won't issue awarning message.

C and C++ are free form languages. With few exceptions, the compiler ignores carriage
returns and white space, so it must have some way to determine the end of a statement. In
C/C++, statements are delimited by semicolons.

C comments start with /* and end with */. They can include carriage returns. C++ uses C-style
comments and adds a new type of comment: //. The// starts a comment that terminates with a
carriage return. It is more convenient than /* */ for one-line comments, and is used
extensively in this book.

"Hello, world!"

And now, finally, the first program:

[1: C02:Hello.cpp

/1 Saying Hello with C++

#i nclude <iostrean» // Stream decl arations
usi ng nanmespace std;

int main() {
cout << "Hello, World! | am" << 8 << " Today!" << endl;
Y I~

The cout object is handed a series of arguments, which it prints out in left-to-right order. With
iostreams, you can string together a series of arguments like this, which makes the class easy
to use.

Text inside double quotesiis called a string. The compiler creates space for strings and stores
the ASCII equivalent for each character in this space. The string is terminated with a value of
0 to indicate the end of the string. The special iostream function end| outputstheline and a
newline.

Inside a character string, you can insert special characters that do not print using escape
sequences. These consist of a backslash (\) followed by a specia code. For example \n means
new line. Y our compiler manual or local Standard C guide gives a complete set of escape
sequences; othersinclude \t (tab), \\ (backslash) and \b (backspace).

Notice that the entire phrase terminates with a semicolon.
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String arguments and constant numbers are mixed in the cout statement. Because the operator
<< isoverloaded with a variety of meanings when used with cout, you can send cout a variety
of different arguments, and it will "figure out what to do with the message.”

Running the compiler

To compile the program, edit it into a plain text file called HELL O.CPP and invoke the
compiler with HELL O.CPP as the argument. For simple, one-file programs like this one, most
compilerswill take you all the way through the process. For example, to use the Gnu C++
compiler (whichisfreely available), you say:

g++ Hello.cpp

Other compilers will have asimilar syntax; consult your compiler’s documenation for details.

More about 10streams

So far you have seen only the most rudimentary aspect of the iostreams class. The output
formatting available with iostreams includes number formatting in decimal, octal and hex.
Here's another example of the use of iostreams:

[1: C02:Strean?. cpp
/1l More streans features
#i ncl ude <i ostreanp
usi ng nanmespace std;

int main() {
/1 Specifying formats w th mani pul ators:
cout << "a nunber in decimal: "
<< dec << 15 << endl;
cout << "in octal: " << oct << 15 << endl;
cout << "in hex: " << hex << 15 << endl;
cout << "a floating-point nunber: "
<< 3.14159 << endl;
cout << "non-printing char (escape): "
<< char (27) << endl;
Y I~

This example shows the iostreams class printing numbers in decimal, octal and hexadecimal
using iostream manipulators (which don't print anything, but change the state of the output
stream). Floating-point numbers are determined automatically, by the compiler. In addition,
any character can be sent to a stream object using a cast to a character (a char is adatatype
designed to hold characters), which looks like a function call: char ('), along with the
character's ASCII value. In the above program, an escape is sent to cout.
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String concatenation

An important feature of the Standard C preprocessor is string concatenation. This featureis
used in some of the C++ examples in this book. If two quoted strings are adjacent, and no
punctuation is between them, the compiler will paste the strings together as a single string.
Thisis particularly useful when printing code listings in books and magazines that have width
restrictions:

/1: Q02: Concat . cpp

/1 String Concatenation
#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
cout << "This string is far too long to put on a single "
"line but it can be broken up with no ill effects\n"
"as long as there is no punctuati on separating "
"adj acent strings.\n";
Yy oI~

Reading input

Theiostreams class provides the ability to read input. The object used for standard input is
cin. cin normally expects input from the console, but input can be redirected from other
sources. An example of redirection is shown later in this chapter.

Theiostreams operator used with cin is>>. This operator waits for the same kind of input as
its argument. For example, if you giveit an integer argument, it waits for an integer from the
console. Here's an example program that converts number bases:

[1: Q02: Nunctonv. cpp
/1l Converts decimal to octal and hex
#i ncl ude <i ostreany
usi ng nanmespace std;

int main() {
i nt nunber;
cout << "Enter a deci mal nunber: ";
cin >> nunber;
/1 Using format mani pul ators:
cout << "value in octal = 0" << oct << nunber << endl;
cout << "value in hex = 0x" << hex << nunber << endl;
Y I~
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Notice the declaration of the integer number at the beginning of main( ). Since the extern
keyword isn't used, the compiler creates space for number at that point.

Simple file manipulation

Standard /O provides avery simple way to read and write files, called I/O redirection. If a
program takes input from standard input (cin for iostreams) and sends its output to standard
output (cout for iostreams), that input and output can be redirected. Input can be taken from a
file, and output can be sent to afile. To re-direct 1/O on the command line, use the < sign to
redirect input and the > sign to redirect output. For example, if we have afictitious program
fiction.exe (or simply fiction, in Unix) which reads from standard input and writes to
standard output, you can redirect standard input from the file stuff and redirect the output to
the file such with the command:

fiction < stuff > such

Since the files are opened for you, the job is much easier (although you'll see later that
iostreams has a very simple mechanism for opening files).

As auseful example, suppose you want to record the number of times you perform an
activity, but the program that records the incidents must be loaded and run many times, and
the machine may be turned off, etc. To keep a permanent record of the incidents, you must
store the datain afile. Thisfile will be called INCIDENT.DAT and will initially contain the
character 0. For easy reading, it will always contain ASCII digits representing the number of
incidents.

The program to increment the number isvery simple:

[1: Q02:Incr.cpp

/! Read a nunber, add one and wite it
#i ncl ude <i ostreane

usi ng nanmespace std;

int main() {
int num
cin >> num
cout << num + 1;
Y I~

To test the program, run it and type a number followed by a carriage return. The program
should print a number one larger than the one you type.

The program can be called from inside another program using the Standard C system( )
function, which is declared in the header file stdlib.h:

/1: CO02:1ncident.cpp
/1 Records an incident using |INCR
#i nclude <cstdlib> // Declare the systen{) function
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usi ng nanmespace std;

int main() {

/1 Qther code here...

system("incr < incident.dat > incident.dat");
Y I~

To use the system( ) function, you give it astring that you would normally type at the
operating system command prompt. The command executes and control returns to the
program.

Notice that the file INCIDENT.DAT isread and written using I/O redirection. Since the
single > isused, thefile is overwritten. Although it works fine here, reading and writing the
same fileisn't dways a safe thing to do -- if you aren't careful you can end up with garbagein
thefile.

If adouble >> is used instead of asingle >, the output is appended to the file (and this
program wouldn't work correctly).

This program shows you how easy it isto use plain C library functionsin C++: just include
the header file and call the function. The upward compatibility from C to C++ isabig
advantage if you are learning the language starting from a background in C.

Notice that the file INCIDENT.DAT isread and written using I/O redirection. Since the
single > isused, thefile is overwritten. Although it works fine here, reading and writing the
same fileisn't dways a safe thing to do -- if you aren't careful you can end up with garbagein
thefile.

If adouble >> is used instead of asingle >, the output is appended to the file (and this
program wouldn't work correctly).

This program shows you how easy it isto use plain C library functionsin C++: just include
the header file and call the function. The upward compatibility from C to C++ isabig
advantage if you are learning the language starting from a background in C.

Summary
Exercises
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3: TheCin C++

The user-defined data type, or class, is what distinguishes C++ from traditional procedural
languages. A classis a hew data type that you or someone el se creates to solve a particular
type of problem. Once aclassis created, anyone can use it without knowing the specifics of
how it works, or even how classes are built. This chapter will teach you enough of the basics
of C and C++ s0 you can utilize a class that someone else has written. The quick coverage of
C++ features which are similar to C features will continue in chapters 3 and 4.

This chapter treats classes as if they are just another built-in data type available for usein
programs. So you don't see any undefined concepts, the process of writing your own classes
must be delayed until the following chapter. This may cause atedious delay for experienced C
programmers. However, to leap past the necessary basics would hopelessly confuse
programmers attempting to move to C++ from other languages.

If you program with Pascal or some other procedura language, this chapter gives you a
decent background in the style of C used in C++. If you are familiar with the style of C
described in the first edition of Kernighan & Ritchie (often called K&R C) you will find some
new and different featuresin C++ aswell as Standard C. If you are familiar with Standard C,
and in particular with function prototypes, you should skim through this chapter looking for
features that are particular to C++.

Controlling execution In
C/C++

This section covers the execution control statementsin C++. You must be familiar with these
statements before you can read C or C++ code.

C++ uses all C's execution control statements. These include if-else, while, do-while, for, and
a selection statement called switch. C++ a so allows the infamous goto, which will be
avoided in this book.

Trueand fasein C

An expression istrueif it produces a non-zero integral value. An expression isfaseif it
produces an integral zero.

All conditional statements use the truth or falsehood of a conditional expression to determine
the execution path. An example of a conditional expressionis A == B. Thisusesthe
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conditional operator == to see if the variable A is equivaent to the variable B. The expression
returns 1 if the statement istrue and O if it is false. Other conditional operators are >, <, >=,
etc. The next chapter covers conditional statements.

If-else
The if-€lse statement can exist in two forms: with or without the €' se. The two forms are:

if (expression)
statement

or

if (expression)
statement

else
statement

The "expression” evaluates to true or false. The "statement” means either a simple statement
terminated by a semicolon or compound statement, which is a group of simple statements
enclosed in braces. Any time the word "statement” is used, it is always implied that the
statement can be simple or compound. Note this statement can aso be another if, so they can
be strung together.

Pascal programmers should notice that the "then" isimplied in C and C++, which are terse
languages. "Then" isn't essential, so it was | eft out.

[1: Q03:1fthen.cpp

/!l Denmonstration of if and if-else conditionals
#i ncl ude <i ostreane

usi ng nanmespace std;

int main() {
int i;
cout << "type a nunber and a carriage return" << endl;
cin > i;
if(i >5)
cout << "the nunber was greater than 5 " << endl;
el se
if(i <5)
cout << "the nunber was less than 5 " << endl;
el se
cout << "the nunber nust be equal to 5 " << endl;

cout << "type a nunmber and a carriage return" << endl;
cin > i;
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if(i < 10)
if(i >5) [/ "if" is just another type of statenent
cout << "5 < i <10 " << endl
el se
cout << "i <= 5" << endl
else // Matches "if(i < 10) "
cout << "i >= 10 " << endl
Y I~

Indentation makes C/C++ code easier to read. Since C and C++ are "free form" languages, the
extra spaces, tabs and carriage returns do not affect the resulting program. It is conventiona to
indent the body of a control flow statement so the reader may easily determine where it begins
and ends?.

while

while, do-while and for control looping. A statement repeats until the controlling expression
evaluatesto false.

The form for awhileloopis

while(expression)
statement

The expression is evaluated once at the beginning of the loop, and again before each further
iteration of the statement.

This example staysin the body of the while loop until you type the secret number or press
control-C.

/1: CO03: Guess. cpp

/1 Quess a nunber (denonstrates "while")
#i ncl ude <i ostreanr

usi ng nanmespace std;

int main() {
int secret = 15;
i nt guess = O;
[/l "!'="is the "not-equal" conditional:
whi | e(guess ! = secret) { // Conmpound statenent

cout << "guess the nunber: ";
cin >> guess;

26 Note that all conventions seem to end after the agreement that some sort of indentation take
place. The feud between styles of code formatting is unending.
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}

cout << "You got it!" << endl;
Y I~

do-while

The form for do-whileis

do
statement
while(expression);

The do-while is different from the while because the statement always executes at |east once,
even if the expression evaluates to false the first time. In asimple while, if the conditional is
false the first time the statement never executes.

If ado-whileisused inthe "GUESS' program, the variable guess does not need an initial
dummy value, sinceit isinitialized by the cin statement beforeit is tested:

/1: C03: Quess2. cpp

/1 The guess program usi ng do-while
#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
int secret = 15;
int guess; // No initialization needed this tine
do {
cout << "guess the nunber: ";
cin >> guess;

} whi | e(guess ! = secret);
cout << "You got it!" << endl;
Yy oI~

for

A for loop performs initialization before the first iteration. Then it performs conditional
testing and, at the end of each iteration, some form of "stepping.” The form of the for loop is:

for (initialization; expression; step)
Statement

Any of the expressions initialization, expression or step may be empty. The initialization code
executes once at the very beginning. The expression is tested before each iteration (if it
evaluates to false at the beginning, the statement never executes). At the end of each loop, the
step executes.
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for loops are usually used for "counting” tasks:

[1: Q03:Charlist.cpp

/1 Display all the ASCI| characters.
/1 Denonstrates "for."

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {

for(int i =0; i <128, i =i + 1)
if (i '=26) [/ ANSI Term nal/ANSI.SYS Cl ear screen
cout << " value: " << i <<
" character: " << char(i) << endl; // Type conversion
Yy oI~

Y ou may notice that the variable i is defined at the point whereit is used, instead of at the
beginning of the block denoted by the open curly brace {. Traditional procedura languages
require that all variables be defined at the beginning of the block so when the compiler creates
ablock it can allocate space for those variables.

Declaring all variables at the beginning of the block requires the programmer to writein a
particular way because of the implementation details of the language. Most people don't know
all the variables they are going to use before they write the code, so they must keep jumping
back to the beginning of the block to insert new variables, which is awkward and causes
errors. It is confusing to read the code because each block starts with a clump of variable
declarations, and the variables might not be used until much later in the block.

In C++ (not in C) you can spread your variable declarations throughout the block. Whenever
you need a hew variable, you can define it right where you use it. In addition, you can
initialize the variable at the point you declare it, which prevents a certain class of errors.
Defining variables at any point in a scope allows a more natural coding style and makes code
easier to understand. C++ compilers collect all the variable declarations in the block and
secretly place them at the beginning of the block.

The break and continue Keywords

Inside the body of any of the looping constructs you can control the flow of the loop using
break and continue. break quits the loop without executing the rest of the statements in the
loop. continue stops the execution of the current iteration and goes back to the beginning of
the loop to begin a new iteration.

As an example of the use of break and continue, this program is a very simple menu system:

//: CO3: Menu. cpp

/1 Sinple menu program denonstrating
/1 the use of "break" and "continue"
#i ncl ude <i ostreanp
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usi ng nanmespace std;

int main() {
char c; // To hold response

while(1) {
cout << "MAIN MENU: " << endl
cout << "| for left, r for right, q to quit: ";
cin > c;
if(c=="q)
break; // CQut of "while(l)"
if(c =="1") {

cout << "LEFT MENU:." << endl

cout << "select a or h: ";

cin > c;

if(c =='a") {
cout << "you chose 'a'" << endl
continue; // Back to main nenu

}

if(c =="'b") {
cout << "you chose 'b'" << endl
continue; // Back to main nenu

}
el se {
cout << "you didn't choose a or b!"
<< endl
continue; // Back to main nenu
}
}
if(c =="r") {

cout << "RIGHT MENU: " << endl
cout << "select c or d: ";
cin > c;
if(c =="'c") {
cout << "you chose 'c'" << endl
continue; // Back to main nenu
}
if(c =='d) {
cout << "you chose 'd'" << endl
continue; // Back to main nenu
}
el se {
cout << "you didn't choose c or d!"
<< endl
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continue; // Back to main nenu

}
}
cout << "you nust type |l or r or gq!'" << endl;
}
cout << "quitting nmenu..." << endl;
Y I~

If the user selects'q’ in the main menu, the break keyword is used to quit, otherwise the
program just continues to execute indefinitely. After each of the sub-menu selections, the
continue keyword is used to pop back up to the beginning of the while loop.

The while(1) statement is the equivalent of saying "do this loop forever." The break
statement allows you to break out of this infinite while loop when the user typesa'q.'

switch

A switch statement selects from among pieces of code based on the value of an integral
expression. Itsformis:

switch(selector) {
case integral-valuel : statenment; break;
case integral-value2 : statenment; break;
case integral-value3d : statenment; break;
case integral-valued4 : statenment; break;
case integral -value5 : statenment; break;
(...)
defaul t: statenent;

}

Selector is an expression that produces an integral value. The switch compares the result of
selector to each integral-value. If it finds a match, the corresponding statement (simple or
compound) executes. If no match occurs, the default statement executes.

Y ou will notice in the above definition that each case ends with a break, which causes
execution to jump to the end of the switch body. Thisis the conventional way to build a
switch statement, but the break is optional. If it is missing, the code for the following case
statements execute until a break is encountered. Although you don't usually want this kind of
behavior, it can be useful to an experienced C programmer.

The switch statement is a very clean way to implement multi-way selection (i.e., selecting
from among a number of different execution paths), but it requires a selector that evaluatesto
an integral value at compile-time. If you want to use, for example, a string as a selector, it
won't work in aswitch statement. For a string selector, you must use instead a series of if
statements and compare the string inside the conditional .

Menus often lend themselves neatly to a switch:
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/1: CO3: Menu2. cpp

/1 A nmenu using a swtch statnent
#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
char response; // The user's response
int quit =0; // Flag for quitting
while(quit == 0) {
cout << "Select a, b, cor gqto quit: ";
cin >> response;
swi tch(response) {

case 'a' : cout << "you chose 'a'" << endl;
br eak;

case 'b' : cout << "you chose 'b'" << endl;
br eak;

case 'c' cout << "you chose 'c'" << endl;
br eak;

case '(' cout << "quitting nmenu" << endl;
quit = 1;
br eak;

default : cout << "Please use a,b,c or g!"
<< endl;

}
}
Y I~

Notice that selecting 'q' sets the quit flag to 1. The next time the selector is evaluated, quit ==
0 returns fal se so the body of the while does not execute.

|ntroduction to C and C++
operators

Y ou can think of operators as a specia type of function (C++ operator overloading treats
operators precisely that way). An operator takes one or more arguments and produces a new
value. The arguments are in a different form than ordinary function calls, but the effect isthe
same.

Y ou should be reasonably comfortable with the operators used so far from your previous
programming experience. The concepts of addition (+), subtraction and unary minus (-),
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multiplication (*), division (/) and assignment (=) all work much the samein any
programming language. The full set of operators are enumerated in the next chapter.

Precedence

Operator precedence defines the order in which an expression evaluates when severa
different operators are present. C and C++ have specific rules to determine the order of
evaluation. The easiest to remember is that multiplication and division happen before addition
and subtraction. After that, if an expression isn't transparent to you it probably won't be for
anyone reading the code, so you should use parentheses to make the order of evaluation
explicit. For example:

|A:X+Y-2/2+Z;

has a very different meaning from the same statement with a particular grouping of
parentheses:

| A=X+ (Y- 2)/(2+ 2);

Auto Increment and decrement

C, and therefore C++, are full of shortcuts. Shortcuts can make code much easier to type, and
sometimes much harder to read. Perhaps the designers thought it would be easier to
understand a tricky piece of code if your eyes didn't have to scan as large an area of print.

One of the nicer shortcuts is the auto-increment and auto-decrement operators. Y ou often use
these to change loop variables, which control the number of times aloop executes.

The auto-decrement operator is -- and means "decrease by one unit." The auto-increment
operator is ++ and means "increase by one unit." If A isanint, for example, the expression
++A isequivalent to (A = A + 1). Auto-increment and auto-decrement operators produce the
value of the variable as aresult. If the operator appears before the variable, (i.e., ++A), the
operation is performed and the value is produced. If the operator appears after the variable
(i.e. A++), the valueis produced, then the operation is performed. As an example:

/1: Q03: Aut oi nc. cpp

/1 Shows use of auto-incremnment
/1 and auto-decrenent operators.
#i ncl ude <i ostreanr

usi ng nanmespace std;

int main() {
int i = 0;
int j =0;
cout << ++i << endl; // Pre-increnent
cout << j++ << endl; // Post-increnent
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cout << --i << endl; // Pre-decrenent
cout << j-- << endl; // Post decrenent
Y I~

If you've been wondering about the name "C++," now you understand. It implies "one step
beyond C."

Using standard 1/O for easy
file handling

The iostream class contains functions to read and write files. Often, however, it is easiest to
read from cin and write to cout. The program can be tested by typing at the console, and
when it isworking, files can be manipulated via redirection on the command line (in Unix and
MS-DOS).

Simple "cat" program

So far, al the messages you've seen are sent via operator overloading to stream objects. In
C++, amessageis usually sent to an object by calling a member function for that object. A
member function looks like aregular function -- it has a name, argument list and return value.
However, it must always be connected to an object. It can never be called by itself. A member
function is aways selected for a particular object viathe dot (.) member selection operator.

The iostream class has several non-operator member functions. One of theseis get( ), which
can be used to fetch a single character (or astring, if it is called differently). The following
program uses get( ) to read characters from the cin object. The program uses the
complementary member function put( ) to send characters the cout object. Characters are
read from standard input and written to standard output.

/1: CO03:Cat.cpp

/! Denonstrates nenber function calls
/1 and sinple file i/o.

#i ncl ude <i ostreane

usi ng nanmespace std;

int main() {
char c;
whi I e(cin.get(c))
cout. put (c);
Y I~

get( ) returns avalue that istested to determine the end of the input is reached. Aslong asthe
return value is non-zero (true), there is more input available and the body of the whileloop is
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executed, but when the expression cin.get(c) produces aresult of O, there is no more input so
it stops looping..

To use cat, simply redirect afileinto it; the results will appear on the screen:
| cat < infile
If you redirect the output file you've created a simple "copy" program:

| cat <infile > outfile

Pass by reference

C programmers may find the above program puzzling. According to plain C syntax, the
character variable c looks like it is passed by value to the member function get( ). Yet cis
used in the put( ) member function asif get( ) had modified the value of ¢, whichis
impossible if it was passed by value! What goes on here?

C++ has added another kind of argument passing: pass-by-reference. If afunction argument is
defined as pass-by-reference, the compiler takes the address of the variable when the function
is caled. The argument of the stream function get( ) is defined as pass-by-reference, so the
above program works correctly.

Chapter 4 describes passing by reference in more detail. The first part of that chapter
describes addresses, which you must understand before references make any sense.

Handling spaces in input

To read and use more than a character at atime from standard input, you will need to use a
buffer. A buffer is a data-storage area used to hold and manipulate a group of data items with
identical types.

In C and C++, you can create a buffer to hold text with an array of characters. Arraysin C and
C++ are denoted with the bracket operator ([ ]). To define an array, give the datatype, a name
for the array, and the size in brackets. For an array of characters (a character buffer) called buf
the declaration could be:

char buf[100]; // Space for 100 contiguous characters

To read an entire word instead of a character, use cin and the >> operator, but send the input
to a character buffer instead of just a single character. The operator >> is overloaded so you
can use it with anumber of different types of arguments. The ideaiis the samein each case:
you want to get some input. Y ou need different kinds of input, but you don't have to worry
about it because the language takes care of the differentiation for you.

Here's a program to read and echo a word:

/1: C03: Readwor d. cpp
/1 Read and echo a word from standard i nput
#i ncl ude <i ostreanp
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usi ng nanmespace std;

int main() {

char buf[100];

cout << "type a word: ";

cin >> buf;

cout << "the word you typed is: " << buf << endl
Y I~

Y ou will notice the program works fine if you type aword, but if you type more than one
word it only takes the first one. The >> operator is word-oriented; it looks for white space,
which it doesn't copy into the buffer, to break up the input. Y ou must type a carriage return
before any of theinput is read.

To read and manipulate anything more than a simple character or word using iostreams, it is
best to use the get( ) function. get( ) doesn't discard white space, and it can be used with a
single character, as shown in the CAT.CPP program, or a character buffer (get( ) isan
overloaded function). When used with a character buffer, get( ) needs to know the maximum
number of charactersit should read (usually the size of the buffer) and optionally the
terminating character it should look for before it stops reading input.

This terminating character that get( ) looks for (the delimiter) defaultsto anew line (\n). You
don't need to change the delimiter if you just want to read the input aline at atime. To change
the delimiter, add the character you wish to be the delimiter in single quotes as the third
argument in the list. When get(') matches the delimiter with the terminating character, the
terminating character isn't copied into the character buffer; it stays on the input stream. This
means you must read the terminating character and throw it away, otherwise the next time you
try to fill your character buffer using get( ), the function will immediately read the terminating
character and stop.

Here'saprogram that readsinput aline at atime using get( ):

[1: Q03:Cetline.cpp
/1 Streaminput by lines
#i ncl ude <i ostreanr
usi ng nanmespace std;

int main() {
char buf[100];
char trash;
whi |l e(cin.get(buf,100)) { // Get chars until "\n'
cin.get(trash); // Throw away the term nator
cout << buf << "\n"; // Add the '\n' at the end

Yy I~
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The get( ) function reads input and places it into buf until either 100 characters are read, or a
\n"isfound. get() puts the zero byte, required for all strings, at the end of the string in buf.
The character trash is only used for throwing away the line terminator. Because the new line
was never put in buf, you must send a new line out when you print the line.

The return value of cin.get( ) for linesis the same as the overloaded version of the same
function for single characters. It istrue aslong asit read some input (so the body of the loop
is executed) and false when the end of the input is reached.

Try redirecting the contents of atext fileinto GETLINE.
Aside: examining header files

Asyour knowledge of C++ increases, you will find that the best way to discover the
capabilities of the iostreams class, or any class, isto look at the header file where the classis
defined. The header file will contain the class declaration. Y ou won't completely understand
the class declaration until you've read the next chapter. The class declaration contains some
private and protected elements, which you don't have accessto, and alist of public
elements, usually functions, that you as the user of the class may utilize. Although thereisn't
necessarily adescription of the functions in the class definition, the function names are often
helpful and the class definition acts as a sort of "table of contents.”

Header files for pre-defined classes like iostreams are usually located in a subdirectory, often
caled INCLUDE, under the installation directory for your C++ package or the associated C
package, if you use a C-code generator. On Unix, you must ask your system administrator
where the C++ INCLUDE files are located.

Utility programs using
|0Streams and standard 1/0

Now that you've had an introduction to iostreams and you know how to manipulate files with
1/O redirection, you can write some simple programs. This section contains exampl es of
useful utilities.

Notice that in Unix and MS-DOS, you can also use pipes on the command line for 1/0
redirection. Pipes feed the output of one program into the input of another program if both

programs use standard 1/0. If progl writes to standard 1/0 and prog?2 reads from standard
1/O, you can pipe the output of progl into the input of prog2 with the following command:

progl | prog2
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where'|' is the pipe symboal. If @l the following programs use standard 1/0, you can chain
them together like this:

progl | prog2 | prog3 | prog4

Text analysis program

The following program counts the number of words and linesin afile and checks to make
sure no lineis greater than maxwidth. It uses two functions from the Standard C library, both
of which are declared in the header file string.h. strlen( ) finds the length of a string, not
including the zero byte that terminates all strings. strtok( ) is used to count the number of
wordsin aline; it breaks the line up into chunks that are separated by any of the charactersin
the second argument. For this program, aword is separated by white space, which is a space
or atab. Thefirst timeyou call strtok( ), you hand it the character buffer, and al the
subsequent times you hand it a zero, which tells it to use the same buffer it used for the last
call (moving ahead each time strtok( ) is called). When it can't find any more words in the
line, strtok( ) returns zero.

/1: C03: Text chek. cpp
/1 Counts words and lines in a text file.
/1 Ensures no line is w der than maxwi dth.
#i ncl ude <i ostreanp
#include <cstring> // strlen() & strtok()
usi ng nanmespace std;

int main() {
/1 const neans "you can't change it":
const int maxwi dth = 64;
i nt |inecount 0;
i nt wordcount 0;
char buf[100], c, trash;
whi | e(ci n. get (buf, 100)) {
cin.get(trash); // Discard termnator
linecount++; // W just read a whole line
if(strtok(buf,"” \t")) {
wor dcount ++; // Count the first word
whil e(strtok(0," \t"))
wor dcount ++; // Count the rest

if(strlen(buf) > maxw dth)
cout << "line " << |linecount
<< "is too long." << endl;

}

cout << "Lines: " << linecount << endl;
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Notice the use of the auto-increment to count lines and words. Since the value produced by
auto-incrementing the variable isignored, it doesn't matter whether you put the increment first
or last.

To count words, strtok() isset up for the first call by handing it the text buffer buf. If it finds
aword, the word is counted. If there are more words, they are counted.

‘ cout << "Wirds: " << wordcount << endl;

The keyword const is used to prevent maxwidth from being changed. const was invented for
C++ and later added to Standard C. It has two purposes. the compiler will generate an error
message if you ever try to change the value, and an optimizer can use the fact that a variable
is congt to create better code. It is always agood ideato make a variable const if you know it
should never change.

Notice the way buf, ¢, and trash are al declared with asingle char statement. Y ou can
declare all types of data thisway, just by separating the variable names with commas.

| Ostream support for file manipulation

All the examplesin this chapter have used 1O redirection to handle input and output.
Although this approach works fine, iostreams have a much faster and safer way to read and
write files. Thisis accomplished by including fstream.h instead of (or in addtion to)
iostream.h, then creating and using fstream objects in almost the identical fashion you use
ordinary iostream objects. Here's a program that copies one file onto another (you'll learn later
how to use command-line arguments so the file names aren't fixed):

/1: Q03:1Ccopy. cpp

/1 fstreanms for opening files.
/1 Copies itself to TMP. TXT
#i ncl ude <fstreanr

#include "../require. h"

usi ng nanmespace std;

int main() {
ifstreaminfile("lCcopy.cpp");
assure(infile, "ICcopy.cpp");
of streamoutfile("tnp. txt");
assure(outfile, "tnp.txt");
char ch;
while(infile.get(ch))

outfile.put(ch);
Y I~
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Thefirst line creates an ifstream object called infile and hands it the name of the file (which
happens to be the same name as the source-code file). ifstream is a special type of iostream
object declared in fstream.h that opens and reads from afile. The second line checks to see if
the file was successfully opened, using afunction in require.h that will be described later in
the book. The third line creates an ofstream operator that isjust like an ifstream except it
writesto afile. Thisisalso checked for successful opening.

The while loop simply gets characters from infile with the member function get( ), and puts
them into outfile with put(), until the get() returnsfalse (that is, zero). Thefilesare
automatically closed when the objects are destroyed, which is another benefit of using
fstreams for manipulating files -- you don't have to remember to close the files.

There's also a set of iostream classes for doing in-memory formatting, in the header file
strstream.h.

| ntroduction to C++ data

Data types can be built-in or abstract . A built-in datatype is one that the compiler

intrinsically understands, one that «comes with the compiler.» The types of built-in data are
identical in C and C++. A user-defined data type is one you or another programmer create as a
class. These are commonly referred to as abstract data types. The compiler knows how to
handle built-in types when it starts up; it «learns» how to handle abstract data types by

reading header files containing class declarations.

Basic built-in types
The Standard C specification doesn't say how many bits each of the built-in types must
contain. Instead, it stipulates the minimum and maximum values the built-in type must be able
to hold. When a machine is based on binary, this maximum vaue is directly trandated into
bits. If a machine uses, for instance, binary-coded decimal (BCD) to represent numbers then
the amount of space in the machine required to hold the maximum numbers for each data type
will change. The minimum and maximum values that can be stored in the various data types
are defined in the system header files LIMITS.H and FLOAT.H

C & C++ have four basic built-in data types, described here for binary-based machines. A
char isfor character storage and uses a minimum of one byte of storage. An int stores an
integral number and uses a minimum of two bytes of storage. The float and double types store
floating-point numbers, often in |EEE floating-point format. float is for single-precision
floating point and doubleis for double precision floating point.

Y ou can define and initialize variables at the same time. Here's how to define variables using
the four basic data types:

//: CO03: Basic.cpp
/1 Defining the four basic data
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/1l types in C & C++

int main() {
/1 Definition without initialization:
char protein;
i nt carbohydr at es;
float fiber;
doubl e fat;
/1 Definition & initialization at the sane tine:
char pizza ="'A, pop ="'Z;
i nt DongDi ngs = 100, Twi nkles = 150, HeeHos = 200;
float chocolate = 3.14159;
doubl e fudge ripple = 6e-4; // Exponential notation
Y I~

The first part of the program defines variables of the four basic data types without initializing
them. If you don't initialize a variable, its contents are undefined (although some compilers
will initialize to 0). The second part of the program defines and initializes variables at the
same time. Notice the use of exponential notation in the constant 6e-4, meaning: «6 times 10
to the minus fourth power.»

bool, true, & false

Virtually everyone uses Booleans, and everyone defines them differently. 27 Some use
enumerations, others use typedefs. A typedef is a particular problem because you can’t
overload on it (atypedef to an int is ill an int) or instantiate a unique template with it.

A class could have been created for bool in the standard library, but this doesn’t work very
well either, because you can only have one automatic type conversion operator from a class
without causing overload resolution problems.

The best approach for such a useful typeisto build it into the language. A bool type can have
two states expressed by the built-in constants true (which converts to an integral one) and
false (which convertsto an integral zero). All three names are keywords. In addition, some
language elements have been adapted:

Element Usage with bool
&& || ! Take bool arguments and return bool.

27 See Josée Lgoie, «The new cast notation and the bool data type,» C++ Report, September
1994.
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Element Usage with bool
< > <= >= | Produce bool results

if, for, Conditional expressions convert to bool
while, do values

?: First operand convertsto bool value

Because there' s alot of existing code that uses an int to represent a flag, the compiler will
implicitly convert from anint to aboal. Ideally, the compiler will give you awarning as a
suggestion to correct the situation.

An idiom that falls under «poor programming style» is the use of ++ to set aflag to true. This
is still allowed, but deprecated, which means that at some time in the future it will be made
illegal. The problem isthe same as incrementing an enum: Y ou’ re making an implicit type
conversion from boal to int, incrementing the value (perhaps beyond the range of the normal
bool values of zero and one), and then implicitly converting it back again.

Pointers will also be automatically converted to bool when necessary.

Specifiers
Specifiers modify the meanings of the basic built-in types, and expand the built-in typesto a
much larger set. There are four specifiers: long, short, signed and unsigned.

Long and short modify the maximum and minimum values a data type will hold. A plain int
must be at least the size of a short. The size hierarchy for integra typesis: short int, int, long
int. All the sizes could conceivably be the same, aslong as they satisfy the
minimum/maximum val ue requirements. On a machine with a 64-bit word, for instance, all
the data types might be 64 bits.

The size hierarchy for floating point numbersis: float, double, and long double. Long float is
not alowed in Standard C. There are no short floating-point numbers.

The signed and unsigned specifiers tell the compiler how to use the sign bit with integral
types and characters (floating-point numbers always contain a sign). An unsigned number
does not keep track of the sign and can store positive numbers twice as large as the positive
numbers that can be stored in asigned number. Signed is the default and is only necessary
with char; char may or may not default to signed. By specifying signed char, you force the
sign bit to be used.

The following example shows the size of the data in bytes using the sizeof( ) operator,
introduced later in this chapter:

| //: C03:Specify.cpp
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/1 Denonstrates the use of specifiers
#i ncl ude <i ostreanr
usi ng nanmespace std;

int main() {

char c;

unsi gned char cu

int i;

unsi gned int iu;

short int is;

short iis; // Same as short int

unsi gned short int isu;

unsi gned short iisu;

long int il;

long iil; // Same as long int

unsigned long int ilu;

unsigned long iilu;

float f;

doubl e d;

| ong doubl e Id;

cout << "sizeof(char) =" << sizeof(c) << endl

cout << "sijzeof (unsigned char) =" << sizeof(cu) << endl

cout << "sizeof(int) =" << sizeof(i) << endl

cout << "sizeof (unsigned int) =" << sizeof(iu) << endl

cout << "sizeof(short) = " << sizeof(is) << endl

cout << "sizeof (unsigned short) =" << sizeof(isu) <<
endl

cout << "sizeof(long) =" << sizeof(il) << endl

cout << "sizeof (unsigned long) = " << sizeof (ilu) <<
endl

cout << "sizeof(float) = " << sizeof (f) << endl

cout << "sijzeof (double) =" << sizeof(d) << endl

cout << "sizeof (long double) =" << sizeof(ld) << endl
Y I~

When you are modifying an int with short or long, the keyword int is optional, as shown
above.

Scoping

Scoping rulestell you where avariable isvalid, where it is created and where it gets destroyed
(i.e., goes out of scope). The scope of a variable extends from the point where it is defined to
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the first closing brace matching the closest opening brace before the variable is declared. To
illustrate:

/1: CO03: Scope. cpp
/1 How vari abl es are scoped.

int main() {

int scpl;
/1 scpl visible here
{
/1 scpl still visible here
... ..
int scp2;
/1 scp2 visible here
... ..
{
/1 scpl & scp2 still visible here
/..
int scp3;
/1 scpl, scp2 & scp3 visible here
/1

} /] <-- scp3 destroyed here
/1 scp3 not avail able here
/1 scpl & scp2 still visible here
...
} /] <-- scp2 destroyed here
/1 scp3 & scp2 not avail able here

/1 scpl still visible here
/..
} // <-- scpl destroyed here
11~

The above example shows when variables are visible, and when they are unavailable (go out
of scope). A variable can only be used when inside its scope. Scopes can be nested, indicated
by matched pairs of bracesinside other matched pairs of braces. Nesting means you can
access avariable in a scope that encloses the scope you are in. In the above example, the
variable scpl is available inside all of the other scopes, while scp3 is only available in the
innermost scope.

Defining data on the fly

Thereis asignificant difference between C and C++ when defining variables. Both languages
require that variables be defined before they are used, but C requires all the variable
definitions at the beginning of a scope. While reading C code, ablock of variable definitions
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is often the first thing you see when entering a scope. These variable definitions don't usually
mean much to the reader because they appear apart from the context in which they are used.

C++ allows you to define variables anywhere in the scope, so you can define avariable right
before you use it. This makes the code much easier to write and reduces the errors you get
from being forced to jump back and forth within a scope. It makes the code easier to
understand because you see the variable definition in the context of its use. Thisis especially
important when you are defining and initializing a variable at the same time AA you can see
the meaning of the initialization value by the way the variableis used.

Here's an exampl e showing on-the-fly data definitions:

[1: Q03: OnTheFly. cpp
/!l On-the-fly data definitions

int main() {
/..
{ /1 Begin a new scope
int gq=0; // Plain Crequires definitions here

/..
for(int i =0; i < 100; i++) { // Define at point of
use
q++,
/1 Notice q conmes froma |arger scope
int p=12; // Definition at the end of the scope
}

int p=1 [// Adifferent p
} // End scope containing q & outer p
Y I~

In the innermost scope, p is defined right before the scope ends, so it is really a useless
gesture (but it shows you can define a variable anywhere). The p in the outer scope isin the
same situation.

The definition of i in the for loop is rather tricky. Y ou might think that i isonly valid within
the scope bounded by the opening brace that appears after the for. The variablei is actually
valid from the point where it is declared to the end of the scope that encloses the for loop.
Thisis consistent with C, where the variable i must be declared at the beginning of the scope
enclosing the for if it isto be used by the for.

Specifying storage allocation

When creating data, you have a number of options to specify the lifetime of the data, how the
datais allocated, and how the data is treated by the compiler.
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Global variables

Globa variables are defined outside all function bodies and are available to all parts of the
program (even code in other files). Globa variables are unaffected by scopes and are aways
available (i.e., thelifetime of aglobal variable lasts until the program ends). If the existence
of aglobal variable in one file is declared using the extern keyword in another file, the datais
available for use by the second file. Here's an example of the use of global variables:

/1: C03:d obal.cpp
/1 Denonstration of global variables

i nt global;
int main() {

gl obal = 12;
Y I~

Here's afile that accesses global as an extern:

/1: Q03:d obal 2.cpp {CG
/1 Accessing external global variables
extern int global;
/1 (The linker resolves the reference)
void foo() {

gl obal = 47;
Yy oI~

Storage for the variable global is created by the definition in GLOBAL.CPP, and that same
variable is accessed by the code in GLOBAL2.CPP. Since the codein GLOBAL2.CPPis
compiled separately from the code in GLOBAL.CPP, the compiler must be informed that the
variable exists elsewhere by the declaration

| extern int global;

Loca variables

Local variables occur within a scope; they are «local» to afunction. They are often called
«automatic» variables because they automatically come into being when the scope is entered,
and go away when the scope closes. The keyword auto makes this explicit, but local variables
default to auto so it is never necessary to declare something as an auto.

Register variables

A register variableis atype of local variable. The register keyword tells the compiler «make
accesses to this variable as fast as possible.» Increasing the access speed is implementation
dependent but, as the name suggests, it is often done by placing the variable in aregister.
There is no guarantee that the variable will be placed in aregister or even that the access
speed will increase. It is ahint to the compiler.
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There are restrictions to the use of register variables. Y ou cannot take or compute the address
of aregister variable. A register variable can only be declared within a block (you cannot have
global or static register variables). Y ou can use aregister variable as aformal argument in a
function (i.e., in the argument list).

static

The static keyword has severa distinct meanings. Normally, variables defined local to a
function disappear at the end of the function scope. When you call the function again, storage
for the variables is created anew and the datais re-initialized. If you want the data to be extant
throughout the life of the program, you can define that variable to be static and give it an
initial value. Theinitiaization is only performed when the program begins to execute, and the
data retains its value between function calls. This way, afunction can «remember» some
piece of information between function calls.

Y ou may wonder why global dataisn't used instead. The beauty of stetic dataisthat it is
unavailable outside the scope of the function, so it can't be inadvertently changed. This
localizes errors.

An example of the use of static datais:

/1: CO03:Static.cpp

/1 Using static data in a function
#i ncl ude <i ostreanp

usi ng nanmespace std;

voi d func() {
static int i = 0;
cout << "i = " << ++j << endl;
}
int main() {
for(int x = 0; x < 10; Xx++)
func();
Y I~

Each time func( ) iscalled in the for loop, it prints a different value. If the keyword static is
not used, the value printed will aways be '1".

The second meaning of static is related to the first in the «unavailable outside a certain scope»
sense. When static is applied to a function name or to avariable that is outside of all
functions, it means «this name is unavailable outside of this file.» The function name or
variableislocal to the file or hasfile scope. As a demonstration, compiling and linking the
following two files will cause alinker error:

/1: CO3:FileStatic.cpp
/1 File scope denonstration. Conpiling and
/1 linking this file with FSTAT2. CPP
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/1 will cause a linker error
static int fs; // File scope: only available in this file
int main() {

fs = 1;
Y I~

Even though the variable fsis claimed to exist as an extern in the following file, the linker
won't find it because it has been declared static in FileStatic.cpp.

[1: Q03:FileStatic2. cpp {G
/1 Trying to reference fs
extern int fs;
voi d func() {

fs = 100;
Y I~

The static specifier may aso be used inside aclass. This definition will be delayed until after
classes have been described later in the chapter.

extern

The extern keyword was briefly described in chapter XX. It tells the compiler that a piece of
data or afunction exists, even if the compiler hasn't yet seen it in the file currently being
compiled. This piece of data or function may exist in some other file or further on in the
current file. As an example of the latter:

/1: CO03: Forward. cpp
/!l Forward function & data decl arations
#i ncl ude <i ostreane
usi ng nanmespace std;

/1 This is not actually external, but the

/1 conpiler rmust be told it exists sonewhere:
extern int i;

extern void foo();

int main() {

i = 0;

foo();
}
int i; // The data definition
void foo() {

i ++;

cout << i;
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When the compiler encounters the declaration extern int i; it knows that the definition for i
must exist somewhere as aglobal variable. This definition can bein the current file, later on,
or in aseparate file. When the compiler reaches the definition of i, no other declaration is
visible so it knows it has found the same i declared earlier in thefile. If you wereto definei as
gtatic, you would be telling the compiler that i is defined globally (viathe extern), but it also
has file scope (viathe static), so the compiler will generate an error.

Linkage

To understand the behavior of C & C++ programs, you need to know about linkage. Linkage
describes the storage created in memory to represent an identifier asit is seen by the linker.
An identifier is represented by storage in memory to hold a variable or a compiled function
body. There are two types of linkage: internal linkage and external linkage.

Internal linkage means that storage is created to represent the identifier for the file being
compiled only. Other files may use the same identifier with internal linkage or for a global
variable, and no conflicts will be found by the linker AA separate storage is created for each
identifier. Internal linkage is specified by the keyword static in C and C++.

External linkage means that a single piece of storage is created to represent the identifier for
all files being compiled. The storage is created once, and the linker must resolve all other
references to that storage. Global variables and function names have external linkage. These
are accessed from other files by declaring them with the keyword extern. Variables defined
outside al functions (with the exception of const in C++) and function definitions default to
external linkage. Y ou can specifically force them to have internal linkage using the static
keyword. Y ou can explicitly state that an identifier has external linkage by defining it with the
extern keyword. Defining a variable or function with extern is not necessary in C, but it is
sometimes necessary for const in C++.

Automatic (local) variables exist only temporarily, on the stack, while afunction is being
caled. The linker doesn't know about automatic variables, and they have no linkage.

Constants

In old (pre-Standard) C, if you wanted to make a constant, you had to use the preprocessor:
| #define Pl 3.14159

Everywhere you used PI, the value was substituted by the preprocessor (you can still use this
method in C & C++).

When you use the preprocessor to create constants, you place control of those constants
outside the scope of the compiler. No type checking is performed on the name Pl and you
can't take the address of Pl (so you can't pass a pointer or areferenceto Pl). Pl cannot be a
variable of a user-defined type. The meaning of Pl lasts from the point it is defined to the end
of thefile; the preprocessor doesn't recognize scoping.
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C++ introduces the concept of a named constant that isjust like avariable, except its value
cannot be changed. The modifier const tells the compiler that a name represents a constant.
Any datatype, built-in or user-defined, may be defined as const. If you define something as
const and then attempt to modify it, the compiler will generate an error.

Y ou cannot use the const modifier alone (at one time, it defaulted to int when used by itself).
Y ou must specify the type, like this:

const int x = 10;

In Standard C and C++, you can use a named constant in an argument list, even if the
argument it fillsis apointer or areference (i.e., you can take the address of a const). A const
has a scope, just like aregular variable, so you can «hide» a const inside a function and be
sure that the name will not affect the rest of the program.

The const was taken from C++ and incorporated into Standard C, abeit quite differently. In
Standard C, the compiler treats a const just like a variable that has a specia tag attached that
says «don't change me.» When you define a const in Standard C, the compiler creates storage
for it, so if you define more than one const with the same name in two different files (or put
the definition in a header file), the linker will generate error messages about conflicts. The
intended use of const in Standard C is quite different from itsintended use in C++.

Differencesin const between C++ and Standard C

In C++, const replaces the use of #define in most situations requiring a constant value with an
associated name. In C++, const is meant to go into header files, and to be used in places
where you would normally use a #define name. For instance, C++ lets you use aconst in
declarations such as arrays.

const sz = 100;
int buf[sz]; // Not allowed in Standard C!

In Standard C, aconst cannot be used where the compiler is expecting a constant expression.

A const must have aninitiaizer in C++. Standard C doesn't require an initializer; if noneis
given it initializes the const to O.

In C++, aconst doesn't necessarily create storage. In Standard C a const always creates
storage. Whether or not storage is reserved for a const in C++ depends on how it is used. In
generd, if acongt is used simply to replace a name with a value (just as you would use a
#define), then storage doesn't have to be created for the const. If no storage is created (this
depends on the complexity of the data type and the sophistication of the compiler), the values
may be folded into the code for greater efficiency after type checking, not before, as with
#define. If, however, you take an address of a const (even unknowingly, by passing it to a
function that takes a reference argument) or you define it as extern, then storage is created for
the const.

In C++, aconst that is outside all functions hasfile scope (i.e., it isinvisible outside the filg).
That is, it defaults to internal linkage. Thisis very different from all other identifiersin C++
(and from congt in Standard C!) that default to externa linkage. Thus, if you declare a const
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of the same name in two different files and you don't take the address or define that name as
extern, the ideal compiler won't allocate storage for the const, but simply fold it into the code
(admittedly very difficult for complicated types). Because const has implied file scope, you
can put it in header files (in C++ only) with no conflicts at link time.

Since aconst in C++ defaults to internal linkage, you can't just define a const in one file and
reference it as an extern in another file. To give aconst external linkage so it can be
referenced from another file, you must explicitly define it as extern, like this:

extern const x = 1;

Notice that by giving it an initializer and saying it is extern, you force storage to be created for
the const (although the compiler still has the option of doing constant folding here). The
initialization establishes this as a definition, not a declaration. The declaration:

| extern const X;

in C++ means that the definition exists el sewhere (again, thisis not necessarily truein
Standard C). Y ou can now see why C++ requires a const definition to have an initiaizer: the
initializer distinguishes a declaration from a definition (in Standard C it's always a definition,
so noinitializer is necessary). With an externa const declaration, the compiler cannot do
constant folding because it doesn't know the value.

Constant values

In C++, aconst must aways have an initialization value (in Standard C, thisis not true).
Constant values for built-in types are expressed as decimal, octal, hexadecimal, or floating-
point numbers (sadly, binary numbers were not considered important), or as characters.

In the absence of any other clues, the compiler assumes a constant value is a decimal number.
The numbers 47, 0 and 1101 are all treated as decimal numbers.

A constant value with aleading O is treated as an octal number (base 8). Base 8 numbers can
only contain digits 0-7; the compiler flags other digits as an error. A legitimate octal number
is 017 (15 in base 10).

A constant value with aleading Ox is treated as a hexadecimal number (base 16). Base 16
numbers contain the digits 0-9 and a-f or A-F. A legitimate hexadecimal number is Ox1fe (510
in base 10).

Floating point numbers can contain decimal points and exponential powers (represented by e,
which means «10 to the power»). Both the decimal point and the e are optional. If you assign
a constant to a floating-point variable, the compiler will take the constant value and convert it
to afloating-point number (this processis caled implicit type conversion). However, it isa
good ideato use either a decimal point or an e to remind the reader you are using a floating-
point number; some older compilers aso need the hint.

Legitimate floating-point constant values are: 1e4, 1.0001, 47.0, 0.0 and -1.159e-77. Y ou can
add suffixes to force the type of floating-point number: f or F forcesafloat, L or | forcesa
long double, otherwise the number will be adouble.
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Character constants are characters surrounded by single quotes, as. 'A', '0', ' . Notice thereisa
big difference between the character '0' (ASCII 96) and the value 0. Special characters are
represented with the «backslash escape»: \n' (new-line), \t' (tab), \\' (backsdlash), \r' (carriage
return), "\»' (double quote), \" (single quotes), etc. Y ou can also express char constantsin
octal: \17' or hexadecimal: "\xff'.

volatile

Whereas the qualifier const tells the compiler «this never changes» (which alows the
compiler to perform extra optimizations) the qualifier volatile tells the compiler «you never
know when this will change,» and prevents the compiler from performing any optimizations.
Use this keyword when you read some value outside the control of the system, such asa
register in a piece of communication hardware. A volatile variable is always read whenever its
valueisrequired, evenif it was just read the line before.

Operators and their use

Operators were briefly introduced in chapter 2. This section covers al the operatorsin C &
C++.

All operators produce a value from their operands. This value is produced without modifying
the operands, except with assignment, increment and decrement operators. Modifying an
operand is called a side effect. The most common use for operators that modify their operands
isto generate the side effect, but you should keep in mind that the value produced is available
for your use just as in operators without side effects.

Assignment

Assignment is performed with the operator =. It means «take the right-hand side (often called
the rvalue) and copy it into the left-hand side (often called the Ivalue). An rvalueis any
constant, variable, or expression that can produce a value, but an Ivalue must be a distinct,
named variable (that is, there must be a physical space to store avalue). For instance, you can
assign a constant value to avariable (A = 4;), but you cannot assign anything to constant
value — it cannot be an Ivalue (you can't say 4 = A;).

Mathematical operators

The basic mathematical operators are the same as the ones available in most programming
languages: addition (+), subtraction (-), division (/), multiplication (*) and modulus (%, this
produces the remainder from integer division). Integer division truncates the result (it doesn't
round). The modulus operator cannot be used with floating-point numbers.
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C/C++ also introduces a shorthand notation to perform an operation and an assignment at the

sametime. Thisis denoted by an operator followed by an equal sign, and is consistent with al
the operators in the language (whenever it makes sense). For example, to add 4 to the variable
X and assign x to the result, you say: x += 4;.

This example shows the use of the mathematical operators:

/1: Q03: Mat hops. cpp
/1 WNMathenmatical operators
#i ncl ude <i ostreanp
usi ng nanmespace std;

/1 A macro to display a string and a val ue.
#define print(str, var) cout << str " =" << var << endl

int main() {
int i, j, k;
float u,v,w, // Applies to doubles, too
cout << "enter an integer: ";
cin > j;
cout << "enter another integer: ";
cin > k;
print("j",j); print("k", k);
i j +k; print("j + Kk",i);
i i - k; print("j - k",i);
i k / j; print("k /7 j",i);
i k * j; print("k * j",i);
i k %j; print("k %j",i);
/1 The following only works with integers:
i % k; print("j % k", j);
cout << "enter a floating-point nunber: ";
cin > v;
cout << "enter another floating-point nunber: ";
cin > w
print("v",v); print("w',w;

u=v+w print("v + w, u);
u=v-w print("v - w', u);
u=v?=*w print("v* w, u);
u=v/ w print("v/ w, u);

/1 The follow ng works for ints, chars, and doubl es too:
u+=v;, print("u +=v", u);

u-=v;, print("u-=v", u);
u*=v;, print("u*=v", u);
u/=v; print("u/=v", u);
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The rvalues of all the assignments can, of course, be much more complex.

I ntroduction to preprocessor macros

Notice the use of the macro print( ) to save typing (and typing errors!). The argumentsin the
parenthesized list following the macro name are substituted in all the code following the
closing parenthesis. The preprocessor removes the name print and substitutes the code
wherever the macro is called, so the compiler cannot generate any error messages using the
macro name, and it doesn't do any type checking on the arguments (the latter can be
beneficial, as shown in the debugging macros at the end of the chapter).

Operators are just a different kind of function call

There are two differences between the use of an operator and an ordinary function cal. The
syntax is different; an operator is often «called» by placing it between or sometimes after the
arguments. The second difference is that the compiler determines what function to call. For
instance, if you are using the operator + with floating-point arguments, the compiler «calls»
the function to perform floating-point addition (this «call» is sometimes the action of inserting
in-line code, or afloating-point coprocessor instruction). If you use operator + with a floating-
point number and an integer, the compiler «calls» a specia function to turn the int into a float,
and then «calls» the floating-point addition code.

It isimportant to be aware that operators are smply a different kind of function call. In C++
you can define your own functions for the compiler to call when it encounters operators used
with your abstract data types. This feature is called operator overloading and is described in
chapter 5.

Relational operators

Relational operators establish a relationship between the values of the operands. They produce
avalue of 1if the relationship istrue, and avaue of 0 if the relationship isfalse. The
relational operators are less than (<), greater than (>), less than or equal to (<=), greater than
or equal to (>=), equivalent (==) and not equivalent (!=). They may be used with all built-in
datatypesin C and C++. They may be given special definitions for user-defined datatypesin
C++.

Logical operators

The logica operators AND (&&) and OR (||) produce atrue (1) or false (0) based on the
logical relationship of its arguments. Remember that in C and C++, a statement istrueif it has
anon-zero vaue, and false if it has avalue of zero.

This example uses the relational and logical operators:

| //: C03:Bool ean. cpp
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/1 Rel ational and |ogical operators.
#i ncl ude <i ostreanr
usi ng nanmespace std;

i nt rrain_() {

int i,j;

cout << "enter an integer: ";

cin > i;

cout << "enter another integer: ";

cin > j;

cout << " is" << (i >j) << endl;

> |
cout << "i <j is " << (i <j) << endl;

i
i
cout << "i >=j is " << (i >=j) << endl;
cout << "i <=j is " << (i <=]j) << endl;
cout << "i ==j is " << (i ==]j) << endl;
cout << "i I=j is " << (i !'=]) << endl;
cout << "i &&j is " << (i && j) << endl;
cout << "i || j is " << (i |] j) << endl;

cout << " (i < 10) && (j < 10) is "
<< ((i < 10) && (j < 10)) << endl;
Y 11~

Y ou can replace the definition for int with float or double in the above program. Be aware,
however, that the comparison of a floating-point number with the value of zero is very strict: a
number that is the tiniest fraction different from another number is still «not equal .» A

number that isthe tiniest bit above zero is till true.

Bitwise operators

The bitwise operators allow you to manipulate individual bitsin a number (thus they only
work with integral numbers). Bitwise operators perform boolean algebra on the corresponding
bits in the two arguments to produce the resuilt.

The bitwise AND operator (&) produces a one in the output bit if both input bits are one;
otherwise it produces a zero. The bitwise OR operator ([) produces a one in the output bit if
either input bit is a one and only produces a zero if both input bits are zero. The bitwise,
EXCLUSIVE OR, or XOR (") produces aonein the output bit if one or the other input bit isa
one, but not both. The bitwise NOT (~, also called the ones complement operator) is a unary
operator — it only takes one argument (all other bitwise operators are binary operators).
Bitwise NOT produces the opposite of the input bit — a one if the input bit is zero, a zero if
the input bit is one.

Bitwise operators can be combined with the = sign to unite the operation and assignment: & =,
|= and ~= are dl legitimate (since ~ is a unary operator it cannot be combined with the = sign).
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Shift operators

The shift operators also manipulate bits. The left-shift operator (<<) produces the operand to
the left of the operator shifted to the left by the number of bits specified after the operator.
The right-shift operator (>>) produces the operand to the | eft of the operator shifted to the
right by the number of bits specified after the operator. These are shifts, and not rotates —
even though a rotate command is usually available in assembly language, you can build your
own rotate command so presumably the designers of C felt justified in leaving «rotate» off
(aiming, asthey said, for aminimal language).

If the value after the shift operator is greater than the number of bitsin the left-hand operand,
the result is undefined. If the left-hand operand is unsigned, the right shift isalogical shift so
the upper bitswill be filled with zeros. If the left-hand operand is signed, the right shift may
or may not be alogical shift.

Shifts can be combined with the equal sign (<<= and >>=). The Ivalueis replaced by the
Ivalue shifted by the rvalue.

Here's an example that demonstrates the use of all the operators involving bits:

[1: C03:Bitw se.cpp
/1 Denonstration of bit manipul ation
#i ncl ude <i ostreanr
usi ng nanmespace std;

/1 A macro to print a newline (saves typing):
#define NL cout << endl
/1 Notice the trailing ';' is omitted -- this forces the
/1 programmer to use it and mai ntain consistent syntax
/1 This function takes a single byte and displays it
/1 bit-by-bit. The (1 << i) produces a one in each
/1 successive bit position; in binary: 00000001, 00000010,
etc.
/1 1f this bit bitwise ANDed with val is nonzero, it neans
/1 there was a one in that position in val.
voi d print_binary(const unsigned char val) {
for(int i =7; i >=0; i--)
if(val & (1 << i))
cout << "1";
el se
cout << "0";
}
/1 Cenerally, you don't want signs when you are working
with
/1 bytes, so you use an unsigned char.
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int main() {

/1 An int nmust be used instead of a char here because the

[l "cin >>" statement will otherwi se treate the first
digit

/1 As a character. By assigning getval to a and b, the
val ue

/1 is converted to a single byte (by truncating it)

unsi gned int getval;

unsi gned char a, b;

cout << "enter a nunber between 0 and 255: ";

cin >> getval; a = getval

cout << "a in binary: "; print_binary(a); cout << endl

cout << "enter another nunber between 0 and 255: ";

cin >> getval; b = getval

cout << "b in binary: "; print_binary(b); NL

cout << "a | b ="; print_binary(a | b); N

cout << "a & b ="; print_binary(a & b); NL;

cout << "a ~ b ="; print_binary(a ™ b); N

cout << "~a ="; print_binary(~a); NL

cout << "~b ="; print_binary(~b); NL

unsi gned char ¢ = Ox5A; // Interesting bit pattern

cout << "c in binary: "; print_binary(c); N

a|=c;

cout << "a |=1c¢c; a="; print_binary(a); N

b & c;

cout << "b & c; b ="; print_binary(b); NL

b = a;

cout << "b "= a; b ="; print_binary(b); NL
Yy oI~

Here are functions to perform left and right rotations:

/1: Q03:Rolror.cpp {G
/1 Performleft and right rotations

unsi gned char ROL(unsigned char val) {

int highbit;
if(val & Ox80) // 0x80 is the high bit only
hi ghbit = 1;
el se
hi ghbit = 0;
val <<= 1; // Left shift (bottom bit becones 0)
val |= highbit; // Rotate the high bit onto the bottom
return val; [// This becones the function val ue
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}
unsi gned char ROR(unsi gned char val) {
int [owit;
if(val & 1) // Check the low bit
lowbit = 1;
el se
[owbit = O;
val >>=1; // Right shift by one position
val |= (lowbit << 7); // Rotate the low bit onto the top
return val;
Yy oI~

Try using these functions in the BITWISE program. Notice the definitions (or at least
declarations) of ROL () and ROR( ) must be seen by the compiler in BITWISE.CPP before
the functions are used.

The bitwise functions are generally extremely efficient to use because they trandate directly
into assembly language statements. Sometimes a single C or C++ statement will generate a
single line of assembly code.

Unary operators

Bitwise NOT isn't the only operator that takes a single argument. Its companion, the logical
NOT (1), will take atrue value (nonzero) and produce a false value (zero). The unary minus (-
) and unary plus (+) are the same operators as binary minus and plus — the compiler figures
out which usage is intended by the way you write the expression. For instance, the statement

X = -a;
th an obvious meaning. The compiler can figure out:
X =a?* -b;
but the reader might get confused, so it is safer to say:
| x =a* (-b);
The unary minus produces the negative of the value. Unary plus provides symmetry with
unary minus, although it doesn't do much.

The increment and decrement operators (++ and --) were introduced in chapter 2. These are
the only operators other than those involving assignment that have side effects. The increment
operator increases the variable by one unit («unit» can have different meanings according to
the data type — see the chapter on pointers) and the decrement operator decreases the variable
by one unit. The value produced depends on whether the operator is used as a prefix or postfix
operator (before or after the variable). Used as a prefix, the operator changes the variable and
produces the changed value. As a postfix, the operator produces the unchanged value and then
the variable is modified.
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The last unary operators are the address-of (&), dereference (*) and cast operatorsin C and

C++, and new and delete in C++. Address-of and dereference are used with pointers, which
will be described in Chapter 4. Casting is described later in this chapter, and new and delete
are described in Chapter 6.

Conditional operator or ternary operator

This operator is unusual because it has 3 operands. It is truly an operator because it produces a
value, unlike the ordinary if-else statement. It consists of three expressions: if the first
expression (followed by a ?) evaluatesto true, the expression following the ? is evaluated and
its result becomes the value produced by the operator. If the first expression isfase, the third
expression (following a:) is executed and its result becomes the value produced by the
operator.

The conditional operator can be used for its side effects or for the value it produces. Heres a
code fragment that demonstrates both:

A=--B?B: (B=-99);

Here, the conditional produces the rvalue. A is assigned to the value of B if the result of
decrementing B is nonzero. If B became zero, A and B are both assigned to -99. B is dways
decremented, but it is only assigned to -99 if the decrement causes B to become 0. A similar
statement can be used without the «A =« just for its side effects:

--B? B: (B=-99);

Here the second B is superfluous, since the value produced by the operator is unused. An
expression is required between the ? and :. In this case the expression could smply be a
constant that might make the code run a bit faster.

The comma operator

The commaiis not restricted to separating variable names in multiple definitions (i.e.: int i, j,
k;). When used as an operator to separate expressions, it produces only the value of the last
expression. All the rest of the expressions in the comma-separated list are only evaluated for
their side effects. This code fragment increments alist of variables and uses the last one asthe
rvalue:

A = (B++, C++, D++, E++) ;
The parentheses are critical here. Without them, the statement will evaluate to:

| (A = B++), C++, D++, E++
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Common pitfalls when using operators

Asillustrated above, one of the pitfalls when using operators is trying to get away without
parentheses when you are even the least bit uncertain about how an expression will evaluate
(consult your local C manual for the order of expression evaluation).

Another extremely common error looks like this:

/[1: QO3:Pitfall.cpp
/1l Operator mstakes

int main() {

int a=1,

while(a =
1

}
Y 11~

The statement a= b will always evaluate to true when b is non-zero. The variable ais
assigned to the value of b, and the value of b is aso produced by the operator =. Generally
you want to use the equivalence operator == inside a conditional statement, not assignment.
This one bites alot of programmers.

A similar problemis using bitwise AND and OR instead of logical. Bitwise AND and OR use
one of the characters (& or [) whilelogical AND and OR use two (&& and |). Just as with =
and ==, it's easy to just type one character instead of two.

Casting operators

Theword Cast in Cis used in the sense of «casting into amold.» C will automatically change
one type of datainto another if it makes sense to the compiler. For instance, if you assign an
integral value to afloating-point variable, the compiler will secretly call afunction (or more
probably, insert code) to convert the int to afloat. Casting allows you to make this type
conversion explicit, or to force it when it wouldn't normally happen.

b =1,
b) {

To perform a cast, put the desired data type (including all modifiers) inside parentheses to the
left of the value. This value can be a variable, constant, the value produced by an expression
or the return value of afunction. Here's an example:

int B = 200;
A = (unsigned long int)B;

Y ou can even define casting operators for user-defined data types. Casting is very powerful,
but it can cause some headaches because in some situations it forces the compiler to treat data
asif it were (for instance) larger than it redly is, so it will occupy more space in memory —
this can trample over other data. This usually occurs when casting pointers, not when making
simple casts like the one shown above.
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C++ has an additional kind of casting syntax, which follows the «function-call» syntax used
with constructors (defined later in this chapter). This syntax puts the parentheses around the
argument, like afunction call, rather than around the data type:

| float A = float(200);
Thisis equivaent to:

| float A = (float)200;

sizeof -- an operator by itself

The sizeof () operator stands alone because it satisfies an unusual need. sizeof( ) givesyou
information about the amount of memory allocated for dataitems. As described earlier in this
chapter, sizeof( ) tells you the number of bytes used by any particular variable. It can also give
the size of a datatype (with no variable name):

| printf("sizeof(double) = %\ n", sizeof(double));
sizeof( ) can aso give you the sizes of user-defined data types. Thisis used later in the book.

The asm keyword

Thisis an escape mechanism that allows you to write assembly code for your hardware within
a C++ program. Often you' re able to reference C++ variables within the assembly code,
which means you can easily communicate with your C++ code and limit the assembly code to
that necessary for efficiency tuning or to utilize special processor instructions. The exact
syntax of the assembly language is compiler-dependent and can be discovered in your
compiler’s documentation.

Explicit operators

These are keywords for bitwise and logical operators. Non-U.S. programmers without
keyboard characterslike &, |, *, and so on, were forced to use C’'s horrible trigraphs, which
were not only annoying to type, but obscure when reading. Thisisrepaired in C++ by the
addition of new keywords:

Keyword Meaning
and & & (logical AND)
or || (logical OR)
not I (logical NOT)
not_eq I=(logical not-equivalent)
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Keyword Meaning
bitand & (bitwise AND)
and_eq &= (bitwise AND-assignment)
bitor | (bitwise OR)
or_eq |= (bitwise OR-assignment)
xor A (bitwise exclusive-OR)
Xor_eq A= (bitwise exclusive-OR-assignment)
compl ~ (ones complement)

Creating functions

Most modern languages have an ability to create named subroutines or subprograms. In C++,
asubprogram is called afunction. All functions have return values (although that value can be
«nothing») so functionsin C++ are very similar to functions in Pascal. (The Pascal procedure
is the specialized case of afunction with no return value. It hardly seems worthwhile to give it
a separate name.)

Function prototyping

Y ou have been seeing function prototyping in this book described as «telling the compiler that
afunction exists, and how it is called.» Now it'stime for more details.

In old (pre-Standard) C, you could call afunction with any number or type of arguments, and
the compiler wouldn't complain. Everything seemed fine until you ran the program. Y ou got
mysterious results (or worse, the program crashed) with no hints as to why. The lack of help
with argument passing and the enigmatic bugs that resulted is probably one reason why C was
dubbed a «high-level assembly language.» Pre-Standard C programmers just adapted to it.

With function prototyping, you always use a prototype when declaring and defining a
function. When the function is called, the compiler uses the prototype to insure the proper
arguments are passed in, and that the return value istreated correctly. If the programmer
makes a mistake when calling the function, the compiler catches the mistake.

Telling the compiler how arguments are passed

In afunction prototype, the argument list (which follows the name and is surrounded by
parentheses) contains the types of arguments that must be passed to the function and
(optionally for the declaration) the names of the arguments. The order and type of the
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arguments must match in the declaration, definition and function call. Here's an example of a
function prototype in a declaration:

| int translate(float x, float y, float z);

Y ou cannot use the same form as when defining variables in function argument lists as you do
in ordinary variable definitions, i.e., float X, y, z. You must indicate the type of each
argument. In afunction declaration, the following form is also acceptable:

| int translate(float, float, float);
since the compiler doesn't do anything but check for types when the function is called.

In the function definition, names are required because the arguments are referenced inside the
function:

int translate(float x, float y, float z) {
X =y =z

/1

}

The only exception to this rule occurs in C++: an argument may be unnamed in the argument
list of the function definition. Since it is unnamed, you cannot use it in the function body, of
course. The reason unnamed arguments are allowed is to give the programmer away to
«reserve space in the argument list.» Y ou must still call the function with the proper
arguments, but you can use the argument in the future without modifying any of the other
code. This option of ignoring an argument in the list is possible if you leave the namein, but
you will get an obnoxious warning message about the value being unused every time you
compile the function. The warning is eliminated if you remove the name.

Standard C and C++ have two other ways to declare an argument list. If you have an empty
argument list you can declare it asfoo( ) in C++, which tells the compiler there are exactly
zero arguments. Remember this only means an empty argument list in C++. In Standard C it
means «an indeterminate number of arguments (which is a «hole» in Standard C since it
disables type checking in that case). In both Standard C and C++, the declaration foo(void);
means an empty argument list. The void keyword means «nothing» in this case (it can also
mean «no type» when applied to certain variables).

The other option for argument lists occurs when you don't know how many arguments or
what type of arguments you will have; thisis called a variable argument list. This «uncertain
argument list» is represented by ellipses (...). Defining a variable argument list is significantly
more complicated than a plain function. Y ou can use a variable argument list declaration for a
function that has afixed set of argumentsiif (for some reason) you want to disable the error
checks of function prototyping. Handling variable argument lists is described in the library
section of your local Standard C guide.

Function return values

A function prototype may also specify the return value of afunction. The type of thisvalue
precedes the function name. If no typeis given, the return value type defaults to int (most
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thingsin C default to int). If you want to specify that no value is returned, asin a Pascal
procedure, the void keyword is used. Thiswill generate an error if you try to return avalue
from the function. Here are some complete function prototypes:

fool(void); // Returns an int, takes no argunents
foo2(); // Like foo2() in C++ but not in Standard C
float foo3(float, int, char, double); // Returns a fl oat
void foo4(void); // Takes no argunents, returns nothing

At this point, you may wonder how to specify areturn value in the function definition. Thisis
done with the return statement. return exits the function, back to the point right after the
function call. If return has an argument, it becomes the return value of the function. Y ou can
have more than one return statement in a function definition:

/1: CO03:Return.cpp
/1 Use of "return"
#i ncl ude <i ostreanp
usi ng nanmespace std;

char cfunc(const int i) {

if(i == 0)
return 'a';
if(i == 1)
return 'g';
if(i ==5)
return 'z';
return 'c';

}

int main() {
cout << "type an integer: ";

int val;

cin >> val:

cout << cfunc(val) << endl;
Y I~

The codein cfunc() actslike an if-else statement. The else is unnecessary because the first if
that evaluates true causes an exit of the function via the return statement. Notice that a
function declaration is not necessary because the function definition appears before it is used
in main( ), so the compiler knows about it. Arguments and return values are covered in detail
in chapter 9.
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Using the C function library

All the functions in your local C function library are available while you are programming in
C++. You should look hard at the function library before defining your own function —
chances are, someone has solved the problem for you, and probably given it alot more
thought (as well as debugging!).

A word of caution, though: many compilersinclude alot of extra functions that make life
even easier and are very tempting to use, but are not part of the Standard C library. If you are
certain you will never want to move the application to another platform (and who is certain of
that?), go ahead —use those functions and make your life easier. If you want your application
to be portable, you should restrict yourself to Standard C functions (thisis safe because the
Standard C library is part of C++). Keep a guide to Standard C handy and refer to that when
looking for a function rather than your local C or C++ guide. If you must perform platform-
specific activities, try to isolate that code in one spot so it can easily be changed when porting
to another platform. Platform-specific activities are often encapsulated in a class — thisisthe
ideal solution.

The formulafor using alibrary function is as follows: first, find the function in your
guidebook (many guidebooks will index the function by category as well as aphabeticaly).
The description of the function should include a section that demonstrates the syntax of the
code. Thetop of this section usually has at least one #include line, showing you the header
file containing the function prototype. Duplicate this #include line in your file, so the function
is properly declared. Now you can call the function in the same way it appears in the syntax
section. If you make a mistake, the compiler will discover it by comparing your function call
to the function prototype in the header, and tell you about your error. The linker searches the
standard library by default, so that's all you need to do: include the header file, and call the
function.

Creating your own libraries with the

librarian
Y ou can collect your own functions together into alibrary, or add new functions to the library
the linker secretly searches (you should back up the old one before doing this). Most packages
come with alibrarian that manages groups of object modules. Each librarian hasits own
commands, but the general ideaisthis: if you want to create alibrary, make a header file
containing the function prototypes for all the functions in your library. Put this header file
somewhere in the preprocessor's search path, either in the local directory (so it can be found
by #include «header») or in the include directory (so it can be found by #include <header>).
Now take al the object modules and hand them to the librarian along with a name for the
finished library (most librarians require a common extension, such as .LIB). Place the finished

library in the same spot the other libraries reside, so the linker can find it. When you use your
library, you will have to add something to the command line so the linker knows to search the

Chapter 1. Data Abstraction 135



library for the functions you call. You must find al the details in your local manual, since
they vary from system to system.

The header file

When you create a class, you are creating a new data type. Generally, you want this type to be
easily accessible to yourself and others. In addition, you want to separate the interface (the
class declaration) from the implementation (the definition of the class member functions) so
the implementation can be changed without forcing a re-compile of the entire system. Y ou
achieve this end by putting the class declaration in a header file.

Function collections & separate
compilation

Instead of putting the class declaration, the definition of the member functions and the

main( ) function in the samefile, it is best to isolate the class declaration in a header file that
isincluded in every file where the class is used. The definitions of the class member functions
are a so separated into their own file. The member functions are debugged and compiled once,
and are then available as an object module (or in alibrary, if the librarian is used) for anyone
who wants to use the class. The user of the class simply includes the header file, creates
objects (instances) of that class, and links in the object module or library (i.e.: the compiled
code).

The concept of a collection of associated functions combined into the same object module or
library, and a header file containing al the declarations for the functions, is very standard
when building large projectsin C. It is de rigueur in C++: you could throw any functioninto a
collectionin C, but the classin C++ determines which functions are associated by dint of their
common access to the private data. Any member function for a class must be declared in the
class declaration; you cannot put it in some separate file. The use of function libraries was
encouraged in C and institutionalized in C++.

I mportance of using a common header file

When using a function from alibrary, C allows you the option of ignoring the header file and
simply declaring the function by hand. Y ou may want the compiler to speed up just a bit by
avoiding the task of opening and including the file. For example, here's an extremely lazy
declaration of the C function printf():

printf(...);
It says: printf() has some number of arguments, and they all have some type but just take

whatever arguments you see and accept them. By using this kind of declaration, you suspend
all error checking on the arguments.
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This practice can cause subtle problems. If you declare functions by hand in each different
file, you may make a mistake the compiler acceptsin aparticular file. The program will link
correctly, but the use of the function in that one file will be faulty. Thisis atough error to
find, and is easily avoided.

If you place all your function declarations in a header file, and include that file everywhere
you use the function (and especially where you define the function) you insure a consistent
declaration across the whole system. Y ou also insure that the declaration and the definition
match by including the header in the definition file.

C does not enforce this practice. It is very easy, for instance, to leave the header file out of the
function definition file. Header files often confuse the novice programmer (who may ignore
them or use them improperly).

If aclassisdeclared in aheader filein C++, you must include the header file everywhere a
classis used and where class member functions are defined. The compiler will give an error
message if you try to call afunction without declaring it first. By enforcing the proper use of
header files, the language ensures consistency in libraries, and reduces bugs by forcing the
same interface to be used everywhere.

There was an additional problem in earlier releases of the language. When you overloaded
ordinary (non-member) functions, the order of overloading was important. If you used the
same function names in separate header files, you could change the order of overloading
without knowing it, simply by including the filesin a different order. The compiler didn't
complain, but the linker did — it was mystifying. This problem existed in C++ compilers
following AT&T releases up through 1.2. It was solved by a change in the language called
type-safe linkage (described later in the book).

Preventing re-declaration of classes

When you put a class declaration in a header file, it is possible for the file to be included more
than once in a complicated program. The streams class is a good example. Any time a class
does 1/0O (especialy ininline functions) it may include the streams class. If the file you are
working on uses more than one kind of class, you run the risk of including the streams header
more than once and re-declaring streams.

The compiler considers the re-declaration of a classto be an error, since it would otherwise
allow you to use the same name for different classes. To prevent this error when multiple
header files are included, you need to build some intelligence into your header files using the
preprocessor (the streams class aready has this «intelligence).

The preprocessor directives
#define, #ifdef and #endif

As shown earlier in this chapter, #define will create preprocessor macros that ook similar to
function definitions. #define can also create flags. Y ou have two choices: you can simply tell
the preprocessor that the flag is defined, without specifying avalue:
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| #def i ne FLAG
or you can give it avalue (which isthe pre-Standard C way to define a constant):

| #define Pl 3.14159
In either case, the label can now be tested by the preprocessor to seeiif it has been defined:

| #i f def FLAG

will yield atrue result, and the code following the #ifdef will be included in the package sent
to the compiler. Thisinclusion stops when the preprocessor encounters the statement

| #endi f
or

| #endi f // FLAG

Any non-comment after the #endif on the samelineisillegal, even though some compilers
may accept it. The #ifdef/#endif pairs may be nested within each other.

The complement of #define is#undef (short for «un-define»), which will make an #ifdef
statement using the same variable yield afalse result. #undef will also cause the preprocessor
to stop using amacro. The complement of #ifdef is#ifndef, which will yield atrue if the label
has not been defined (thisis the one we use in header files).

There are other useful features in the C preprocessor. Y ou should check your local guide for
the full set.

Standard for each class header file

In each header file that contains a class, you should first check to see if the file has aready
been included in this particular code file. Y ou do this by checking a preprocessor flag. If the
flag isn't set, the file wasn't included and you should set the flag (so the class can't get re-
declared) and declare the class. If the flag was set the class has already been declared so you
should just ignore the code declaring the class. Here's how the header file should look:

#i f ndef CLASS FLAG_

#defi ne CLASS FLAG_

/1 Class declaration here...
#endi f // CLASS FLAG

Asyou can see, the first time the header fileisincluded, the class declaration will be included
by the preprocessor but all the subsequent times the class declaration will be ignored. The
name CLASS FLAG_ can be any unique name, but areliable standard to follow is to take the
name of the header file and replace periods with underscores, and follow it with atrailing
underscore (leading underscores are reserved by Standard C for system names). Here's an
example:

[1: Q03:Sinple.h
/1 Sinple class that prevents re-definition
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#i f ndef SI MPLE_H_
#define SIMPLE_H_

class Sinmple {
int i,j,k;
publi c:
Simple() { i =] =k =0;}
1

#endif // SIMPLEH ///:~

Although the SIMPLE_H__ after the #endif is commented out and thus by the preprocessor, it
is useful for documentation.

Portable inclusion of header files

C++ was created in a Unix environment, where the file names have case sensitivity. Thus,
Unix programmers could name C header files as header.h and C++ header files with a capital
H, as header.H. This didn't trandate to some other systems such as MS-DOS, so programmers
there distinguished C++ header files with .HXX or .HPP. Thus you will sometimes see old
header files with these extensions. However, the common practice now isto name C++ header
files the same as C header files: header.h. It turns out that using the same naming convention
as C is not a problem since programmers must know what they are doing when including a
header file, and the compiler will catch the error if you try to include a C++ header inaC
compilation. All header filesin this book use the .h convention.

struct: aclasswith all elements public

The data structure keyword struct was developed for C so a programmer could group
together several pieces of data and treat them as a single dataitem. Asyou can imagine, the
struct is an early attempt at abstract data typing (without the associated member functions). In
C, you must create non-member functions that take your struct as an argument. Thereisno
concept of private data, so anyone (hot just the functions you define) can change the elements
of astruct.

C++ will accept any struct you can declare in C (so it's upward compatible). However, C++
expands the definition of astruct soit isjust like a class, except a class defaults to private
while astruct defaultsto public. Any struct you define in C++ can have member functions,
constructors and a destructor, etc. Although the struct is an artifact from C it emphasizes that
all elements are public. Y ou can make a classin C++ work just like astruct in C++ by
putting public: at the beginning of your class. Notice that a struct in Standard C doesn't have
constructors, destructors or member functions.

As you can see from this example, all the elementsin astruct are public:
| //: C03:Struct.cpp
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// Denonstration of structures vs cl asses

class CL {
int i, j, k;
publi c:
Cl(int init =0) { i =) =k =init; }
1
struct ST {
int i, j, k;
/1 Don't need to say "public." Everything is public!
ST (int init =0) { i =) =k =1init; }
1
int main() {
CL A(10);
ST B(11);
B.i =44; /] This is K
/1Y Al = 44; |/ This will cause an error!
Y I~

Clarifying programs with enum

An enumerated data type isaway of attaching names to numbers, thereby giving more
meaning to anyone reading the code. The enum keyword (from C) automatically enumerates
any list of words you give it by assigning them values of 0, 1, 2, etc. Y ou can declare enum
variables (which are always ints). The declaration of an enum looks similar to a class
declaration, but an enum cannot have any member functions.

An enumerated data typeis very useful when you want to keep track of some sort of feature:

/1: Q03: Enum cpp
/1 Keeping track of shapes.

enum shape_type {
circle,
squar e,
rectangl e
}; I/ Must end with a senicolon Iike a class

int main() {
shape_type shape = circle;
/1 Activities here....
/1 Now do sonething based on what the shape is:
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swi t ch(shape) {
case circle: [/* circle stuff */ break;
case square: [/* square stuff */ break;
case rectangle: /* rectangle stuff */ break;

}
Y 110~

Shape is avariable of the shape type enumerated data type, and its value is compared with the
value in the enumeration. Since shapeisrealy just an int, however, it can be any value an int
can hold (including a negative number). Y ou can aso compare an int variable with avauein
the enumeration.

If you don't like the way the compiler assigns values, you can do it yourself, like this:

enum shape_type { circle = 10, square = 20, rectangle =
50};
If you give values to some names and not to others, the compiler will use the next integral
value. For example,

| enum snap { crackle = 25, pop };
The compiler gives pop the value 26.

Y ou can see how much more readable the code is when you use enumerated data types.

Saving memory with union

Sometimes a program will handle different types of data using the same variable. In this
situation, you have two choices: you can create a class or struct containing all the possible
different types you might need to store, or you can use aunion. A union piles all the datainto
asingle space; it figures out the amount of space necessary for the largest item you've put in
the union, and makes that the size of the union. Use a union to save memory.

Anytime you place avalue in aunion, the value always starts in the same place at the
beginning of the union, but only uses as much space asis necessary. Thus, you create a
«super-variable,» capable of holding any of the union variables. All the addresses of the union
variables are the same (in aclass or struct, the addresses are different).

Here's asimple use of aunion. Try removing various elements and see what effect it has on
the size of the union. Notice that it makes no sense to declare more than one instance of a
single datatype in aunion (unless you're just doing it to use a different name).

//: CO03: Union.cpp

/1 The size and sinple use of a union
#i ncl ude <i ostreanp

usi ng nanmespace std;

uni on packed { // Declaration simlar to a class
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char i;

short j;

int k;

long I;

float f;

double d; // The union will be the size of a double,

/1 since it's the |argest el enent
}; I/ Senicolon ends a union, like a class

int main() {
cout << "sijzeof (packed) = " << sizeof (packed) << endl;
packed X;
X i 'c';
X.d 3. 14159;
Y 111

The compiler performs the proper assignment according to the union member you select.

1

Once you perform an assignment, the compiler doesn't care what you do with the union. In the
above example, you could assign a floating-point value to X:

X f = 2.222;
and then send it to the output asif it were an int:
cout << X.i;
This would produce complete garbage.
C++ dlows a union to have a constructor, destructor and member functions just like a class:

/1: Q03: Uni on2. cpp
/1  Unions with constructors and nenber functions

uni on U {
int i;
float f;
Uint a) { i =a; }
Ufloat b) { f = b;}
~U() { f =0; }
int read_int() { returni; }

float read _float() { return f; }

}s

int main() {
U X(12), Y(1.9F);
X i = 44;
X.read_int();
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Y.read float();
Y I~

Although the member functions civilize access to the union somewhat, thereis still no way to
prevent the user from selecting the wrong element once the union isinitiadized. A «safe»
union can be encapsulated in a class like this (notice how the enum clarifies the code):

/1: CO03: Super Var . cpp
/1 A super-variable
#i ncl ude <i ostreanp
usi ng nanmespace std;

cl ass SuperVar {
enum {
character,
i nteger,
fl oati ng_poi nt
} vartype; [// Define one
union { // Anonynous union
char c;
int i;
float f;
1
publi c:
Super Var (char ch) {
vartype = character;

c = ch;

}

SuperVar (int ii) {
vartype = integer;
=i

}

Super Var (float ff) {
vartype = floating_point;
f =ff;

}

void print();

1

voi d SuperVar::print() {
switch (vartype) {
case character:
cout << "character: " << ¢ << endl;
br eak;
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case integer:

cout << "integer: " << i << endl;
br eak;

case floating_point:
cout << "float: " << f << endl;
br eak;

}
}

int main() {
SuperVar A('c'), B(12), C(1.44F);
A print();
B.print();
Coprint();
Y I~

In the above code, the enum has no type name (it is an untagged enumeration). Thisis
acceptable if you are going to immediately define instances of the enum, asis done here.
Thereis no need to refer to the enum's type in the future, so the typeis optional.

The union has no type name and no variable name. Thisis called an anonymous union, and
creates space for the union but doesn't require accessing the union elements with a variable
name and the dot operator. For instance, if your anonymous union is:

| union { int i, float f };
you access members by saying:

12;
1.22;

i
f

just like other variables. The only difference isthat both variables occupy the same space. If
the anonymous union is at file scope (outside al functions and classes) then it must be
declared static so it hasinternal linkage.

Debugging flags
If you hard-wire your debugging code into a program, you can run into problems. Y ou start to
get too much information, which makes the bugs difficult to isolate. When you think you've
found the bug you start tearing out debugging code, only to find you need to put it back in
again. Y ou can solve these problems with two types of flags: preprocessor debugging flags
and run-time debugging flags.

Preprocessor debugging flags

By using the preprocessor to #define one or more debugging flags (preferably in a header
file), you can test aflag using a #ifdef statement to conditionally include debugging code.
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When you think your debugging is finished, you can simply #undef the flag(s) and the code
will automatically be removed (and you'll reduce the size of your executable file).

It is best to decide on names for debugging flags before you begin building your project so the
names will be consistent. Preprocessor flags are often distinguished from variables by writing
them in al upper case. A common flag name is simply DEBUG (but be careful you don't use
NDEBUG, which isreserved in Standard C). The sequence of statements might be:

#define DEBUG // Probably in a header file
/...

#i fdef DEBUG // Check to see if flag is defined
/* debuggi ng code here */

#endi f // DEBUG

Many C and C++ implementations will even let you #define and #undef flags from the
compiler command line, so you can re-compile code and insert debugging information with a
single command (preferably viathe makefile). Check your local guide for details.

Run-time debugging flags

In some situations it is more convenient to turn debugging flags on and off during program
execution (it is much more elegant to turn flags on and off when the program starts up using
the command line. See chapter 4 for details of using the command line). Large programs are
tedious to recompile just to insert debugging code.

Y ou can cregte integer flags and use the fact that nonzero values are true to increase the
readability of your code. For instance:

int debug = 0; // Default off

/..

cout << "turn debugger on? (y/n): ";
cin > reply;

if(reply == "y') debug++; // Turn flag on
/..

i f(debug) {

/1 Debuggi ng code here

}

Notice that the variable isin lower case letters to remind the reader it isn't a preprocessor flag.

Turning avariable name into a string

When writing debugging code, it is tedious to write print expressions consisting of a string
containing the variable name followed by the variable. Fortunately, Standard C has introduced
the «string-ize» operator #. When you put a# before an argument in a preprocessor macro,
that argument is turned into a string by putting quotes around it. This, combined with the fact
that strings with no intervening punctuation are concatenated into a single string, allows us to
make a very convenient macro for printing the values of variables during debugging:
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| #define PR(X) cout << #x " =" << x << "\n";

If you print the variable A by calling the macro PR(A), it will have the same effect as the
code:

| cout << "A = " << A << Il\nll;

The Standard C assert( ) macro

assert( ) isavery convenient debugging macro. When you use assert( ), you giveit an
argument that is an expression you are «asserting to be true.» The preprocessor generates code
that will test the assertion. If the assertion isn't true, the program will stop after issuing an
error message telling you what the assertion was and that it failed. Here's atrivia example:

/1: CO03: Assert.cpp

/1 Use of the assert() debugging nmacro

#i ncl ude <cassert> // Contains the macro
usi ng nanmespace std;

int main() {
int i = 100;
assert(i != 100);
Y I~

The Standard C library header file assert.h contains the macro for assertion. When you are
finished debugging, you can remove the code generated by the macro ssimply by placing the
line:

#def i ne NDEBUG

in the program before the inclusion of assert.h, or by defining NDEBUG on the compiler
command line. NDEBUG is aflag used in assert.h to change the way code is generated by the
Macros.

Debugging technigues combined

By combining the techniques discussed in this section, aframework arises that you can follow
when writing your own debugging code. Keep in mind that if you want to isolate certain types
of debugging code you can create variables debugl, debug?2, etc., and preprocessor flags
DEBUG1, DEBUG?2, etc.

The following example shows the use of command-line flags, formally introduced in the next
chapter. It is better to show you the right way to do something and risk confusing you for a bit
rather than teaching you some method that will later need to be un-learned.

The flags on the command line are accessed through the arguments to main( ), called argc
and argv.
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/1: C03: Debug2. cpp

/1 Framework for witing debug code
#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <cstdlib>

usi ng nanmespace std;

#def i ne DEBUG

int main(int argc, char * argv[]) {

i nt debug = O;
if(argc > 1) { // If nore than one argunent
if (*rargv[1l] == 'd")
debug++; // Set the debug flag
el se {

cout << "usage: debug2 OR debug2 d" << endl;
"optional flag turns debugger on.";
exit(1); // Quit program
}

}
11

#i f def DEBUG
i f(debug)
cout << "debugger on" << endl;
#endi f // DEBUG
...
Y I~

All the debugging code occurs between the
| #i f def DEBUG

and
#endi f // DEBUG

lines. If you type on the command line;
debug?2

nothing will happen, but if you type
debug2 d

The «debugger» will be turned on. When you want to remove the debugging code at some
later date to reduce the size of the executable program, simply change the #define DEBUG to
a#undef DEBUG (or better yet, do it from the compiler command line).
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Bringing it all together:
project-building tools

When using separate compilation (breaking code into a number of trandation units), you need
some way to compile them all and to tell the linker to put them with the appropriate libraries
and startup code into an executable file. Most compilers allow you to do thiswith asingle
command-line statement. For a compiler named cpp, for example, you might say

cpp Libtest.cpp lib.cpp

The problem with this approach is that the compiler will first compile each individual
trandation unit, regardless of whether it needs to be rebuilt or not. With many filesin a
project, it can get very tedious to recompile everything if you've only changed asinglefile.

The first solution to this problem, developed on Unix (which is where C was created), was a
program called make. M ake compares the date on the source-code file to the date on the
object file, and if the object-file date is earlier than the source-code file, make invokes the
compiler on the source.

Because make is available in some form for virtually al C++ compilers (and evenif it isn't,
you can use freely-available makes with any compiler), it will be the tool used throughout
this book. However, compiler vendors also came up with their own project building tools.
These tools ask you which trandation units are in your project, and determine all the
relationships themselves. They have something similar to a makefile, generally caled a
project file, but the programming environment maintains this file so you don’t have to worry
about it. The configuration and use of project files vary from system to system, so it will be
assumed here that you are using the project-building tool of your choice to create these
programs, and that you will find the appropriate documentation on how to use them (although
project file tools provided by compiler vendors are usually so ssmple to use that you can learn
them quite effortlessly). The makefiles used within this book should work regardless of
whether you are also using a specific vendor’ s project-building tool.

File names

One other issue you should be aware of isfile naming. In C, it has been traditional to name
header files (containing declarations) with an extension of .h and implementation files (that
cause storage to be allocated and code to be generated) with an extension of .c. C++ went
through an evolution. It was first developed on Unix, where the operating system was aware
of upper and lower case in file names. The original file names were simply capitalized
versions of the C extensions: .H and .C. This of course didn’t work for operating systems that
didn’t distinguish upper and lower case, like MS-DOS. DOS C++ vendors used extensions of
.hxx and .cxx for header files and implementation files, respectively, or .hpp and .cpp. Later,
someone figured out that the only reason you needed a different extension for a file was so the
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compiler could determine whether to compile it asa C or C++ file. Because the compiler
never compiled header files directly, only the implementation file extension needed to be
changed. The custom, virtually across al systems, has now becometo use .cpp for
implementation files and .h for header files.

Make: an essential tool for
separate compilation

There is one more tool you should understand before creating programs in C++. The make
utility manages all the individual filesin a project. When you edit the filesin a project, make
insures that only the source files that were changed, and other files that are affected by the
modified files, are re-compiled. By using make, you don't have to re-compile al thefilesin
your project every time you make a change. make aso remembers al the commands to put
your project together. Learning to use make will save you alot of time and frustration.

make was developed on Unix. The C language was developed to write the Unix operating
system. As programs encompassed more and more files, the job of deciding which files
should be recompiled because of changes became tedious and error-prone, so make was
invented. Most C compilers come with a make program. All C++ packages either come with
amake, or are used with a C compiler that has a make.

Make activities

When you type make, the make program looks in the current directory for afile named
makefile, which you've created if it's your project. Thisfile lists dependencies between source
code files. make looks at the dates on files. If a dependent file has an older date than afile it
depends on, make executes the rule given after the dependency.

All comments in makefiles start with a# and continue to the end of the line.
Asasimple example, the makefile for the "hello" program might contain:

# A comment
hel | 0. exe: hello.cpp
g++ hel l o. cpp

This says that hello.exe (the target) depends on hello.cpp. When hello.cpp has a newer date
than hello.exe, make executes the rule g++ hello.cpp. There may be multiple dependencies
and multiple rules. All the rules must begin with atab.

By creating groups of interdependent dependency-rule sets, you can modify source code files,
type make and be certain that all the affected files will be re-compiled correctly.
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Macros

A makefile may contain macros. Macros allow convenient string replacement. The makefiles
in this book use a macro to invoke the C++ compiler. For example,

#Macro to i nvoke Ghu C++

CPP = g++

hel | 0. exe: hello.cpp
$(CPP) hello.cpp

The $ and parentheses expand the macro. To expand means to replace the macro call $(CPP)
with the string g++. With the above macro, if you want to change to a different compiler you
just change the macro to:

| CPP = cpp

Y ou can aso add compiler flags, etc., to the macro.

M ak efiles in this book

Using the program ExtractCode.cpp which is shown in Chapter XX, all the code listingsin
this book are automatically extracted from the ASCI| text version of this book and placed in
subdirectories according to their chapters. In addition, ExtractCode.cpp creates a makefilein
each subdirectory so that you can simply move into that subdirectory and type make. Finaly,
ExtractCode.cpp creates a «master» makefile in the root directory where the book’ sfiles are
expanded, and this makefile descends into each subdirectory and calls make. Thisway you
can compile all the code in the book by invoking a single make command, and the process
will stop whenever your compiler is unable to handle a particular file (note that a Standard
C++ conforming compiler should be able to compile al the filesin this book). Because
implementations of make vary from system to system, only the the most basic, common
features are used in the generated makefiles. Y ou should be aware that there are many
advanced shortcuts that can save alot of time when using make. Y our local documentation
will describe the further features of your particular make.

An example makefile

As mentioned before, the makefile for each chapter will be automatically generated by the
code-extraction tool ExtractCode.cpp that is shown and described in Chapter X X. Thus, the
makefile for each chapter will not be placed in the book. However, it’s useful to see an
example of one makefile, which is a very abbreviated version of the one that was
automatically generated for this chapter by the extraction tool:

# Automati cal | y-generated MAKEFI LE
# For exanples in directory C03
CPP = g++

OFLAG = -0
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all: \
Hel | 0. exe \
St rean?. exe \
Concat . exe

Hel | 0. exe: Hell 0. obj
$(CPP) $(OFLAG Hel | 0. exe Hel | 0. obj

Hel |1 0. obj: Hello.cpp
$(CPP) -c Hello.cpp

StreanR. exe: Strean?. obj
$(CPP) $(OFLAG) StreanR. exe Strean?. obj

StreanR. obj: StreanR.cpp
$(CPP) -c Strean?.cpp

Concat . exe: Concat. obj
$(CPP) $(OFLAG) Concat.exe Concat . obj

Concat . obj: Concat. cpp
$(CPP) -c Concat.cpp

The macro CPP is set to the name of the compiler. To use a different compiler, you can either
edit the makefile or change the value of the macro on the command line, like this:

| make CPP=cpp

The second macro OFLAG is the flag that’ s used to indicate the name of the output file.
Although many compilers automatically assume the output file has the same base name as the
input file, others don’t (such as Linux/Unix compilers, which default to creating afile called
a.out).

Y ou can see that this makefile takes the absolute safest route of using as few make features
as possible — it only uses the basic make concepts of targets and dependencies, as well as
macros. Thisway it isvirtualy assured of working with as many make programs as possible.
It tends to produce a much larger makefile, but that’s not so bad since it’s automatically
generated by ExtractCode.cpp.

One of the features not used hereis called rules (or implicit rules or inference rules). Here's
an example:

. Cpp. exe:
$(CPP) $<
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A rule is the way to teach make how to convert a file with one type of extension (.cpp) into a
file with another type of extension (.obj or .exe). This eliminates alot of redundancy in a
makefile. Once you teach make the rules for producing one kind of file from another, al you
have to do istell make which files depend on which other files. When make finds a file with
adate earlier than the file it depends on (which means the source file has been changed and
not yet recompiled), it uses the rule to create anew file.

Theimplicit rule tells make that it doesn't need explicit rules to build everything, but instead
it can figure out how to build things based on their file extension. In this case it says: "to build
afilethat endsin .exe from one which endsin .cpp, invoke the following command." The
command is the compiler name, followed by a special built-in macro. This macro, $<, will
produce the name of the source file (sometimes called the dependent). Although the makefile
contains no explicit dependencies, the implicit conversion implies the proper dependencies.
(Unfortunately, not all make programs use the same rule syntax so they are avoided in the
book’ s generated makefiles.)

The make program looks at the first target (item to be made) in the makefile unless you
specify one on the command line, such as:

make textchek. exe

Thus, if you want to make all the filesin a subdirectory by typing make, the first target
should be a dummy name that depends on all the other targets in the file. In the above
makefile the dummy target is called all.

When alineistoo long in amakefile, you can continue it on the next line by using a
backslash (\). White space isignored here, so you can format for readability.

Summary
Exercises
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4: Data abstraction

C++ isaproductivity enhancement tool. Why else would
you make the effort (and it is an effort, regardless of how
easy we attempt to make the transition) to

switch from some language that you already know and are productivein (C, in this case) to a
new language where you're going to be less productive for awhile, until you get the hang of
it? It's because you' ve become convinced that you' re going to get big gains by using this new
tool.

Productivity, in computer programming terms, means that fewer people can make much more
complex and impressive programs in less time. There are certainly other issues when it comes
to choosing alanguage, like efficiency (does the nature of the language cause code bloat?),
safety (does the language help you ensure that your program will always do what you plan,
and handle errors gracefully?), and maintenance (does the language help you create code that
is easy to understand, modify and extend?). These are certainly important factors that will be
examined in this book.

But raw productivity means a program that might take three of you a week takes one of you a
day or two. This touches several levels of economics. You're happy because you get the rush
of power that comes from building something, your client (or boss) is happy because products
are produced faster and with fewer people, and the customers are happy because they get
products more cheaply. The only way to get massive increasesin productivity isto leverage
off other people's code, that is, to use libraries.

A library is simply abunch of code that someone else has written, packaged together
somehow. Often, the most minimal package is a file with an extension like .L1B and one or
more header files to declare what’ s in the library to your compiler. The linker knows how to
search through the L1B file and extract the appropriate compiled code. But that’s only one
way to deliver alibrary. On platforms that span many architectures, like Unix, often the only
sensible way to deliver alibrary iswith source code, so it can be recompiled on the new
target. And on Microsoft Windows, the dynamic-link library (DLL) is amuch more sensible
approach — for one thing, you can often update your program by sending out anew DLL,
which your library vendor may have sent you.

So libraries are probably the most important way to improve productivity, and one of the
primary design goals of C++ isto make library use easier. Thisimplies that there's something
hard about using librariesin C. Understanding this factor will give you afirst insight into the
design of C++, and thus insight into how to useiit.
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Declarations vs. definitions

First, it's important to understand the difference between declarations and definitions because
the terms will be used precisely throughout the book. A declaration introduces a name to the
compiler. It says, «Here'swhat this name means.» A definition, on the other hand, allocates
storage for the name. This meaning works whether you' re talking about a variable or a
function; in either case, at the point of definition the compiler allocates storage. For a
variable, it determines how big that variable is and generates space in memory to hold
information. For afunction, the compiler generates code, which ends up alocating storagein
memory. The storage for a function has an address that can be produced using the function
name with no argument list, or with the address-of operator.

A definition can also be a declaration. If the compiler hasn’t seen the name A before and you
defineint A, the compiler sees the name for the first time and all ocates storage for it al at
once.

Declarations are often made using the extern keyword. extern isrequired if you're declaring
avariable but not defining it. With afunction declaration, extern is optiona because a
function name, argument list, or a return value without a function body is automatically a
declaration.

A function prototype contains al the information about argument types and return values. int
f(float, char); isafunction prototype because it not only introduces f as the name of the
function, it tells the compiler what the arguments and return value are so they can be handled
properly. C++ provides function prototyping because it adds a significant level of safety.

Here are some examples of declarations:

/*: CO04:Declare.c

Decl arati on/definition exanples */

extern int i; /* Declaration without definition */
extern float f(float); /* Function declaration */

float b; [/* Declaration & definition */
float f(float a) { /* Definition */
return a + 1.0;

}

int i; /* Definition */
int h(int x) { /* Declaration & definition */
return x + 1;

}

int main() {
b =1.0;
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i = 2;
f(b);
h(i);
YOI~ %)
In the function declarations, the argument names are optional. In the definitions, they are
required. Thisistrue only in C, not C++.

Throughout this book you'll notice that the first line of afile will be acomment that starts
with the open-comment syntax followed by a colon. Thisisatechnique | use to allow easy
extraction of information from code files using a text-manipulation tool like «grep» or «awk.»
Thefirst line aso has the name of the file, so it can be referred to in text and in other files,
and so you can easily locate it on the source-code disk for the book.

A tiny C library

A small library usually starts out as a collection of functions, but those of you who have used
third-party C libraries know that there’ s usually more to it than that because there’s more to
life than behavior, actions and functions. There are also characteristics (blue, pounds, texture,
luminance), which are represented by data. And when you start to deal with a set of
characteristicsin C, it is very convenient to clump them together into astruct, especidly if
you want to represent more than one similar thing in your problem space. Then you can make
avariable of this struct for each thing.

Thus, most C libraries have a set of structs and a set of functions that act on those structs. As
an example of what such a system looks like, consider a programming tool that acts like an
array, but whose size can be established at run-time, when it is created. I'll call it a stash:

/*: Q04:Lib.h
Header file: exanple Clibrary */
/[* Array-like entity created at run-time */

typedef struct STASHtag {

int size; /* Size of each space */
int quantity; /* Nunber of storage spaces */
i nt next; /* Next enpty space */

/* Dynamically allocated array of bytes: */
unsi gned char* storage;
} stash;

void initialize(stash* S, int Size);
voi d cl eanup(stash* S);

i nt add(stash* S, void* el enment);
voi d* fetch(stash* S, int index);
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i nt count(stash* S);
void inflate(stash* S, int increase);
[* 11~ *

The tag name for the struct is generally used in case you need to reference the struct inside
itself. For example, when creating alinked list, you need a pointer to the next struct. But
almost universally in a C library you'll see the typedef as shown above, on every struct in the
library. Thisis done so you can treat the struct asif it were anew type and define variables of
that struct like this:

stash A, B, C

Note that the function declarations use the Standard C style of function prototyping, which is
much safer and clearer than the «old» C style. Y ou aren’t just introducing a function name;
you're also telling the compiler what the argument list and return value look like.

The storage pointer is an unsigned char*. Thisis the smallest piece of storage a C compiler
supports, although on some machines it can be the same size asthe largest. It's
implementation dependent. Y ou might think that because the stash is designed to hold any
type of variable, avoid* would be more appropriate here. However, the purpose is not to treat
this storage as a block of some unknown type, but rather as a block of contiguous bytes.

The source code for the implementation file (which you may not get if you buy alibrary
commercially — you might get only a compiled OBJor LIB or DLL, etc.) looks like this:

[*: Q04:Lib.c {C

| mpl enent ati on of exanple Clibrary */

/* Declare structure and functions: */

#i nclude "Lib.h"

/* Error testing macros: */

#i ncl ude <assert. h>

/* Dynamic nmenory allocation functions: */
#i nclude <stdlib. h>

#include <string. h> /* mencpy() */

#i ncl ude <stdi o. h>

void initialize(stash* S, int Size) {
S->size = Size;
S->quantity = O;
S->storage = 0O;
S->next = 0O;

}

voi d cl eanup(stash* S) {
i f(S->storage) {
puts("freeing storage");
free(S->storage);
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}
}

i nt add(stash* S, void* elenment) {

/* enough space left? */

i f(S->next >= S->quantity)
inflate(S, 100);

/* Copy el enent into storage,

starting at next enpty space: */

mencpy( & S->st orage[ S- >next * S->size]),
el ement, S->size);

S- >next ++;

return(S->next - 1); /* |Index nunber */

}

voi d* fetch(stash* S, int index) {
if(index >= S->next || index < 0)
return O0; /* Not out of bounds? */
/* Produce pointer to desired elenment: */
return & S->storage[index * S->size]);

}

int count(stash* S) {
/* Nunmber of elenents in stash */
return S >next;

}

void inflate(stash* S, int increase) {
voi d* v =
real | oc(S->storage,
(S->quantity + increase)
* S >size);
/* Was it successful ? */
assert(v = 0);
S->storage = v;
S->quantity += increase;
YOI~ %)

Notice the style for local #includes. Even though the header file existsin alocal directory, its
path is given relative to the root directory of this book. By doing this, you can easily create
another directory off the book’s root and copy code to it for experimentation without
worrying about changing #include paths.

Chapter 1. Data Abstraction 157



initialize(') performs the necessary setup for struct stash by setting the internal variablesto
appropriate values. Initialy, the storage pointer is set to zero, and the size indicator is also
zero — noinitial storageis allocated.

The add( ) function inserts an element into the stash at the next available location. Firgt, it
checksto seeif there is any available space left. If not, it expands the storage using the
inflate( ) function, described later.

Because the compiler doesn’t know the specific type of the variable being stored (all the
function getsisavoid*), you can’t just do an assignment, which would certainly be the
convenient thing. Instead, you must use the Standard C library function memcpy( ) to copy
the variable byte-by-byte. The first argument is the destination address where memcpy( ) isto
start copying bytes. It is produced by the expression:

&( S->storage[ S->next * S >size])

This indexes from the beginning of the block of storage to the next available piece. This
number, which is simply a count of the number of pieces used plus one, must be multiplied by
the number of bytes occupied by each piece to produce the offset in bytes. This doesn’t
produce the address, but instead the byte at the address. To produce the address, you must use
the address-of operator & .

The second and third arguments to memcpy( ) are the starting address of the variable to be
copied and the number of bytesto copy, respectively. The next counter isincremented, and
theindex of the value stored is returned, so the programmer can useit later in acall to fetch()
to select that element.

fetch() checksto seethat the index isn't out of bounds and then returns the address of the
desired variable, calculated the same way asit was in add( ).

count() may look ahit strange at first to a seasoned C programmer. It seems like alot of
trouble to go through to do something that would probably be alot easier to do by hand. If
you have astruct stash called intStash, for example, it would seem much more
straightforward to find out how many elements it has by saying intStash.next instead of
making a function call (which has overhead) like count(& intStash). However, if you wanted
to change the internal representation of stash and thus the way the count was cal culated, the
function call interface allows the necessary flexibility. But alas, most programmers won'’t
bother to find out about your «better» design for the library. They'Il look at the struct and
grab the next value directly, and possibly even change next without your permission. If only
there were some way for the library designer to have better control over things like this! (Yes,
that’ s foreshadowing.)

Dynamic storage allocation

Y ou never know the maximum amount of storage you might need for a stash, so the memory
pointed to by storageis alocated from the heap. The heap is a big block of memory used for
allocating smaller pieces at run-time. Y ou use the heap when you don’t know the size of the
memory you'll need while you' re writing a program. That is, only at run-time will you find
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out that you need space to hold 200 air plane variables instead of 20. Dynamic-memory
allocation functions are part of the Standard C library and include malloc( ), calloc( ),
realloc( ), and free( ).

The inflate( ) function uses realloc( ) to get a bigger chunk of space for the stash. realloc( )
takes asitsfirst argument the address of the storage that’s already been allocated and that you
want to resize. (If this argument is zero — which isthe case just after initialize( ) has been
called — it allocates a new chunk of memory.) The second argument is the new size that you
want the chunk to be. If the size is smaller, there’s no chance the block will need to be copied,
so the heap manager is simply told that the extra space isfree. If the sizeislarger, asin
inflate( ),there may not be enough contiguous space, so anew chunk might be allocated and
the memory copied. The assert( ) checks to make sure that the operation was successful.
(malloc( ), calloc( ) and realloc( ) al return zero if the heap is exhausted.)

Note that the C heap manager is fairly primitive. It gives you chunks of memory and takes
them back when you freg(') them. There’ s no facility for heap compaction, which compresses
the heap to provide bigger free chunks. If a program allocates and frees heap storage for a
while, you can end up with a heap that has lots of memory free, just not anything big enough
to allocate the size of chunk you' re looking for at the moment. However, a heap compactor
moves memory chunks around, o your pointers won't retain their proper values. Some
operating environments have heap compaction built in, but they require you to use special
memory handles (which can be temporarily converted to pointers, after locking the memory
so the heap compactor can't move it) instead of pointers.

assert( ) isapreprocessor macro in ASSERT.H. assert( ) takes a single argument, which can
be any expression that evaluates to true or false. The macro says, «l assert this to be true, and
if it’s not, the program will exit after printing an error message.» When you are no longer
debugging, you can define a flag so asserts are ignored. In the meantime, it isavery clear and
portable way to test for errors. Unfortunately, it's a bit abrupt in its handling of error
situations. «Sorry, mission control. Our C program failed an assertion and bailed out. We'll
have to land the shuttle on manual.» In Chapter 16, you'll see how C++ provides a better
solution to critical errors with exception handling.

When you create a variable on the stack at compile-time, the storage for that variableis
automatically created and freed by the compiler. It knows exactly how much storage it needs,
and it knows the lifetime of the variables because of scoping. With dynamic memory
allocation, however, the compiler doesn’t know how much storage you’ re going to need, and
it doesn’t know the lifetime of that storage. It doesn’t get cleaned up automatically. Therefore,
you' re responsible for releasing the storage using freg( ), which tells the heap manager that
storage can be used by the next call to malloc( ), calloc() or realloc( ). Thelogical place for
thisto happen inthelibrary isin the cleanup( ) function because that is where al the closing-
up housekeeping is done.

To test the library, two stashes are created. Thefirst holds ints and the second holds arrays of
80 chars. (You could almost think of this as a new data type. But that happens later.)

/*: C04:Libtestc.c
/1{L} Lib
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Test denonstration library */
#i ncl ude <stdio. h>

#i ncl ude <assert. h>

#i ncl ude "Lib.h"

#def i ne BUFSI ZE 80

int main() {
stash intStash, stringStash;
int i;
FILE* file;
char buf [ BUFSI ZE] ;
char* cp;
[* ... %]
initialize(& ntStash, sizeof(int));
for(i = 0; i < 100; i++)
add( & nt Stash, & );
/* Hol ds 80-character strings: */
initialize(&stringStash,
si zeof (char) * BUFSI ZE);
file = fopen("Libtestc.c", "r");
assert(file);
whi | e(fgets(buf, BUFSIZE, file))
add( &stringStash, buf);
fclose(file);

for(i = 0; i < count(& ntStash); i++)
printf("fetch(& ntStash, %) = %\n", i,
*(int*)fetch(& ntStash, i));

i = 0;
while((cp = fetch(&stringStash, i++)) !'= 0)
printf("fetch(&stringStash, %) = %",
i -1, cp);
putchar('\n"');
cl eanup( & nt St ash) ;
cl eanup(&stringStash);
YOI~ %)

At the beginning of main( ), the variables are defined, including the two stash structures. Of
course, you must remember to initialize these later in the block. One of the problems with
librariesis that you must carefully convey to the user the importance of the initialization and
cleanup functions. If these functions aren’t called, there will be alot of trouble. Unfortunately,
the user doesn’t always wonder if initialization and cleanup are mandatory. They know what
they want to accomplish, and they’ re not as concerned about you jumping up and down
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saying, «Hey, wait, you have to do this first!» Some users have even been known to initialize
the elements of the structure themselves. There's certainly no mechanism to prevent it (more
foreshadowing).

The intStash isfilled up with integers, and the stringStash isfilled with strings. These
strings are produced by opening the source codefile, Libtest.c, and reading the lines from it
into the stringStash. Notice something interesting here: The Standard C library functions for
opening and reading files use the same techniques asin the stash library! fopen() returnsa
pointer to aFILE struct, which it creates on the heap, and this pointer is passed to any
function that refers to that file (fgets( ), in this case). One of the things fclose( ) doesisrelease
the FILE struct back to the heap. Once you start noticing this pattern of a C library

consisting of structs and associated functions, you see it everywhere!

After the two stashes are loaded, you can print them out. The intStash is printed using afor
loop, which uses count() to establish its limit. The stringStash is printed with awhile, which
breaks out when fetch() returns zero to indicate it is out of bounds.

There are anumber of other things you should understand before we look at the problemsin
creating a C library. (You may aready know these because you're a C programmer.) First,
although header files are used here because it's good practice, they aren’t essential. It's
possiblein C to call afunction that you haven't declared. A good compiler will warn you that
you probably ought to declare afunction first, but it isn't enforced. This is a dangerous
practice, because the compiler can assume that a function that you call with anint argument
has an argument list containing int, and it will treat it accordingly — avery difficult bug to
find.

Note that the Lib.h header file must be included in any file that refers to stash because the
compiler can’'t even guess at what that structure looks like. It can guess at functions, even
though it probably shouldn’t, but that’s part of the history of C.

Each separate C fileisatrandation unit. That is, the compiler is run separately on each
trandation unit, and when it isrunning it is aware of only that unit. Thus, any information you
provide by including header files is quite important because it provides the compiler’s
understanding of the rest of your program. Declarations in header files are particularly
important, because everywhere the header isincluded, the compiler will know exactly what to
do. If, for example, you have a declaration in a header file that says void foo(float);, the
compiler knows that if you call it with an integer argument, it should promote theint to a
float. Without the declaration, the compiler would simply assume that a function foo(int)
existed, and it wouldn’t do the promotion.

For each trand ation unit, the compiler creates an object file, with an extension of .o or .obj or
something similar. These object files, along with the necessary start-up code, must be
collected by the linker into the executable program. During linking, al the external references
must be resolved. For example, in Libtest.c, functionslikeinitialize( ) and fetch( ) are
declared (that is, the compiler istold what they look like) and used, but not defined. They are
defined elsewhere, in Lib.c. Thus, the callsin Libtest.c are external references. The linker
must, when it puts al the object files together, take the unresolved external references and
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find the addresses they actually refer to. Those addresses are put in to replace the external
references.

It'simportant to realize that in C, the references are simply function names, generally with an
underscore in front of them. So all the linker has to do is match up the function name where it
is called and the function body in the object file, and it's done. If you accidentally made a call
that the compiler interpreted as foo(int) and there's a function body for foo(float) in some
other object file, the linker will see _foo in one place and _foo in another, and it will think
everything’s OK. The foo( ) at the calling location will push an int onto the stack, and the
foo( ) function body will expect afloat to be on the stack. If the function only reads the value
and doesn’t writetoit, it won't blow up the stack. In fact, the float value it reads off the stack
might even make some kind of sense. That's worse because it's harder to find the bug.

What's wrong?

We are remarkably adaptable, even with things where perhaps we shouldn’t adapt. The style
of the stash library has been a staple for C programmers, but if you look at it for awhile, you
might notice that it’ srather . . . awkward. When you use it, you have to pass the address of the
structure to every single function in the library. When reading the code, the mechanism of the
library gets mixed with the meaning of the function calls, which is confusing when you're
trying to understand what’s going on.

One of the biggest obstacles, however, to using libraries in C is the problem of name clashes.
C has asingle name space for functions; that is, when the linker looks for a function name, it

looksin asingle master list. In addition, when the compiler isworking on atrandation unit, it
can only work with a single function with a given name.

Now suppose you decide to buy two libraries from two different vendors, and each library has
a structure that must be initialized and cleaned up. Both vendors decided that initialize( ) and
cleanup() are good names. If you include both their header filesin a single trandlation unit,
what does the C compiler do? Fortunately, Standard C gives you an error, telling you there's a
type mismatch in the two different argument lists of the declared functions. But even if you
don’t include them in the same trandation unit, the linker will still have problems. A good
linker will detect that there's aname clash, but some linkers take the first function name they
find, by searching through the list of object filesin the order you give them in the link list.
(Indeed, this can be thought of as a feature because it allows you to replace a library function
with your own version.)

In either event, you can’t use two C libraries that contain a function with the identical name.
To solve this problem, C library vendors will often prepend a string of unique charactersto
the beginning of al their function names. So initialize( ) and cleanup( ) might become
stash_initialize( ) and stash_cleanup(). Thisisalogica thing to do because it «mangles»
the name of the struct the function works on with the name of the function.

Now it’ stimeto take the very first step into C++. Variable names inside a struct do not clash
with global variable names. So why not take advantage of this for function names, when those
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functions operate on a particular struct? That is, why not make functions members of
structs?

The basic object

Step onein C++ is exactly that. Functions can now be placed inside structs as «member
functions.» Here' swhat it looks like after converting the C version of stash to the C++ Stash
(note the C++ version starts with a capital |etter):

[1: Q04:Libcpp.h
/1 Clibrary converted to C++

struct Stash {

int size; /1 Size of each space
int quantity; // Nunber of storage spaces
i nt next; /1 Next enpty space

/1 Dynamically allocated array of bytes:
unsi gned char* storage;

/1 Functions!

void initialize(int Size);

voi d cl eanup();

i nt add(voi d* el ement);

voi d* fetch(int index);

int count();
void inflate(int increase);
Yo o1~

The first thing you'll notice is the new comment syntax, //. Thisisin addition to C-style
comments, which still work fine. The C++ comments only go to the end of the line, which is
often very convenient. In addition, in this book we put a colon after the // on the first line of
thefile, followed by the name of the file and a brief description. This allows an exact
inclusion of the file from the source code. In addition, you can easily identify the file in the
electronic source code from its name in the book listing.

Next, notice there is no typedef. Instead of requiring you to create atypedef, the C++
compiler turns the name of the structure into a new type name for the program (just like int,
char, float and double are type names). The use of Stash is till the same.

All the data members are exactly the same as before, but now the functions are inside the
body of the struct. In addition, notice that the first argument from the C version of the library
has been removed. In C++, instead of forcing you to pass the address of the structure as the
first argument to all the functions that operate on that structure, the compiler secretly does this
for you. Now the only arguments for the functions are concerned with what the function does,
not the mechanism of the function’s operation.
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It'simportant to realize that the function code is effectively the same as it was with the C
library. The number of arguments are the same (even though you don't see the structure
address being passed in, it’ s still there); and there's only one function body for each function.
That is, just because you say

Stash A B, C
doesn’'t mean you get a different add( ) function for each variable.

So the code that’ s generated is almost the same as you would have written for the C library.
Interestingly enough, this includes the «name mangling» you probably would have done to
produce Stash_initialize( ), Stash_cleanup( ), and so on. When the function nameisinside
the struct, the compiler effectively does the same thing. Therefore, initialize( ) inside the
structure Stash will not collide with initialize( ) inside any other structure. Most of the time
you don’t have to worry about the function name mangling — you use the unmangled name.
But sometimes you do need to be able to specify that thisinitialize( ) belongs to the struct
Stash, and not to any other struct. In particular, when you' re defining the function you need
to fully specify which oneit is. To accomplish this full specification, C++ has a new operator,
:: the scope resolution operator (named so because names can now be in different scopes: at
global scope, or within the scope of a struct). For example, if you want to specify

initialize( ), which belongs to Stash, you say Stash::initialize(int Size, int Quantity);. You
can see how the scope resolution operator is used in the function definitions for the C++
version of Stash:

/1: CO4:Libcpp.cpp {C

/1 Clibrary converted to C++

/1 Declare structure and functions:

#i nclude <cstdlib> // Dynam c nenory

#i nclude <cstring> // mencpy()

#i ncl ude <cstdi o>

#include "../require.h" // Error testing code
#i ncl ude "Libcpp. h"

usi ng nanmespace std;

void Stash::initialize(int Size) {
size = Size;
quantity = O;
storage = O;
next = O;

}

voi d Stash::cleanup() {
i f(storage) {
puts("freeing storage");
free(storage);

}
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}

i nt Stash::add(void* elenment) {
i f(next >= quantity) // Enough space left?
i nflate(100);
/1 Copy el enent into storage,
/] starting at next enpty space:
nmencpy( & st orage[ next * size]),
el ement, size);

next ++;

return(next - 1); // 1ndex numnber
}
voi d* Stash::fetch(int index) {

i f(index >= next || index < 0)

return 0; // Not out of bounds?
/1 Produce pointer to desired el ement:
return &(storage[index * size]);

}

int Stash::count() {
return next; // Nunber of elenents in Stash

}
void Stash::inflate(int increase) {
voi d* v =
real l oc(storage, (quantity+i ncrease)*size);
require(v '=0); [// Was it successful ?

storage = (unsigned char*)v;
gquantity += increase;
Y I~

There are several other things that are different about thisfile. First, the declarationsin the
header files are required by the compiler. In C++ you cannot call afunction without declaring
it first. The compiler will issue an error message otherwise. Thisis an important way to
ensure that function calls are consistent between the point where they are called and the point
where they are defined. By forcing you to declare the function before you call it, the C++
compiler virtually ensures you will perform this declaration by including the header file. If
you aso include the same header file in the place where the functions are defined, then the
compiler checks to make sure the declaration in the header and the definition match up. This
means that the header file becomes a validated repository for function declarations and
ensures that functions are used consistently throughout all translation unitsin the project.
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Of course, global functions can still be declared by hand every place where they are defined
and used. (Thisis so tedious that it becomes very unlikely.) However, structures must always
be declared before they are defined or used, and the most convenient place to put a structure
definition isin a header file, except for those you intentionally hidein afile).

Y ou can see that all the member functions are virtually the same, except for the scope
resolution and the fact that the first argument from the C version of the library is no longer
explicit. It's still there, of course, because the function has to be able to work on a particular
struct variable. But notice that inside the member function the member selection is also gone!
Thus, instead of saying S—>size = Size; you say size = Size; and eliminate the tedious S—,
which didn’t really add anything to the meaning of what you were doing anyway. Of course,
the C++ compiler must till be doing this for you. Indeed, it is taking the «secret» first
argument and applying the member selector whenever you refer to one of the data members of
aclass. This means that whenever you are inside the member function of another class, you
can refer to any member (including another member function) by simply giving its name. The
compiler will search through the local structure’s names before looking for a global version of
that name. You'll find that this feature means that not only is your code easier to write, it'sa
lot easier to read.

But what if, for some reason, you want to be able to get your hands on the address of the
structure? In the C version of the library it was easy because each function’s first argument
was astash* caled S. In C++, things are even more consistent. There' s a special keyword,
called this, which produces the address of the struct. It'sthe equivalent of Sin the C version
of the library. So we can revert to the C style of things by saying

this->size = Sjze;

The code generated by the compiler is exactly the same. Usually, you don’t use this very
often, but when you need it, it’s there.

There' s one last change in the definitions. In inflate( ) in the C library, you could assign a
void* to any other pointer like this:

| S->storage = v;

and there was no complaint from the compiler. But in C++, this statement is not allowed.
Why? Because in C, you can assign avoid* (which iswhat malloc( ), calloc( ), and realloc( )
return) to any other pointer without a cast. C is not so particular about type information, so it
allowsthis kind of thing. Not so with C++. Typeiscritica in C++, and the compiler stamps
its foot when there are any violations of type information. This has always been important, but
it is especialy important in C++ because you have member functionsin structs. If you could
pass pointersto structs around with impunity in C++, then you could end up calling a
member function for astruct that doesn’t even logically exist for that struct! A rea recipe for
disaster. Therefore, while C++ allows the assignment of any type of pointer to avoid* (this
was the original intent of void*, which is required to be large enough to hold a pointer to any
type), it will not allow you to assign avoid pointer to any other type of pointer. A cast is
always required, to tell the reader and the compiler that you know the type that it is going to.
Thus you will see the return values of calloc( ) and realloc( ) are explicitly cast to (unsigned
char*).
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This brings up an interesting issue. One of the important goals for C++ isto compile as much
existing C code as possible to allow for an easy transition to the new language. Notice in the
above example how Standard C library functions are used. In addition, all C operators and
expressions are availablein C++. However, this doesn’t mean any code that C allows will
automatically be allowed in C++. There are a number of things the C compiler lets you get
away with that are dangerous and error-prone. (We'll look at them as the book progresses.)
The C++ compiler generates warnings and errors for these situations. This is often much more
of an advantage than a hindrance. In fact, there are many situations where you are trying to
run down an error in C and just can’t find it, but as soon as you recompile the program in
C++, the compiler points out the problem! In C, you'll often find that you can get the program
to compile, but then you have to get it to work. In C++, often when the program compiles
correctly, it works, too! Thisis because the language is alot stricter about type.

Y ou can see anumber of new thingsin the way the C++ version of Stash isused, in the
following test program:

/1: CO4:Libtest.cpp
/1{L} Libcpp

/] Test of C++ library
#i ncl ude <cstdi o>
#include "../require. h"
#i ncl ude "Libcpp. h"
usi ng nanmespace std;
#def i ne BUFSI ZE 80

int main() {
Stash intStash, stringStash;
int i;
FILE* file;
char buf [ BUFSI ZE] ;
char* cp;
1
intStash.initialize(sizeof(int));
for(i = 0; i < 100; i++)
i nt Stash. add( & ) ;
/1 Hol ds 80-character strings:
stringStash.initialize(sizeof(char)*BUFSI ZE);
file = fopen("Libtest.cpp", "r");
require(file '=0);
whi | e(fgets(buf, BUFSIZE, file))
stringSt ash. add( buf);
fclose(file);

for(i = 0; i < intStash.count(); i++)
printf("intStash.fetch(%) = %\n", i,

Chapter 1. Data Abstraction 167



*(int*)intStash.fetch(i));

i = 0;
whi | e(
(cp = (char*)stringStash.fetch(i++))!=0)
printf("stringStash.fetch(%l) = %",

i -1, cp);

putchar('\n"');

i nt Stash. cl eanup();

stringStash. cl eanup();

Y I~

The code is quite similar, but when a member function is called, the call occurs using the
member selection operator ‘.’ preceded by the name of the variable. Thisis a convenient
syntax because it mimics the selection of a data member of the structure. The differenceis

that thisisafunction member, so it has an argument list.

Of course, the call that the compiler actually generates looks much more like the original C
library function. Thus, considering name mangling and the passing of this, the C++ function
cal intStash.initialize(sizeof(int), 100) becomes something like Stash_initialize(& intStash,
sizeof(int), 100). If you ever wonder what's going on undernesth the covers, remember that
the original C++ compiler cfront from AT&T produced C code as its output, which was then
compiled by the underlying C compiler. This approach meant that cfront could be quickly
ported to any machine that had a C compiler, and it helped to rapidly disseminate C++
compiler technology.

You'll aso notice an additional castin
| whil e(cp = (char*)stringStash.fetch(i++))
Thisis due again to the stricter type checking in C++.

What's an object?

Now that you've seen an initial example, it'stimeto step back and take alook at some
terminology. The act of bringing functions inside structures is the root of the changesin C++,
and it introduces a new way of thinking about structures as concepts. In C, a structure isan
agglomeration of data, away to package data so you can treat it in aclump. But it's hard to
think about it as anything but a programming convenience. The functions that operate on
those structures are elsewhere. However, with functions in the package, the structure becomes
anew creature, capable of describing both characteristics (like a C struct could) and
behaviors. The concept of an object, a free-standing, bounded entity that can remember and
act, suggests itsalf.

The terms «object» and «object-oriented programming» (OOP) are not new. The first OOP
language was Simula-67, created in Scandinaviain 1967 to aid in solving modeling problems.
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These problems aways seemed to involve a bunch of identical entities (like people, bacteria,
and cars) running around interacting with each other. Simula allowed you to create a general
description for an entity that described its characteristics and behaviors and then make a
whole bunch of them. In Simula, the «general description» is caled a class (aterm you'll see
in alater chapter), and the mass-produced item that you stamp out from a classis caled an
object. In C++, an object isjust avariable, and the purest definition is «a region of storage.»
It's a place where you can store data, and it's implied that there are also operations that can be
performed on this data.

Unfortunately there's not complete consistency across languages when it comes to these
terms, although they are fairly well-accepted. Y ou will aso sometimes encounter
disagreement about what an object-oriented language is, athough that seemsto be fairly well
sorted out by now. There are languages that are object-based, which means they have objects
like the C++ structures-with-functions that you' ve seen so far. This, however, isonly part of
the picture when it comes to an object-oriented language, and languages that stop at
packaging functions inside data structures are object-based, not object-oriented.

Abstract datatyping

The ability to package data with functions allows you to create a new datatype. Thisis often
called encapsulation?8. An existing data type, like afloat, has several pieces of data packaged
together: an exponent, a mantissa, and asign hit. You can tell it to do things: add to another
float or to an int, and so on. It has characteristics and behavior.

The Stash isalso anew datatype. You can add( ) and fetch( ) and inflate( ). Y ou create one
by saying Stash S, asyou create afloat by saying float f. A Stash also has characteristics and
behavior. Even though it acts like areal, built-in data type, we refer to it as an abstract data
type, perhaps because it allows usto abstract a concept from the problem space into the
solution space. In addition, the C++ compiler treats it like anew datatype, and if you say a
function expects a Stash, the compiler makes sure you pass a Stash to that function. The
same level of type checking happens with abstract data types (sometimes called user-defined
types) as with built-in types.

You can immediately see a difference, however, in the way you perform operations on
objects. You say object.member_function(arglist). Thisis «calling a member function for
an object.» But in object-oriented parlance, thisis aso referred to as «sending a message to an
object.» So for a Stash S, the statement S.add(& i) «sends a message to S» saying «add( ) this
to yourself.» In fact, object-oriented programming can be summed up in a single sentence as
«sending messages to objects.» Redlly, that’s al you do — create a bunch of objects and send

28y ou should be aware that this term seems to be the subject of ongoing debate. Some people
use it as defined here; others use it to describe implementation hiding, discussed in Chapter 2.
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messages to them. The trick, of course, is figuring out what your objects and messages are,
but once you accomplish that the implementation in C++ is surprisingly straightforward.

Object details

At this point you' re probably wondering the same thing that most C programmers do because
Cisalanguage that is very low-level and efficiency-oriented. A question that comes up alot
in seminarsis «How big is an object, and what does it look like?» The answer is «Pretty much
the same as you expect from a C struct.» In fact, a C struct.(with no C++ adornments) will
usually look exactly the same in the code that the C and C++ compilers produce, which is
reassuring to those C programmers who depend on the details of size and layout in their code,
and for some reason directly access structure bytes instead of using identifiers, although
depending on a particular size and layout of a structure is a nonportable activity.

The size of astruct isthe combined size of all its members. Sometimes when a struct islaid
out by the compiler, extra bytes are added to make the boundaries come out neatly — this
may increase execution efficiency. In Chapters 13 and 15, you' ll see how in some cases
«secret» pointers are added to the structure, but you don’t need to worry about that right now.

Y ou can determine the size of a struct using the sizeof operator. Here's a small example:

/1: CO04:Sizeof.cpp
/1 Sizes of structs
#i ncl ude <cstdi o>

#i nclude "Lib.h"

#i ncl ude "Libcpp. h"
usi ng nanmespace std;

struct A {
int 1[100];
1

struct B {
void f();
1

void B::f() {}

int main() {
printf("sizeof struct A = %l bytes\n",
si zeof (A));
printf("sizeof struct B
si zeof (B));
printf("sizeof stash in C = %l bytes\n",

%l bytes\n",
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si zeof (stash));
printf("sizeof Stash in C++ = % bytes\n",
si zeof (Stash));
Y I~

The first print statement produces 200 because each int occupies two bytes. struct B is
something of an anomaly because it is a struct with no data members. In C, thisisillegal, but
in C++ we need the option of creating a struct whose sole task is to scope function names, so
it isalowed. Still, the result produced by the second printf( ) statement is a somewhat
surprising nonzero value. In early versions of the language, the size was zero, but an awkward
situation arises when you create such objects. They have the same address as the object
created directly after them, and so are not distinct. Thus, structures with no data members will
always have some minimum nonzero size.

The last two sizeof statements show you that the size of the structure in C++ isthe same as
the size of the equivalent version in C. C++ endeavors not to add any overhead.

Header file etiquette

When | first learned to program in C, the header file was a mystery to me. Many C books
don’t seem to emphasize it, and the compiler didn’t enforce function declarations, so it
seemed optional most of the time, except when structures were declared. In C++ the use of
header files becomes crystal clear. They are practically mandatory for easy program
development, and you put very specific information in them: declarations. The header file
tells the compiler what is available in your library. Because you can use the library without
the source code for the CPP file (you only need the object file or library file), the header fileis
where the interface specification is stored.

The header is a contract between you and the user of your library. It says, «Here's what my
library does.» It doesn’t say how because that’s stored in the CPP file, and you won't
necessarily deliver the sources for «hows to the user.

The contract describes your data structures, and states the arguments and return values for the
function calls. The user needs all this information to develop the application and the compiler
needs it to generate proper code.

The compiler enforces the contract by requiring you to declare all structures and functions
before they are used and, in the case of member functions, before they are defined. Thus,
you're forced to put the declarations in the header and to include the header in the file where
the member functions are defined and the file(s) where they are used. Because a single header
file describing your library isincluded throughout the system, the compiler can ensure
consistency and prevent errors.

There are certain issues that you must be aware of in order to organize your code properly and
write effective header files. The first issue concerns what you can put into header files. The
basic ruleis «only declarations,» that is, only information to the compiler but nothing that
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allocates storage by generating code or creating variables. Thisis because the header file will
probably be included in several trandation unitsin a project, and if storageisalocated in
more than one place, the linker will come up with a multiple definition error.

Thisruleisn’t completely hard and fast. If you define a piece of datathat is «file static» (has
visibility only within afile) inside a header file, there will be multiple instances of that data
across the project, but the linker won’t have a collision. Basicaly, you don’'t want to do
anything in the header file that will cause an ambiguity at link time.

The second critical issue concerning header files is redeclaration. Both C and C++ alow you
to redeclare afunction, as long as the two declarations match, but neither will allow the
redeclaration of a structure. In C++ thisrule is especially important because if the compiler
allowed you to redeclare a structure and the two declarations differed, which one would it
use?

The problem of redeclaration comes up quite a bit in C++ because each data type (structure
with functions) generally has its own header file, and you have to include one header in
another if you want to create another data type that uses the first one. In the whole project, it's
very likely that you'll include several files that include the same header file. During asingle
compilation, the compiler can see the same header file several times. Unless you do
something about it, the compiler will see the redeclaration of your structure.

The typical preventive measure is to «insulate» the header file by using the preprocessor. If
you have a header file named FOO.H, it's common to do your own «name mangling» to
produce a preprocessor name that is used to prevent multiple inclusion of the header file. The
inside of FOO.H might look like this:

#i f ndef FOO H_

#define FOO H_

/1 Rest of header here...
#endif // FOO_H_

Notice aleading underscore was not used because Standard C reserves identifiers with leading
underscores.

Using headers in projects
When building a project in C++, you'll usualy create it by bringing together alot of different
types (data structures with associated functions). Y ou'll usually put the declaration for each
type or group of associated typesin a separate header file, then define the functions for that
type in atrandation unit. When you use that type, you must include the header file to perform
the declarations properly.

Sometimes that pattern will be followed in this book, but more often the examples will be
very small, so everything — the structure declarations, function definitions, and the main( )
function — may appear in asingle file. However, keep in mind that you'll want to use
separate files and header filesin practice.
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Nested structures

The convenience of taking data and function names out of the global name space extends to
structures. Y ou can nest a structure within another structure, and therefore keep associated
elements together. The declaration syntax is what you would expect, as you can seein the
following structure, which implements a push-down stack as avery simple linked list so it
«never» runs out of memory:

//: C04: Nested. h

/1 Nested struct in linked I|ist
#i f ndef NESTED H_

#defi ne NESTED H_

struct Stack {
struct link {
voi d* data
i nk* next;
void initialize(void* Data, |ink* Next);
} * head;
void initialize();
voi d push(voi d* Data);
voi d* peek();
voi d* pop();
voi d cl eanup();
1
#endif // NESTED H ///:~

The nested struct is called link, and it contains a pointer to the next link inthe list and a
pointer to the data stored in the link. If the next pointer is zero, it means you're at the end of
the list.

Notice that the head pointer is defined right after the declaration for struct link, instead of a
separate definition link* head. Thisis a syntax that came from C, but it emphasizes the
importance of the semicolon after the structure declaration — the semicolon indicates the end
of thelist of definitions of that structure type. (Usually thelist isempty.)

The nested structure has its own initialize( ) function, like al the structures presented so far,
to ensure proper initialization. Stack has both an initialize( ) and cleanup() function, as well
as push( ), which takes a pointer to the data you wish to store (assumed to have been allocated
on the heap), and pop( ), which returns the data pointer from the top of the Stack and
removes the top element. (Notice that you are responsible for destroying the destination of the
data pointer.) The peek( ) function also returns the data pointer from the top element, but it
leaves the top element on the Stack.
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cleanup goes through the Stack and removes each element and frees the data pointer (so it
must be on the heap).

Here are the definitions for the member functions:

/1: CO4: Nested.cpp {C

/1 Linked list with nesting
#i ncl ude <cstdlib>
#include "../require. h"

#i ncl ude "Nested. h"

usi ng nanmespace std;

void Stack::link::initialize(
voi d* Data, |ink* Next) {
data = Dat a;
next = Next;
}

void Stack::initialize() { head = 0; }

voi d Stack::push(void* Data) {
[ink* newlink = (link*)nmalloc(sizeof(link));
requi re(newlink !'= 0);
new i nk->initialize(Data, head);
head = new i nk;
}

voi d* Stack::peek() { return head->data; }

voi d* Stack::pop() {
i f(head == 0) return O;
voi d* result = head->dat a;
i nk* ol dHead = head;
head = head- >next;
free(ol dHead) ;
return result;

}

voi d Stack::cleanup() {
i nk* cursor = head;
whi | e(head) {
cursor = cursor->next;
free(head->data); // Assunes a mall oc!
free(head);
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head = cursor;

}
Y 110~

Thefirst definition is particularly interesting because it shows you how to define a member of
anested structure. Y ou simply use the scope resolution operator a second time, to specify the
name of the enclosing struct. The Stack::link::initialize( ) function takes the arguments and
assigns them to its members. Although you can certainly do these things by hand quite easily,
you'll see adifferent form of this function in the future, so it will make much more sense.

The Stack::initialize( ) function sets head to zero, so the object knows it has an empty list.

Stack::push( ) takes the argument, a pointer to the piece of data you want to keep track of
using the Stack, and pushesit on the Stack. Firgt, it uses malloc( ) to allocate storage for the
link it will insert at the top. Then it callstheinitialize( ) function to assign the appropriate
values to the members of the link. Notice that the next pointer is assigned to the current head;
then head is assigned to the new link pointer. This effectively pushes the link in at the top of
the list.

Stack::pop() stores the data pointer at the current top of the Stack; then it moves the head
pointer down and deletes the old top of the Stack. Stack::cleanup( ) creates a cursor to move
through the Stack and free( ) both the data in each link and the link itself.

Here' s an example to test the Stack:

/1: CO4: Nest Test. cpp

/1{L} Nested

/1{T} NestTest.cpp

/1 Test of nested |inked |ist
#i ncl ude <cstdi o>

#i ncl ude <cstdlib>

#i ncl ude <cstring>

#include "../require. h"

#i ncl ude "Nested. h"

usi ng nanmespace std;

int main(int argc, char* argv[]) {
Stack textlines;
FILE* file;
char* s;
#def i ne BUFSI ZE 100
char buf [ BUFSI ZE] ;
requi reArgs(argc, 2); // File nane is argunent
textlines.initialize();
file = fopen(argv[1], "r");
require(file '=0);
/!l Read file and store lines in the Stack:
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whi | e(fgets(buf, BUFSIZE, file)) {
char* string =(char*)mall oc(strlen(buf)+1);
require(string !'= 0);
strcpy(string, buf);
textlines. push(string);

}

/1 Pop the Iines fromthe Stack and print them

while((s = (char*)textlines.pop()) !'=0) {
printf("9%", s); free(s); }

textlines.cl eanup();

Y I~

Thisis very similar to the earlier example, but it pushes the lines on the Stack and then pops
them off, which resultsin the file being printed out in reverse order. In addition, the file name
is taken from the command line.

Global scope resolution

The scope resolution operator gets you out of situations where the name the compiler chooses
by default (the «nearest» name) isn't what you want. For example, suppose you have a
structure with alocal identifier A, and you want to select aglobal identifier A insidea
member function. The compiler would default to choosing the local one, so you must tell it to
do otherwise. When you want to specify a globa name using scope resolution, you use the
operator with nothing in front of it. Here's an example that shows global scope resolution for
both avariable and a function:

[1: Q04: Scoperes.cpp {CG

/1 d obal scope resol ution
int A

void f() {}

struct S {
int A

void f();
1

void S::f() {
::f(); // Wuld be recursive otherw se!
i A++; /] Select the global A
A--; /1 The A at struct scope

1~

Without scope resolution in S::f( ), the compiler would default to selecting the member
versions of f() and A.
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Summary

In this chapter, you' ve learned the fundamental «twist» of C++: that you can place functions
inside of structures. This new type of structureis called an abstract data type, and variables
you create using this structure are called objects, or instances, of that type. Calling a member
function for an object is called sending a message to that object. The primary action in object-
oriented programming is sending messages to objects.

Although packaging data and functions together is a significant benefit for code organization
and makes library use easier because it prevents name clashes by hiding the names, there'sa
lot more you can do to make programming safer in C++. In the next chapter, you'll learn how
to protect some members of a struct so that only you can manipulate them. This establishes a
clear boundary between what the user of the structure can change and what only the
programmer may change.

Exercises

4, Create astruct declaration with a single member function; then create a
definition for that member function. Create an object of your new data type,
and call the member function.

5. Write and compile a piece of code that performs data member selection and
afunction call using the this keyword (which refers to the address of the
current object).

6. Show an example of a structure declared within another structure (a nested
structure). Also show how members of that structure are defined.
7. How big is a structure? Write a piece of code that prints the size of various

structures. Create structures that have data members only and ones that have
data members and function members. Then create a structure that has no
members at al. Print out the sizes of al these. Explain the reason for the
result of the structure with no data members at all.

8. C++ automatically creates the equivalent of atypedef for enumerations and
unions aswell as structs, as you' ve seen in this chapter. Write asmall
program that demonstrates this.
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5: Hiding the
Implementation

A typical C library contains a struct and some associated
functionsto act on that struct. So far, you've seen how C++
takes functions that are conceptually associated and makes
them literally associated, by

putting the function declarations inside the scope of the struct, changing the way functions
are called for the struct, eliminating the passing of the structure address as the first argument,
and adding a new type name to the program (so you don’t have to create atypedef for the
struct tag).

These are all convenient — they help you organize your code and make it easier to write and
read. However, there are other important issues when making libraries easier in C++,
especialy the issues of safety and control. This chapter looks at the subject of boundariesin
structures.

Setting limits

In any relationship it’s important to have boundaries that are respected by al parties involved.
When you create alibrary, you establish arelationship with the user (also called the client
programmer) of that library, who is another programmer, but one putting together an
application or using your library to build a bigger library.

InaC struct, aswith most thingsin C, there are no rules. Users can do anything they want
with that struct, and there's no way to force any particular behaviors. For example, even
though you saw in the last chapter the importance of the functions named initialize( ) and
cleanup( ), the user could choose whether to call those functions or not. (We'll look at a
better approach in the next chapter.) And even though you would really prefer that the user
not directly manipulate some of the members of your struct, in C there’s no way to prevent it.
Everything's naked to the world.

There are two reasons for controlling access to members. The first isto keep users' hands off
tools they shouldn’t touch, toolsthat are necessary for the internal machinations of the data
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type, but not part of the interface that users need to solve their particular problems. Thisis
actually a service to users because they can easily see what's important to them and what they
can ignore.

The second reason for access control isto alow the library designer to change the internal
workings of the structure without worrying about how it will affect the client programmer. In
the Stack example in the last chapter, you might want to allocate the storage in big chunks,
for speed, rather than calling malloc( ) each time an element is added. If the interface and
implementation are clearly separated and protected, you can accomplish this and require only
arelink by the user.

C++ access control

C++ introduces three new keywords to set the boundaries in a structure: public, private, and
protected. Their use and meaning are remarkably straightforward. These access specifiers are
used only in a structure declaration, and they change the boundary for all the declarations that
follow them. Whenever you use an access specifier, it must be followed by a colon.

public means all member declarations that follow are available to everyone. public members
are like struct members. For example, the following struct declarations are identical:

/1: CO5:Public.cpp {O
/1 Public is just like C struct

struct A {
int i;
char j;
float f;
void foo();

1
void A :foo() {}

struct B {
publi c:

int i;
char j;
float f;
void foo();

1
void B::foo() {} [///:~
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The private keyword, on the other hand, means no one can access that member except you,
the creator of the type, inside function members of that type. privateis abrick wall between
you and the user; if someone tries to access a private member, they’ll get a compile-time
error. In struct B in the above example, you may want to make portions of the representation
(that is, the data members) hidden, accessible only to you:

/1: QO05:Private.cpp
/1 Setting the boundary

struct B {

private:
char j;
float f;

publi c:

int i;
void foo();

};

void B::foo() {
i 0;
j IOI;
f

}s

int main() {

B b;

b.i =1, /1 OK, public
/1Y b.j "1'; [/ lllegal, private
/1Y Db.f 1.0; [// Illegal, private
Y I~

Although foo( ) can access any member of B, an ordinary global function like main(') cannot.
Of course, neither can member functions of other structures. Only the functions that are
clearly stated in the structure declaration (the «contract») can have accessto private
members.

Thereis no required order for access specifiers, and they may appear more than once. They
affect al the members declared after them and before the next access specifier.

protected

The last access specifier is protected. protected actsjust like private, with one exception
that we can't really talk about right now: Inherited structures have access to protected
members, but not private members. But inheritance won't be introduced until Chapter 12, so
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this doesn’'t have any meaning to you. For the current purposes, consider protected to be just
like private; it will be clarified when inheritance is introduced.

Friends

What if you want to explicitly grant access to afunction that isn’t amember of the current
structure? This is accomplished by declaring that function a friend inside the structure
declaration. It'simportant that the friend declaration occurs inside the structure declaration
because you (and the compiler) must be able to read the structure declaration and see every
rule about the size and behavior of that data type. And avery important rulein any
relationship is «who can access my private implementation»

The class controls which code has access to its members. There's no magic way to «break in»;
you can't declare a new class and say «hi, I'm afriend of Bob!» and expect to see the private
and protected members of Bob.

Y ou can declare aglobal function asafriend, and you can aso declare a member function of
another structure, or even an entire structure, as afriend. Here's an example::

/1: CO5: Friend. cpp
/1 Friend allows special access

struct X; // Declaration (inconplete type spec)

struct Y {
void f(X*);
b

struct X { // Definition
private:

int i;
publi c:

void initialize();

friend void g(X*, int); // Qobal friend
friend void Y::f(X*); [/ Struct nenber friend
friend struct Z; // Entire struct is a friend
friend void h();

}s
void X:.:initialize() { i =0; }
void g(X* x, int i) { x-> =1i; }

void Y.:f(X* x) { x-> =47, }
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struct Z {
private:
int j;
publi c:
void initialize();
void g(X* x);
b

void Z :initialize() { j =99; }
void Z:g(X* x) { x->i +=j; }

void h() {
X X;
X.i = 100; // Direct data manipul ation

}

int main() {
X X;
Z z;
z. g(&x);
Y I~

struct Y hasamember function f(') that will modify an object of type X. Thisisabit of a
conundrum because the C++ compiler requires you to declare everything before you can refer
toit, so struct Y must be declared before its member Y::f(X*) can be declared asafriend in
struct X. But for Y::f(X*) to be declared, struct X must be declared first!

Here' sthe solution. Notice that Y::f(X*) takes the address of an X object. Thisiscritical
because the compiler aways knows how to pass an address, which is of afixed size regardless
of the object being passed, even if it doesn’'t have full information about the size of the type.

If you try to pass the whole object, however, the compiler must see the entire structure
definition of X, to know the size and how to passit, before it allows you to declare a function
such as Y::g(X).

By passing the address of an X, the compiler allows you to make an incomplete type
specification of X prior to declaring Y::f(X*). Thisis accomplished in the declaration struct
X;. Thissimply tells the compiler there’ sastruct by that name, so if it isreferred to, it's OK,
as long as you don’t require any more knowledge than the name.

Now, in struct X, the function Y::f(X*) can be declared as afriend with no problem. If you
tried to declare it before the compiler had seen the full specification for Y, it would have
given you an error. Thisis a safety feature to ensure consistency and eliminate bugs.

Chapter 2: Hiding the Implementation
183



Notice the two other friend functions. The first declares an ordinary global function g( ) asa
friend. But g( ) has not been previously declared at the global scope! It turns out that friend
can be used this way to simultaneously declare the function and giveit friend status. This
extends to entire structures: friend struct Z is an incomplete type specification for Z, and it
givesthe entire structure friend status.

Nested friends

Making a structure nested doesn’t automatically give it access to private members. To
accomplish this you must follow a particular form: first define the nested structure, then
declareit asafriend using full scoping. The structure definition must be separate from the
friend declaration, otherwise it would be seen by the compiler as a nonmember. Here's an
example:

/1: CO5: Nestfrnd. cpp

/1 Nested friends

#i ncl ude <cstdi o>

#i nclude <cstring> // menset()
usi ng nanmespace std;

#define Sz 20

struct hol der {
private:
int a[SZ];
publi c:
void initialize();
struct pointer {
private:
hol der* h;
int* p;
publi c:
void initialize(holder* H;
/1 Move around in the array:
voi d next();
voi d previous();

void top();
void end();
/1 Access val ues:
int read();
void set(int i);

}s
friend hol der:: pointer;

};
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void holder::initialize() {
nenset (a, 0, SZ * sizeof(int));

}

void holder::pointer::initialize(holder* H) {
h = H
p = h->a;

}

voi d hol der::pointer::next() {
if(p < &h->a[SZ - 1])) p++;
}

voi d hol der:: pointer::previous() {
if(p > &h->a[0])) p--;
}

voi d holder::pointer::top() {
p = &h->a[0]);
}

voi d hol der::pointer::end() {
p = &h->a[SZ - 1]);

}

int holder::pointer::read() {
return *p;

}

voi d holder::pointer::set(int i) {
*p:i;

}

int main() {
hol der h;
hol der: : poi nter hp, hp2;
int i;

h.initialize();

hp.initialize(&h);

hp2.initialize(&h);

for(i =0; i < Sz i++) {
hp. set (i);
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hp. next () ;

}
hp. top();
hp2. end() ;

for(i =0; i < Sz, i++) {
printf("hp = %, hp2 = %\ n",
hp.read(), hp2.read());

hp. next () ;
hp2. previ ous();
}
Yy oI~

The struct holder contains an array of ints and the pointer alows you to access them.
Because pointer is strongly associated with holder, it's sensible to make it a member of that
class. Once pointer isdefined, it is granted access to the private members of holder by
saying:

friend hol der:: pointer;

Notice that the struct keyword is not necessary because the compiler aready knows what
pointer is.

Because pointer is a separate class from holder, you can make more than one of themin
main( ) and use them to select different parts of the array. Because pointer isa class instead
of araw C pointer, you can guarantee that it will always safely point inside the holder.

IS it pure?

The class definition gives you an audit trail, so you can see from looking at the class which
functions have permission to modify the private parts of the class. If afunctionisafriend, it
means that it isn't a member, but you want to give permission to modify private data anyway,
and it must be listed in the class definition so all can seethat it’'s one of the privileged
functions.

C++ isahybrid object-oriented language, not a pure one, and friend was added to get around
practical problems that crop up. It’s fine to point out that this makes the language less «pure,»
because C++ is designed to be pragmatic, not to aspire to an abstract ideal.

Object layout

Chapter 1 stated that a struct written for a C compiler and later compiled with C++ would be
unchanged. This referred primarily to the object layout of the struct, that is, where the storage
for the individual variablesis positioned in the memory alocated for the object. If the C++
compiler changed the layout of C structs, then any C code you wrote that inadvisably took
advantage of knowledge of the positions of variablesin the struct would break.
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When you start using access specifiers, however, you' ve moved completely into the C++
realm, and things change a bit. Within a particular «access block» (a group of declarations
delimited by access specifiers), the variables are guaranteed to be laid out contiguously, asin
C. However, the access blocks themselves may not appear in the object in the order that you
declare them. Although the compiler will usually lay the blocks out exactly as you see them,
thereis no rule about it, because a particular machine architecture and/or operating
environment may have explicit support for private and protected that might require those
blocks to be placed in special memory locations. The language specification doesn’'t want to
restrict this kind of advantage.

Access specifiers are part of the structure and don’t affect the objects created from the
structure. All of the access specification information disappears before the program is run;
generaly this happens during compilation. In a running program, objects become «regions of
storage» and nothing more. Thus, if you really want to you can break all the rules and access
memory directly, asyou can in C. C++ is not designed to prevent you from doing unwise
things. It just provides you with amuch easier, highly desirable alternative.

In general, it's not agood idea to depend on anything that’ s implementation-specific when
you' re writing a program. When you must, those specifics should be encapsulated inside a
structure, so any porting changes are focused in one place.

The class

Access control is often referred to as implementation hiding. Including functions within
structures (encapsulation) produces a data type with characteristics and behaviors, but access
control puts boundaries within that data type, for two important reasons. Thefirstisto
establish what users can and can’t use. Y ou can build your internal mechanisms into the
structure without worrying that users will think it’'s part of the interface they should be using.

This feeds directly into the second reason, which is to separate the interface from the
implementation. If the structure is used in a set of programs, but users can’'t do anything but
send messages to the public interface, then you can change anything that’ s private without
requiring modifications to their code.

Encapsulation and implementation hiding together invent something more than a C struct.
WEe're now in the world of object-oriented programming, where a structure is describing a
class of objects, as you would describe a class of fishes or a class of birds: Any object
belonging to this class will share these characteristics and behaviors. That's what the structure
declaration has become, a description of the way al objects of thistype will look and act.

In the original OOP language, Simula-67, the keyword class was used to describe a new data
type. This apparently inspired Stroustrup to choose the same keyword for C++, to emphasize
that this was the focal point of the whole language, the creation of new data types that are

more than C structs with functions. This certainly seems like adequate justification for anew

keyword.
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However, the use of classin C++ comes close to being an unnecessary keyword. It'sidentical
to the struct keyword in absolutely every way except one: class defaults to private, whereas
struct defaults to public. Here are two structures that produce the same result:

/1: CO5:C ass.cpp {G
// Simlarity of struct and cl ass

struct A {
private:

int i, j, k;
publi c:
int f();
void g();
b

int A:f() { returni +j + k; }
void A:g() { i =] =k =0; }
/1 ldentical results are produced wth:
class B {
int i, j, k;
publi c:
int f();

void g();
b

int B::f() { returni +j + k; }

void B::g() {i =] =k =0; }
111~

The classis the fundamental OOP concept in C++. It is one of the keywords that will not be
set in bold in this book — it becomes annoying with aword repeated as often as «class.» The
shift to classes is so important that | suspect Stroustrup’s preference would have been to throw
struct out altogether, but the need for backwards compatibility of course wouldn't alow it.

Many people prefer a style of creating classes that is more struct-like than class-like, because
you override the «default-to-private» behavior of the class by starting out with public
elements:

class X {
publi c:
void interface function();
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private:
voi d private_function();
int internal _representation;

}s

The logic behind thisisthat it makes more sense for the reader to see the membersthey are
concerned with first, then they can ignore anything that says private. Indeed, the only reasons
all the other members must be declared in the class at all are so the compiler knows how big
the objects are and can allocate them properly, and so it can guarantee consistency.

The examplesin this book, however, will put the private membersfirst, like this:

class X {

voi d private_function();

int internal _representation;
publi c:
void interface function();

};

Some people even go to the trouble of mangling their own private names:

class Y {
publi c:
void f();
private:
int mX; // "Self-nmangled" nane

b

Because mX is aready hidden in the scope of Y, the m is unnecessary. However, in projects
with many global variables (something you should strive to avoid, but is sometimes inevitable
in existing projects) it is helpful to be able to distinguish, inside a member function definition,
which datais global and which is a member.

Modifying Stash to use access control

It makes sense to take the examples from Chapter 1 and modify them to use classes and
access control. Notice how the user portion of the interface is now clearly distinguished, so
there’ s no possibility of users accidentally manipulating a part of the class that they shouldn’t.

/1. CO5:Stash. h

/1l Converted to use access control
#i fndef STASH H_

#define STASH H_

class Stash {
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int size; /1 Size of each space
int quantity; // Nunber of storage spaces
i nt next; /1 Next enpty space
/1 Dynamically allocated array of bytes:
unsi gned char* storage;
void inflate(int increase);
publi c:
void initialize(int Size);
voi d cl eanup();
i nt add(voi d* el ement);
voi d* fetch(int index);
int count();
1
#endif // STASHH ///:~
The inflate( ) function has been made private because it is used only by the add( ) function
and is thus part of the underlying implementation, not the interface. This means that,

sometime later, you can change the underlying implementation to use a different system for
memory management.

Other than the name of the include file, the above header is the only thing that’s been changed
for this example. The implementation file and test file are the same.

Modifying stack to use
access control

Asasecond example, here'sthe Stack turned into a class. Now the nested data structure is
private, which is nice because it ensures that the user will neither have to look at it nor be
able to depend on the internal representation of the Stack:

/1. CO5: Stack. h

/1 Nested structs via linked I|ist
#i f ndef STACK_H_

#defi ne STACK H_

class Stack {
struct link {
voi d* data
i nk* next;
void initialize(void* Data, |ink* Next);
} * head;
publi c:
void initialize();
voi d push(voi d* Data);
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voi d* peek();
voi d* pop();
voi d cl eanup();
1
#endif // STACK H [///]:~

As before, the implementation doesn’t change and so is hot repeated here. The test, too, is
identical. The only thing that’s been changed is the robustness of the classinterface. The real
value of access control is during development, to prevent you from crossing boundaries. In
fact, the compiler isthe only one that knows about the protection level of class members.
There is no information mangled into the member name that carries through to the linker. All
the protection checking is done by the compiler; it’'s vanished by run-time.

Notice that the interface presented to the user is now truly that of a push-down stack. It
happens to be implemented as alinked list, but you can change that without affecting what the
user interacts with, or (more importantly) a single line of client code.

Handl e classes

Access control in C++ allows you to separate interface from implementation, but the
implementation hiding is only partial. The compiler must still see the declarations for all parts
of an object in order to create and manipulate it properly. Y ou could imagine a programming
language that requires only the public interface of an object and alows the private
implementation to be hidden, but C++ performs type checking statically (at compile time) as
much as possible. This means that you'll learn as early as possible if there’s an error. It aso
means your program is more efficient. However, including the private implementation has
two effects: The implementation is visible even if you can’t easily accessit, and it can cause
needless recompilation.

Visible implementation

Some projects cannot afford to have their implementation visible to the end user. It may show
strategic information in alibrary header file that the company doesn’t want available to
competitors. Y ou may be working on a system where security is an issue — an encryption
algorithm, for example — and you don’t want to expose any cluesin a header file that might
enable people to crack the code. Or you may be putting your library in a «hostile»
environment, where the programmers will directly access the private components anyway,
using pointers and casting. In al these situations, it’s valuable to have the actua structure
compiled inside an implementation file rather than exposed in a header file.
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Reducing recompilation

The project manager in your programming environment will cause a recompilation of afile if
that file istouched or if another fileit’'s dependent upon — that is, an included header file —
is touched. This means that any time you make a change to a class, whether it’s to the public
interface or the private implementation, you' |l force a recompilation of anything that includes
that header file. For alarge project in its early stages this can be very unwieldy because the
underlying implementation may change often; if the project is very big, the time for compiles
can prohibit rapid turnaround.

The technique to solve thisis sometimes called handle classes or the «Cheshire Cat»29 —
everything about the implementation disappears except for asingle pointer, the «smile.» The
pointer refers to a structure whose definition is in the implementation file along with al the
member function definitions. Thus, aslong as the interface is unchanged, the header fileis
untouched. The implementation can change at will, and only the implementation file needs to
be recompiled and relinked with the project.

Here' s a simple example demonstrating the technique. The header file contains only the
public interface and a single pointer of an incompletely specified class:

//: CO5: Handl e. h

/! Handl e cl asses
#i f ndef HANDLE_H_
#defi ne HANDLE H_

cl ass Handl e {
struct cheshire; // Cass declaration only
cheshire* snile;
publi c:
void initialize();
voi d cl eanup();
int read();
voi d change(int);
1
#endif // HANDLE H_ ///:~

Thisis all the client programmer is ableto see. Theline
| struct cheshire;

is an incomplete type specification or a class declaration (A class definition includes the body
of the class.) It tells the compiler that cheshir e is a structure name, but nothing about the

29 This name is attributed to John Carolan, one of the early pioneersin C++, and of course,
Lewis Carroll.
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struct. Thisis only enough information to create a pointer to the struct; you can't create an
object until the structure body has been provided. In this technique, that body contains the
underlying implementation and is hidden away in the implementation file:

/1: CO5:Handle.cpp {O
/1 Handl e inplenentation
#i ncl ude <cstdlib>
#include "../require. h"
#i ncl ude "Handl e. h"
usi ng nanmespace std;

/1 Define Handle's inplenentation:
struct Handl e::cheshire {
int i;

b

void Handle::initialize() {
snile = (cheshire*)nall oc(sizeof (cheshire));
require(smle !'= 0);
smle-> = 0;

}

voi d Handl e:: cl eanup() {
free(smle);

}

int Handle::read() {
return smle->j;

}

voi d Handl e: : change(int x) {
smle-> = x;

Yy oI~

cheshireisanested structure, so it must be defined with scope resolution:
| struct Handl e::cheshire {

In the Handle::initialize( ), storage is allocated for a cheshir e structure,30 and in
Handle::cleanup() this storageis released. This storage isused in lieu of al the data
elements you' d normally put into the private section of the class. When you compile
HANDLE.CPP, this structure definition is hidden away in the object file where no one can see

30 Chapter 11 demonstrates a much better way to create an object on the heap with new.
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it. If you change the elements of cheshire, the only file that must be recompiled is
HANDLE.CPP because the header file is untouched.

The use of Handle s like the use of any class. Include the header, create objects, and send
messages.

/1: CO05: Usehandl . cpp
/1{L} Handl e

/1l Use the Handl e cl ass
#i ncl ude "Handl e. h"

int main() {
Handl e u;
u.initialize();
u.read();
u. change(1);
u. cl eanup();

Y I~

The only thing the client programmer can access is the public interface, so aslong asthe
implementation is the only thing that changes, this file never needs recompilation. Thus,
although thisisn’t perfect implementation hiding, it's a big improvement.

Summary

Access control in C++ is not an object-oriented feature, but it gives valuable control to the
creator of aclass. The users of the class can clearly see exactly what they can use and what to
ignore. More important, though, is the ability to ensure that no user becomes dependent on
any part of the underlying implementation of a class. If you know this as the creator of the
class, you can change the underlying implementation with the knowledge that no client
programmer will be affected by the changes because they can't access that part of the class.

When you have the ability to change the underlying implementation, you can not only
improve your design at some later time, but you also have the freedom to make mistakes. No
matter how carefully you plan and design, you'll make mistakes. Knowing that it’s relatively
safe to make these mistakes means you'll be more experimental, you'll learn faster, and you'll
finish your project sooner.

The public interface to a classis what the user does see, so that is the most important part of
the class to get «right» during analysis and design. But even that allows you some leeway for
change. If you don't get the interface right the first time, you can add more functions, aslong
as you don’'t remove any that client programmers have aready used in their code.
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Exercises

1. Create a class with public, private, and protected data members and
function members. Create an object of this class and see what kind of
compiler messages you get when you try to access al the class members.

2. Create a class and aglobal friend function that manipulates the private
datain the class.

3. Modify cheshirein HANDLE.CPP, and verify that your project manager
recompiles and relinks only thisfile, but doesn’'t recompile
USEHANDL.CPP.
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6: Initialization
& cleanup

Chapter 1 made a significant improvement in library use by
taking all the scattered components of atypical C library and
encapsulating them into a structure (an abstract data type,
called a class from now on).

This not only provides a single unified point of entry into alibrary component, but it also
hides the names of the functions within the class name. In Chapter 2, access control
(implementation hiding) was introduced. This gives the class designer away to establish clear
boundaries for determining what the user is allowed to manipulate and what is off limits. It
means the internal mechanisms of a data type' s operation are under the control and discretion
of the class designer, and it’s clear to users what members they can and should pay attention
to.

Together, encapsulation and implementation hiding make a significant step in improving the
ease of library use. The concept of «new data type» they provide is better in some ways than
the existing built-in data types inherited from C. The C++ compiler can now provide type-
checking guarantees for that data type and thus ensure alevel of safety when that datatypeis
being used.

When it comes to safety, however, there's alot more the compiler can do for usthan C
provides. In this and future chapters, you'll see additional features engineered into C++ that
make the bugs in your program almost leap out and grab you, sometimes before you even
compile the program, but usually in the form of compiler warnings and errors. For this reason,
you will soon get used to the unlikely sounding scenario that a C++ program that compiles
usually runsright the first time.

Two of these safety issues areinitialization and cleanup. A large segment of C bugs occur
when the programmer forgetsto initialize or clean up avariable. Thisis especially true with
libraries, when users don’'t know how to initialize a struct, or even that they must. (Libraries
often do not include an initialization function, so the user is forced to initialize the struct by
hand.) Cleanup is a specia problem because C programmers are used to forgetting about
variables once they are finished, so any cleaning up that may be necessary for alibrary’s
struct is often missed.

197



In C++ the concept of initialization and cleanup is essential to making library use easy and to
eliminating the many subtle bugs that occur when the user forgets to perform these activities.
This chapter examines the features in C++ that help guarantee proper initialization and
cleanup.

Guaranteed nitialization with
the constructor

Both the Stash and Stack classes have had functions called initialize( ), which hint that it
should be called before using the object in any other way. Unfortunately, this means the user
must ensure proper initialization. Users are prone to miss details like initialization in their
headlong rush to make your amazing library solve their problem. In C++ initialization is too
important to leave to the user. The class designer can guarantee initialization of every object
by providing a specia function called the constructor. If a class has a constructor, the
compiler automatically calls that constructor at the point an object is created, before users can
even get their hands on the object. The constructor call isn’t even an option for the user; itis
performed by the compiler at the point the object is defined.

The next challenge is what to name this function. There are two issues. Thefirst is that any
name you use is something that can potentialy clash with a name you might liketo use as a
member in the class. The second is that because the compiler is responsible for calling the
constructor, it must always know which function to call. The solution Stroustrup chose seems
the easiest and most logical: The name of the constructor is the same as the name of the class.
It makes sense that such a function will be called automatically on initialization.

Here' s a simple class with a constructor:

class X {
int i;
publi c:
X(); I/ Constructor
1

Now, when an object is defined,

void f() {
X a;
/1

}

the same thing happens asif a were an int: Storage is allocated for the object. But when the
program reaches the sequence point (point of execution) where a is defined, the constructor is
called automatically. That is, the compiler quietly insertsthe call to X::X(') for the object a at
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its point of definition. Like any member function, the first (secret) argument to the constructor
is the address of the object for which it is being called.

Like any function, the constructor can have arguments to allow you to specify how an object
is created, giveit initidization values, and so on. Constructor arguments provide you with a
way to guarantee that al parts of your object are initialized to appropriate values. For
example, if the class Tree has a constructor that takes a single integer argument denoting the
height of the tree, you must then create atree object like this:

| Tree t(12); // 12-foot tree

If tree(int) is your only constructor, then the compiler won't let you create an object any other
way. (We'll look at multiple constructors and different ways to call constructors in the next
chapter.)

That's really all there isto a constructor: It's a specially named function that is called
automatically by the compiler for every object. However, it eliminates alarge class of
problems and makes the code easier to read. In the preceding code fragment, for example, you
don’t see an explicit function call to someinitialize( ) function that is conceptually separate
from definition. In C++, definition and initialization are unified concepts — you can’t have
one without the other.

Both the constructor and destructor are very unusua types of functions. They have no return
value. Thisisdistinctly different from avoid return value, where the function returns nothing
but you still have the option to make it something else. Constructors and destructors return
nothing and you don’t have an option. The acts of bringing an object into and out of the
program are special, like birth and death, and the compiler always makes the function calls
itself, to make sure they happen. If there were areturn value, and if you could select your
own, the compiler would somehow have to know what to do with the return value, or the user
would have to explicitly call constructors and destructors, which would eliminate their safety.

Guaranteed cleanup with the
destructor

AsaC programmer, you often think about the importance of initialization, but it’s rarer to
think about cleanup. After all, what do you need to do to clean up an int? Just forget about it.
However, with libraries, just «letting go» of an object once you' re done with it is not so safe.
What if it modifies some piece of hardware, or puts something on the screen, or allocates
storage on the heap? If you just forget about it, your object never achieves closure upon its
exit from thisworld. In C++, cleanup is asimportant as initialization and is therefore
guaranteed with the destructor.

The syntax for the destructor is similar to that for the constructor: The class name is used for
the name of the function. However, the destructor is distinguished from the constructor by a
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leading tilde (~). In addition, the destructor never has any arguments because destruction
never needs any options. Here' s the declaration for a destructor:

class Y {
publi c:
~Y();
1

The destructor is called automatically by the compiler when the object goes out of scope. You
can see where the constructor gets called by the point of definition of the object, but the only
evidence for a destructor call isthe closing brace of the scope that surrounds the object. Y et
the destructor is called, even when you use goto to jump out of a scope. (goto till existsin
C++, for backward compatibility with C and for the times when it comesin handy.) You
should note that a nonlocal goto, implemented by the Standard C library functions setjmp()
and longjmp( ), doesn’t cause destructorsto be called. (Thisis the specification, even if your
compiler doesn't implement it that way. Relying on afeature that isn't in the specification
means your code is nonportable.)

Here's an example demonstrating the features of constructors and destructors you' ve seen so
far:

/1: C06:Constrl.cpp

/!l Constructors & destructors
#i ncl ude <cstdi o>

usi ng nanmespace std;

class Tree {
i nt height;
publi c:
Tree(int initialHeight); // Constructor
~Tree(); // Destructor
void grow(int years);
voi d printsize();

}s

Tree::Tree(int initialHeight) {
hei ght = initial Hei ght;
}

Tree:: ~Tree() {
puts("inside Tree destructor");
printsize();

}

void Tree::growint years) {
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hei ght += years;

}

void Tree::printsize() {
printf("Tree height is %\n", height);
}

int main() {
put s("before openi ng brace");
{
Tree t(12);
puts("after Tree creation");
t.printsize();

t.grow(4);
put s("before cl osing brace");
}
puts("after closing brace");
Y I~

Here' s the output of the above program:

bef ore opening brace
after Tree creation
Tree height is 12

bef ore cl osi ng brace

i nside Tree destructor
Tree height is 16
after closing brace

Y ou can see that the destructor is automatically called at the closing brace of the scope that
enclosesiit.

Elimination of the definition
block

In C, you must always define all the variables at the beginning of a block, after the opening
brace. Thisis not an uncommon requirement in programming languages (Pascal is another
example), and the reason given has always been that it’s «good programming style.» On this
point, | have my suspicions. It has always seemed inconvenient to me, as a programmer, to
pop back to the beginning of ablock every time | need anew variable. | aso find code more
readable when the variable definition is close to its point of use.
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Perhaps these arguments are stylistic. In C++, however, there’ s a significant problem in being
forced to define al objects at the beginning of a scope. If a constructor exists, it must be
called when the object is created. However, if the constructor takes one or more initialization
arguments, how do you know you will have that initialization information at the beginning of
ascope? In the general programming situation, you won't. Because C has no concept of
private, this separation of definition and initialization is no problem. However, C++
guarantees that when an object is created, it is simultaneoudly initialized. This ensures you
will have no uninitialized objects running around in your system. C doesn't care; in fact, C
encourages this practice by requiring you to define variables at the beginning of a block
before you necessarily have the initialization information.

Generally C++ will not allow you to create an object before you have theinitialization
information for the constructor, so you don’'t have to define variables at the beginning of a
scope. In fact, the style of the language would seem to encourage the definition of an object as
closeto its point of use as possible. In C++, any rule that applies to an «abject» automatically
refersto an object of abuilt-in type, as well. This means that any class object or variable of a
built-in type can also be defined at any point in a scope. It also means that you can wait until
you have the information for a variable before defining it, so you can always define and
initialize at the sametime:

[1: Q06:Definit.cpp

/1 Defining variabl es anywhere
#i ncl ude <cstdi o>

#i ncl ude <cstdlib>

#include "../require. h"

usi ng nanmespace std;

class G {
int i;
publi c:
gint 1);
1

G:gint 1) {i =1; 1}

int main() {
#define SZ 100
char buf[ SZ];
printf("initialization value? ");
int retval = (int)gets(buf);
require(retval = 0);
int x = atoi(buf);
int y=x+ 3;
G a(y);

Y I~

Chapter 3: Initialization & Cleanup
202



Y ou can see that buf is defined, then some code is executed, then x is defined and initialized
using afunction call, then y and g are defined. C, of course, would never allow avariableto
be defined anywhere except at the beginning of the scope.

Generally, you should define variables as close to their point of use as possible, and aways
initialize them when they are defined. (Thisis a stylistic suggestion for built-in types, where
initialization is optional.) Thisis a safety issue. By reducing the duration of the variable's
availability within the scope, you are reducing the chance it will be misused in some other
part of the scope. In addition, readability isimproved because the reader doesn’t have to jump
back and forth to the beginning of the scope to know the type of avariable.

for loops

In C++, you will often see afor loop counter defined right inside the for expression:

for(int j = 0; j < 100; j++) {
printf("j = %\n", j);

}

for(int i

=0; i < 100; i++)
printf("i

= 9%l\n", i);

The above statements are important special cases, which cause confusion to new C++
programmers.

The variablesi and j are defined directly inside the for expression (which you cannot do in
C). They are then available for usein the for loop. It's a very convenient syntax because the
context removes al question about the purpose of i and j, so you don’'t need to use such
ungainly namesasi_loop_counter for clarity.

The problem is the lifetime of the variables, which was formerly determined by the enclosing
scope. Thisis a situation where a design decision was made from a compiler-writer’ s view of
what islogical because as a programmer you obviously intend i to be used only inside the
statement(s) of the for loop. Unfortunately, however, if you previously took this approach and
said

for(int i = 0; i < 100; i++)
printf("i = %l\n", i);

1

for(int i = 0; i < 100; i++){
printf("i = %l\n", i);

}

(with or without curly braces) within the same scope, compilers written for the old
specification gave you a multiple-definition error for i. The new Standard C++ specification
says that the lifetime of aloop counter defined within the control expression of afor loop
lasts until the end of the controlled expression, so the above statements will work. (However,
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not all compilers may support this yet, and you may encounter code based on the old style.) If
the transition causes errors, the compiler will point them out to you; the solution requires only
asmall edit. Watch out, though, for local variables that hide variablesin the enclosing scope.

| find small scopes an indicator of good design. If you have severa pagesfor asingle
function, perhaps you' re trying to do too much with that function. More granular functions are
not only more useful, but it's also easier to find bugs.

Storage allocation

A variable can now be defined at any point in a scope, so it might seem initialy that the
storage for avariable may not be defined until its point of definition. It's more likely that the
compiler will follow the practice in C of alocating al the storage for ablock at the opening
brace of that block. It doesn’t matter because, as a programmer, you can’t get the storage
(ak.a. the object) until it has been defined. Although the storage is allocated at the beginning
of the block, the constructor call doesn’'t happen until the sequence point where the object is
defined because the identifier isn’t available until then. The compiler even checks to make
sure you don’'t put the object definition (and thus the constructor call) where the sequence
point only conditionally passes through it, such asin aswitch statement or somewhere a goto
can jump past it. Uncommenting the statements in the following code will generate a warning
or an error:

/1: CO06: Nojunp.cpp {C
/1l Can't junp past constructors

class X {
publi c:
RORS:

void f(int i) {

if(i < 10) {
/1! goto junpl; // Error: goto bypasses init
}
X x1; // Constructor called here
junpl:
switch(i) {
case 1 :
X x2; |/ Constructor called here
br eak;

/1! case 2 : [/ Error: case bypasses init
X x3; /] Constructor called here
br eak;
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In the above code, both the goto and the switch can potentialy jump past the sequence point
where a constructor is called. That object will then be in scope even if the constructor hasn’t
been called, so the compiler gives an error message. This once again guarantees that an object
cannot be created unlessit is aso initialized.

All the storage allocation discussed here happens, of course, on the stack. The storageis
allocated by the compiler by moving the stack pointer «down» (arelative term, which may
indicate an increase or decrease of the actua stack pointer value, depending on your
machine). Objects can aso be allocated on the heap, but that’ s the subject of Chapter 11.

Stash with constructors and
destructors

The examples from previous chapters have obvious functions that map to constructors and
destructors: initialize( ) and cleanup( ). Here' s the Stash header using constructors and
destructors:

/1. C06:Stash3.h

/1 Wth constructors & destructors
#i fndef STASH3 H_

#defi ne STASH3 H_

class Stash {

int size; /1 Size of each space
int quantity; // Nunber of storage spaces
i nt next; /1 Next enpty space

/1 Dynamically allocated array of bytes:
unsi gned char* storage;
void inflate(int increase);
publi c:
Stash(int Size);
~St ash();
i nt add(voi d* el ement);
voi d* fetch(int index);
int count();
1
#endif // STASH3_H ///:~

The only member function definitions that are changed are initialize( ) and cleanup( ), which
have been replaced with a constructor and destructor:
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/1: C06: Stash3.cpp {O

/1 Constructors & destructors
#i ncl ude <cstdlib>

#i ncl ude <cstring>

#i ncl ude <cstdi o>

#include "../require. h"

#i ncl ude "Stash3. h"

usi ng nanmespace std;

Stash:: Stash(int Size) {
size = Size;
gquantity = O;
storage = O;
next = 0;

}

Stash: : ~Stash() {

i f(storage) {
puts("freeing storage");
free(storage);

}

}

int Stash::add(void* elenment) {
i f(next >= quantity) // Enough space left?
i nflate(100);
/1 Copy elenent into storage
/] starting at next enpty space:
nmencpy( & st orage[ next * size]),
el ement, size);
next ++;
return(next - 1); // |ndex numnber

}

voi d* Stash::fetch(int index) ({
i f(index >= next || index < 0)
return O0; // Not out of bounds?
/1 Produce pointer to desired el ement:
return &(storage[index * size]);

}

int Stash::count() {
return next; // Nunber of elenents in Stash
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}

void Stash::inflate(int increase) {
voi d* v =
real l oc(storage, (quantity+i ncrease)*size);
require(v); [/ Was it successful?
storage = (unsigned char*)v;
gquantity += increase;
Y I~

Notice, in the following test program, how the definitions for Stash objects appear right
before they are needed, and how the initialization appears as part of the definition, in the
constructor argument list:

/1: C06: Stshtst3.cpp

/1{L} Stash3

/1 Constructors & destructors
#i ncl ude <cstdi o>

#include "../require. h"

#i ncl ude "Stash3. h"

usi ng nanmespace std;

#def i ne BUFSI ZE 80

int main() {
Stash intStash(sizeof(int));
for(int j =0; j < 100; j++)
i nt Stash. add(&j);

FILE* file = fopen("Stshtst3.cpp", "r");
require(file);
/1 Hol ds 80-character strings:
Stash stringStash(sizeof(char) * BUFSI ZE);
char buf [ BUFSI ZE] ;
whi | e(fgets(buf, BUFSIZE, file))
stringSt ash. add( buf);
fclose(file);

for(int k = 0; k < intStash.count(); k++)
printf("intStash.fetch(%) = %\n", Kk,
*(int*)intStash.fetch(k));

for(int i = 0; i < stringStash.count(); i++)
printf("stringStash.fetch(%l) = %",
i, (char*)stringStash.fetch(i++));
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Also notice how the cleanup( ) calls have been eliminated, but the destructors are till
automatically called when intStash and stringStash go out of scope.

stack with constructors &
destructors

Reimplementing the linked list (inside Stack) with constructors and destructors shows up a
significant problem. Here' s the modified header file:

/1. Q06:Stack3.h

/1 Wth constructors/destructors
#i f ndef STACK3 _H_

#defi ne STACK3 H_

‘ putchar('\n');

class Stack {
struct link {
voi d* dat a;
i nk* next;
void initialize(void* Data, |ink* Next);
} * head;
publi c:
Stack();
~St ack();
voi d push(voi d* Data);
voi d* peek();
voi d* pop();
1
#endif // STACK3_H_ ///:~
Notice that although Stack has a constructor and destructor, the nested class link does not.
This has nothing to do with the fact that it’s nested. The problem arises when it is used:

/1: CO06: Stack3.cpp {O

/1 Constructors/destructors
#i ncl ude <cstdlib>
#include "../require. h"

#i ncl ude "Stack3. h"

usi ng nanmespace std;
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void Stack::link::initialize(
voi d* Data, |ink* Next) {
data = Dat a;
next Next ;

}

Stack:: Stack() { head = 0; }

voi d Stack::push(void* Data) {
/] Can't use a constructor with nall oc!
[ink* newlink = (link*)malloc(sizeof(link));
requi re(new i nk);
new i nk->initialize(Data, head);
head = new i nk;

}

voi d* Stack::peek() { return head->data; }

voi d* Stack::pop() {
i f(head == 0) return O;
voi d* result = head->dat a;
i nk* ol dHead = head;
head = head- >next;
free(ol dHead) ;
return result;

}

Stack: : ~Stack() {
i nk* cursor = head;
whi | e(head) {
cursor = cursor->next;
free(head->data); // Assunes nall oc!
free(head);
head = cursor;

}
Y 111~

link is created inside Stack::push, but it's created on the heap and there's the rub. How do
you create an object on the heap if it has a constructor? So far we' ve been saying, «OK, here’'s
apiece of memory on the heap and | want you to pretend that it's actually areal object.» But
the constructor doesn’t allow usto hand it a memory address upon which it will build an

Chapter 3: Initialization & Cleanup

209



object.31 The creation of an object is critical, and the C++ constructor wants to be in control
of the whole process to keep things safe. There is an easy solution to this problem, the
operator new, that we'll look at in Chapter 11, but for now the C approach to dynamic
allocation will have to suffice. Because the allocation and cleanup are hidden within Stack —
it's part of the underlying implementation — you don’t see the effect in the test program:

/1: C06: Stktst3.cpp

/1{L} Stack3

/1 Constructors/destructors
#i ncl ude <cstdi o>

#i ncl ude <cstdlib>

#i ncl ude <cstring>
#include "../require. h"

#i ncl ude "Stack3. h"

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 2); // File nane is argunent
FILE* file = fopen(argv[1], "r");
require(file);
#defi ne BUFSI ZE 100
char buf [ BUFSI ZE] ;
Stack textlines; [// Constructor called here
/! Read file and store lines in the Stack
whi | e(fgets(buf, BUFSIZE, file)) {
char* string =
(char*)mal | oc(strlen(buf) + 1);
require(string);
strcpy(string, buf);
textlines. push(string);
}
/1 Pop lines fromthe Stack and print them
char* s;
while((s = (char*)textlines.pop()) != 0) {
printf("9%", s); free(s);
}
} // Destructor called here ///]:~

31Actud|y, there's a syntax that does allow you to do this. But it's for special cases and doesn't
solve the general problem described here.
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The constructor and destructor for textlines are called automatically, so the user of the class
can focus on what to do with the object and not worry about whether or not it will be properly
initialized and cleaned up.

Aqggregate initialization

An aggregate is just what it sounds like: a bunch of things clumped together. This definition
includes aggregates of mixed types, like structs and classes. An array is an aggregate of a
single type.

Initializing aggregates can be error-prone and tedious. C++ aggregate initialization makes it
much safer. When you create an object that’s an aggregate, al you must do is make an
assignment, and the initialization will be taken care of by the compiler. This assignment
comes in severa flavors, depending on the type of aggregate you' re dealing with, but in all
cases the elements in the assignment must be surrounded by curly braces. For an array of
built-in typesthisis quite smple:

int a[5] ={ 1, 2, 3, 4, 5 };

If you try to give more initializers than there are array elements, the compiler gives an error
message. But what happens if you give fewer initiaizers, such as

int b[6] = {0};

Here, the compiler will use the first initializer for the first array element, and then use zero for
all the elements without initializers. Notice this initialization behavior doesn’t occur if you
define an array without alist of initializers. So the above expression is avery succinct way to
initialize an array to zero, without using afor loop, and without any possibility of an off-by-
one error (Depending on the compiler, it may aso be more efficient than the for 1oop.)

A second shorthand for arrays is automatic counting, where you let the compiler determine
the size of the array based on the number of initializers:

|int c[l] ={ 1, 2, 3, 41};

Now if you decide to add another element to the array, you simply add another initidizer. If
you can set your code up so it needs to be changed in only one spot, you reduce the chance of
errors during modification. But how do you determine the size of the array? The expression
sizeof ¢/ sizeof *c (size of the entire array divided by the size of the first element) does the
trick in away that doesn’t need to be changed if the array size changes:

for(int i =0; i < sizeof ¢ / sizeof *c; i++)
cl[i]++;

Because structures are also aggregates, they can beinitialized in asimilar fashion. Because a
C-style struct has al its members public, they can be assigned directly:

| struct X {
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int i;
float f;
char c;

};

Xx1={1 2.2, 'c' };

If you have an array of such objects, you can initialize them by using a nested set of curly
braces for each object:

| Xx2[3] ={ {1, 1.1, 'a'}, {2, 2.2, 'b'} };
Here, the third object isinitialized to zero.

If any of the data members are private, or even if everything's public but there'sa
constructor, things are different. In the above examples, theinitializers are assigned directly to
the elements of the aggregate, but constructors are away of forcing initialization to occur
through aformal interface. Here, the constructors must be called to perform the initiaization.
So if you have astruct that looks like this,

struct Y {

float f;

int i;

Y(int A); // Presumably assigned to i
1

Y ou must indicate constructor calls. The best approach is the explicit one as follows:
| Yy2[] ={ Y(1), Y(2), Y(3) };

Y ou get three objects and three constructor calls. Any time you have a constructor, whether
it'sastruct with all members public or a class with private data members, all the
initialization must go through the constructor, even if you' re using aggregate initialization.

Here' s a second example showing multiple constructor arguments:

[1: QC06: Multiarg.cpp
/1 Miltiple constructor argunents
/1 with aggregate initialization
class X {

int i, j;
publi c:

X(int I, int J) {

i = 1;

=3

}
1
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int main() {
X xx[] ={ X(1,2), X(3,4), X(5,6), X(7,8) };
Y I~

Notice that it looks like an explicit but unnamed constructor is called for each object in the
array.

Default constructors

A default constructor is one that can be called with no arguments. A default constructor is
used to create a «vanilla object,» but it's aso very important when the compiler istold to
create an object but isn't given any details. For example, if you takeY and useitina
definition like this,

| Yyal2] ={ Y(1) };:

the compiler will complain that it cannot find a default constructor. The second object in the
array wants to be created with no arguments, and that’ s where the compiler looks for a default
congtructor. In fact, if you simply define an array of Y objects,

| Y ysL7];
or an individua object,
| Y

the compiler will complain because it must have a default constructor to initialize every object
in the array. (Remember, if you have a constructor the compiler ensuresit is always called,
regardless of the situation.)

The default constructor is so important that if (and only if) there are no constructors for a
structure (struct or class), the compiler will automatically create one for you. So this works:

class Z {
int i; [// private
}; // No constructor

Z z, z2[10];

If any constructors are defined, however, and there’ s no default constructor, the above object
definitions will generate compile-time errors.

Y ou might think that the default constructor should do some intelligent initialization, like
setting all the memory for the object to zero. But it doesn’'t — that would add extra overhead
but be out of the programmer’s control. This would mean, for example, that if you compiled C
code under C++, the effect would be different. If you want the memory to be initialized to
zero, you must do it yourself.
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The automatic creation of default constructors was not simply a feature to make life easier for
new C++ programmers. It’ s virtually required to aid backward compatibility with existing C
code, which isacritical issuein C++. In C, it's not uncommon to creste an array of structs.
Without the default constructor, this would cause a compile-time error in C++.

If you had to modify your C code to recompile it under C++ just because of stylistic issues,
you might not bother. When you move C code to C++, you will ailmost always have new
compile-time error messages, but those errors are because of genuine bad C code that the C++
compiler can detect because of its stronger rules. In fact, a good way to find obscure errorsin
a C program isto run it through a C++ compiler.

Summary

The seemingly elaborate mechanisms provided by C++ should give you a strong hint about
the critical importance placed on initialization and cleanup in the language. As Stroustrup was
designing C++, one of the first observations he made about productivity in C was that a very
significant portion of programming problems are caused by improper initialization of
variables. These kinds of bugs are very hard to find, and similar issues apply to improper
cleanup. Because constructors and destructors alow you to guarantee proper initialization
and cleanup (the compiler will not allow an object to be created and destroyed without the
proper constructor and destructor calls), you get complete control and safety.

Aggregateinitiaization isincluded in asimilar vein — it prevents you from making typical
initialization mistakes with aggregates of built-in types and makes your code more succinct.

Safety during coding isabig issuein C++. Initialization and cleanup are an important part of
this, but you'll also see other safety issues as the book progresses.

Exercises

1. Modify the HANDLE.H, HANDLE.CPP, and USEHANDL.CPPfiles at the
end of Chapter 2 to use constructors and destructors.

2. Create a class with a destructor and nondefault constructor, each of which
print something to announce their presence. Write code that demonstrates
when the constructor and destructor are called.

3. Demonstrate automatic counting and aggregate initialization with an array
of objects of the class you created in Exercise 2. Add a member function to
that class that prints a message. Calculate the size of the array and move
through it, calling your new member function.

4, Create a class without any constructors, and show you can create objects
with the default constructor. Now create a nondefault constructor (one with
an argument) for the class, and try compiling again. Explain what happened.
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/. Function
overloading &

default
arguments

One of the important features in any programming language
Is the convenient use of names.

When you create an object (a variable), you give a name to aregion of storage. A functionisa
name for an action. By using names that you make up to describe the system at hand, you
create a program that is easier for people to understand and change. It'salot like writing
prose — the goal isto communicate with your readers.

A problem arises when mapping the concept of nuance in human language onto a
programming language. Often, the same word expresses a number of different meanings,
depending on context. That is, asingle word has multiple meanings — it’s overloaded. Thisis
very useful, especially when it comesto trivial differences. Y ou say «wash the shirt, wash the
car.» It would be silly to be forced to say, «shirt_wash the shirt, car_wash the car» just so the
hearer doesn’t have to make any distinction about the action performed. Most human
languages are redundant, so even if you miss afew words, you can still determine the
meaning. We don’'t need unique identifiers — we can deduce meaning from context.

Most programming languages, however, reguire that you have a unique identifier for each
function. If you have three different types of data you want to print, int, char, and float, you
generally have to create three different function names, for example, print_int( ),
print_char (), and print_float( ). Thisloads extrawork on you as you write the program, and
on readers as they try to understand it.

In C++, another factor forces the overloading of function names: the constructor. Because the
congtructor’s name is predetermined by the name of the class, there can be only one
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constructor name. But what if you want to create an object in more than one way? For
example, suppose you build a class that can initialize itself in a standard way and also by
reading information from afile. Y ou need two constructors, one that takes no arguments (the
default constructor) and one that takes a character string as an argument, which is the name of
thefile to initialize the object. Both are constructors, so they must have the same name — the
name of the class. Thus function overloading is essential to allow the same function name, the
constructor in this case, to be used with different argument types.

Although function overloading isamust for constructors, it's a general convenience and can
be used with any function, not just class member functions. In addition, function overloading
means that if you have two libraries that contain functions of the same name, the chances are
they won't conflict aslong as the argument lists are different. We'll look at al these factorsin
detail throughout this chapter.

The theme of this chapter is convenient use of function names. Function overloading allows
you to use the same name for different functions, but there’ s a second way to make calling a
function more convenient. What if you'd like to call the same function in different ways?
When functions have long argument lists, it can become tedious to write and confusing to
read the function calls when most of the arguments are the same for al the calls. A very
commonly used feature in C++ is called default arguments. A default argument is one the
compiler insertsif the person calling a function doesn’t specify it. Thus the calls f(«hello»),
f(«hi», 1) and f(«howdy», 2, ‘¢’) can al be calls to the same function. They could also be
callsto three overloaded functions, but when the argument lists are this similar, you'll usually
want similar behavior that calls for a single function.

Function overloading and default arguments really aren’t very complicated. By the time you
reach the end of this chapter, you’'ll understand when to use them and the underlying
mechanisms used during compiling and linking to implement them.

More mangling

In Chapter 1 the concept of name mangling was introduced. (Sometimes the more gentle term
decoration is used.) In the code

void f();
‘ class X { void f(): };

the function f( ) inside the scope of class X does not clash with the global version of f(). The
compiler performs this scoping by manufacturing different internal names for the global
version of (') and X::f(). In Chapter 1 it was suggested that the names are simply the class
name «mangled» together with the function name, so the internal names the compiler uses
might be _f and _X_f. It turns out that function name mangling involves more than the class
name.

Here’' swhy. Suppose you want to overload two function names

| void print(char);
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void print(float);

It doesn’t matter whether they are both inside a class or at the global scope. The compiler
can’t generate unique internal identifiersif it uses only the scope of the function names.
You'd end up with _print in both cases. The idea of an overloaded function is that you use
the same function name, but different argument lists. Thus, for overloading to work the
compiler must mangle the names of the argument types with the function name. The above
functions, defined at global scope, produce internal names that might look something like
_print_char and _print_float. It's worth noting there is no standard for the way names must
be mangled by the compiler, so you will see very different results from one compiler to
another. (Y ou can see what it looks like by telling the compiler to generate assembly-language
output.) This, of course, causes problemsif you want to buy compiled libraries for a particular
compiler and linker, but those problems can also exist because of the way different compilers
generate code.

That's redlly all there is to function overloading: Y ou can use the same function name for
different functions, aslong as the argument lists are different. The compiler mangles the
name, the scope, and the argument lists to produce internal names for it and the linker to use.

Overloading on return values

It's common to wonder «why just scopes and argument lists? Why not return values?» It
seems at first that it would make sense to also mangle the return value with the internal
function name. Then you could overload on return values, as well:

void f();
int f();

This works fine when the compiler can unequivocally determine the meaning from the
context, asinint x = f();. However, in C you' ve aways been able to call afunction and
ignore the return value. How can the compiler distinguish which call is meant in this case?
Possibly worse is the difficulty the reader has in knowing which function call is meant.
Overloading solely on return value is a bit too subtle, and thusisn't allowed in C++.

Type-safe linkage

There is an added benefit to all this name mangling. A particularly sticky problem in C occurs
when the user misdeclares afunction, or, worse, afunction is called without declaring it first,
and the compiler infers the function declaration from the way it is called. Sometimes this
function declaration is correct, but when it isn't, it can be a very difficult bug to find.

Because all functions must be declared before they are used in C++, the opportunity for this
problem to pop up is greatly diminished. The compiler refusesto declare a function

automatically for you, so it’s likely you will include the appropriate header file. However, if
for some reason you still manage to misdeclare afunction, either by declaring it yourself by
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hand or by including the wrong header file (perhaps one that is out of date), the name-
mangling provides a safety net that is often referred to as type-safe linkage.

Consider the following scenario. In onefile is the definition for afunction:

[1: Q07:Def.cpp {G
/!l Function definition
void f(int) {}

11~

In the second file, the function is misdeclared and then called:

[1: Q07: Use. cpp

[1{L} Def

/! Function msdeclaration
voi d f(char);

int main() {
/1Y f(1); /! Causes a linker error
Y I~

Even though you can see that the function is actualy f(int), the compiler doesn’t know this
because it was told — through an explicit declaration — that the function is f(char). Thus, the
compilation is successful. In C, the linker would also be successful, but not in C++. Because
the compiler mangles the names, the definition becomes something like f_int, whereas the use
of the function isf_char. When the linker tries to resolve the reference to f_char, it can find
only f_int, and it gives you an error message. Thisistype-safe linkage. Although the problem
doesn’'t occur all that often, when it does it can be incredibly difficult to find, especialy ina
large project. Thisis one of the cases where you can find a difficult error in a C program
simply by running it through the C++ compiler.

Overloading example

Consider the examples we' ve been looking at so far in this series, modified to use function
overloading. As stated earlier, an immediately useful place for overloading isin constructors.
You can see thisin the following version of the Stash class:

[1: Q07:Stash4. h

/1 Function overl oadi ng
#i f ndef STASH4 _H_
#define STASH4A_H_

class Stash {
int size; /1 Size of each space
int quantity; // Nunber of storage spaces
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i nt next; /1 Next enpty space
/1 Dynamically allocated array of bytes:
unsi gned char* storage;
void inflate(int increase);
publi c:
Stash(int Size); // Zero quantity
Stash(int Size, int InitQuant);
~St ash();
i nt add(voi d* el ement);
voi d* fetch(int index);
int count();

}1
#endif // STASHA H ///:~

The first Stash(') constructor is the same as before, but the second one has a Quantity
argument to indicate the initial quantity of storage placesto be alocated. In the definition, you
can seethat the internal value of quantity is set to zero, along with the stor age pointer:

[1: CO7:Stash4.cpp {O
/1 Function overl oadi ng
#i ncl ude <cstdlib>

#i ncl ude <cstring>

#i ncl ude <cstdi o>
#include "../require. h"
#i ncl ude " Stash4. h"
usi ng nanmespace std;

Stash:: Stash(int Size) {
size = Size;
quantity = O;
next = 0;
storage = O;

}

Stash:: Stash(int Size, int InitQuant) {
size = Size;
quantity = O;
next = O;
storage = O;
inflate(lnitQuant);
}

Stash::~Stash() {
i f(storage) {
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puts("freeing storage");
free(storage);
}
}

i nt Stash::add(void* elenment) {
i f(next >= quantity) // Enough space left?
inflate(100); // Add space for 100 el enents
/1 Copy el enent into storage,
/] starting at next enpty space:
nmencpy( & st orage[ next * size]),
el ement, size);
next ++;
return(next - 1); // 1ndex nunber

}

voi d* Stash::fetch(int index) ({
i f(index >= next || index < 0)
return O0; // Not out of bounds?
/1 Produce pointer to desired el ement:
return &(storage[index * size]);

}

int Stash::count() {
return next; // Nunber of elenents in Stash
}

void Stash::inflate(int increase) {
voi d* v =
real l oc(storage, (quantity+i ncrease)*size);
require(v); [/ Was it successful?
storage = (unsigned char*)v;
gquantity += increase;
Y I~

When you use the first constructor no memory is allocated for storage. The alocation
happens the first time you try to add( ) an object and any time the current block of memory is

exceeded inside add( ).

Thisis demonstrated in the test program, which exercises the first constructor:

[1: Q07:Stshtst4.cpp
/1{L} Stash4

/1 Function overl oadi ng
#i ncl ude <cstdi o>
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#include "../require.h"
#i ncl ude " Stash4. h"
usi ng nanmespace std;
#def i ne BUFSI ZE 80

int main() {

int i;
FILE* file;
char buf [ BUFSI ZE] ;
char* cp;
...
Stash intStash(sizeof(int));
for(i = 0; i < 100; i++)
i nt Stash. add( & );
file = fopen("STSHTST4. CPP", "r");
require(file);
/1 Hol ds 80-character strings:
Stash stringStash(sizeof(char) * BUFSI ZE);
whi | e(fgets(buf, BUFSIZE, file))
stringSt ash. add( buf);
fclose(file);

for(i = 0; i < intStash.count(); i++)
printf("intStash.fetch(%) = %\n", i,
*(int*)intStash.fetch(i));

i = 0;
whi | e(
(cp = (char*)stringStash.fetch(i++)) !'= 0)
printf("stringStash.fetch(%l) = %",
i -1, cp);
putchar('\n"');

Y 11~

Y ou can modify this code to use the second constructor just by adding another argument;
presumably you' d know something about the problem that allows you to choose an initia size
for the Stash.

Default arguments

Examine the two constructors for Stash( ). They don’'t seem al that different, do they? In fact,
the first constructor seems to be the special case of the second one with the initial size set to
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zero. In this situation it seems a bit of a waste of effort to create and maintain two different
versions of asimilar function.

C++ provides aremedy with default arguments. A default argument isavalue givenin the
declaration that the compiler automatically insertsif you don’t provide avalue in the function
cal. In the Stash example, we can replace the two functions:

Stash(int Size); // Zero quantity
Stash(int Size, int Quantity);

with the single declaration
| Stash(int Size, int Quantity = 0);

The Stash(int) definition is simply removed — all that is necessary is the single Stash(int,
int) definition.

Now, the two object definitions
| Stash A(100), B(100, 0);:

will produce exactly the same results. The identical constructor is called in both cases, but for
A, the second argument is automatically substituted by the compiler when it sees the first
argument isan int and there is no second argument. The compiler has seen the default
argument, so it knows it can still make the function call if it substitutes this second argument,
which iswhat you'vetold it to do by making it a default.

Default arguments are a convenience, as function overloading is a convenience. Both features
alow you to use asingle name in different situations. The difference is that the compiler is
substituting arguments when you don’t want to put them in yourself. The preceding example
isagood place to use default arguments instead of function overloading; otherwise you end
up with two or more functions that have similar signatures and similar behaviors. Obviously,
if the functions have very different behaviors, it usually doesn’'t make sense to use default
arguments.

There are two rules you must be aware of when using default arguments. First, only trailing
arguments may be defaulted. That is, you can’t have a default argument followed by a
nondefault argument. Second, once you start using default arguments, all the remaining
arguments must be defaulted. (This follows from the first rule.)

Default arguments are only placed in the declaration of afunction, which is placed in a header
file. The compiler must see the default value before it can use it. Sometimes people will place
the commented values of the default arguments in the function definition, for documentation
purposes

| void fn(int x /* =0 */) { //
Default arguments can make arguments declared without identifiers look a bit funny. You can
end up with

| void f(int x, int =0, float = 1.1);
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In C++ you don't need identifiersin the function definition, either:
void f(int x, int, float f) { /* ... */ }

In the function body, x and f can be referenced, but not the middle argument, because it has
no name. The calls must still use a placeholder, though: f(1) or f(1,2,3.0). This syntax allows
you to put the argument in as a placeholder without using it. Theideais that you might want
to change the function definition to use it later, without changing al the function cals. Of
course, you can accomplish the same thing by using a named argument, but if you define the
argument for the function body without using it, most compilers will give you awarning
message, assuming you' ve made alogical error. By intentionally leaving the argument name
out, you suppress this warning.

More important, if you start out using a function argument and later decide that you don’t
need it, you can effectively remove it without generating warnings, and yet not disturb any
client code that was calling the previous version of the function.

A bit vector class

As afurther example of function overloading and default arguments, consider the problem of
efficiently storing a set of true-false flags. If you have a number of pieces of data that can be
expressed as «on» or «off,» it may be convenient to store them in an object called a bit vector.
Sometimes a hit vector is not atool to be used by the application developer, but a part of other
classes.

Of course, the easiest way to code a group of flagsis with a byte of data for each flag, as
shown in this example:

/1: CO7:Flags.cpp

/1 List of true/false flags
#i ncl ude <cstdi o>

#i ncl ude <cstring>
#include "../require. h"
usi ng nanmespace std;

#defi ne FSI ZE 100
#defi ne TRUE 1
#defi ne FALSE O

class Flags {

unsi gned char f[FSI ZE];
publi c:

Flags();

void set(int i);

void clear(int i);

int read(int i);
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int size();

};

Fl ags:: Flags() {
nmenmset (f, FALSE, FSIZE);
}

void Flags::set(int i) {
require(i >= 0 && i < FSIZE);
f[i] = TRUE

}

void Flags::clear(int i) {
require(i >= 0 && i < FSIZE);
f[i] = FALSE;

}

int Flags::read(int i) {
require(i >= 0 && i < FSIZE);
return f[i];

}

int Flags::size() { return FSIZE; }

int main() {
Flags fl;
for(int i = 0; i < fl.size(); i++)
if(i %3 ==0) fl.set(i);
for(int j = 0; j < fl.size(); j++)
printf("fl.read(%)= %l\n", j, fl.read(j));
Y I~

However, this is wasteful, because you're using eight bits for aflag that could be expressed as
asingle bit. Sometimes this storage is important, especialy if you want to build other classes
using this class. So consider instead the following BitVector, which uses a bit for each flag.
The function overloading occursin the constructor and the bits( ) function:

//: QO7:Bitvect.h
/1l Bit Vector

#i fndef BI TVECT H_
#define BI TVECT_H_

class BitVector {
unsi gned char* bytes;
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int Bits, nunBytes;
publi c:
BitVector(); // Default: O size
/1 init points to an array of bytes
/1 size is nmeasured in bytes
Bi t Vect or (unsi gned char* init,
int size = 8);
/1 binary is a string of 1s and Os
Bi t Vector (char* binary);
~Bi t Vector () ;
void set(int bit);
void clear(int bit);
int read(int bit);
int bits(); // Nunber of bits in the vector
void bits(int sz); // Set nunber of bits
void print(const char* nmsg = "");
1
#endif // BITVECT_H_ ///:~

Thefirst (default) constructor creates a BitVector of size zero. You can't set any bitsin this
vector because there are none. First you have to increase the size of the vector with the
overloaded bits( ) function. The version with no arguments returns the current size of the
vector in bits, and bits(int) changes the size to what is specified in the argument. Thus you
both set and read the size using the same function name. Note that there' s no restriction on the
new size — you can make it smaller aswell aslarger.

The second constructor takes a pointer to an array of unsigned chars, that is, an array of raw
bytes. The second argument tells the constructor how many bytes arein the array. If the first
argument is zero rather than avalid pointer, the array isinitialized to zero. If you don’t give a
second argument, the default size is eight bytes.

Y ou might think you can create a BitVector of size eight bytes and set it to zero by saying
BitVector b(0);. Thiswould work if not for the third constructor, which takes achar* asits
only argument. The argument O could be used in either the second constructor (with the
second argument defaulted) or the third constructor. The compiler has no way of knowing
which one it should choose, so you'll get an ambiguity error. To successfully create a
BitVector thisway, you must cast zero to a pointer of the proper type: BitVector
b((unsigned char*)0). Thisis awkward, so you may instead want to create an empty vector
with BitVector b and then expand it to the desired size with b.bits(64) to allocate eight bytes.

It's important that the compiler distinguish char* and unsigned char* astwo distinct data
types. If it did not (a problem in the past) then BitVector (unsigned char*, int) (with the
second argument defaulted) and BitVector (char*) would look the same when the compiler
tried to match the function call.
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Note that the print(') function has a default argument for its char* argument. This may look a
bit puzzling if you know how the compiler handles string constants. Does the compiler create
anew default character string every time you call the function? The answer is no; it creates a
single string in a special areareserved for static and global data, and passes the address of that
string every time it needs to useit as a default.

A string of bits

The third constructor for the BitVector takes a pointer to a character string that represents a
string of bits. Thisisa convenient syntax for the user because it allows the vector
initialization values to be expressed in the natural form 0110010. The object is created to
match the length of the string, and each bit is set or cleared according to the string.

The other functions are the all-important set( ), clear( ), and read( ), each of which takesthe
bit number of interest as an argument. The print( ) function prints a message, which has a
default argument of an empty string, and then the bit pattern of the BitVector, again using
ones and zeros.

Two issues are immediately apparent when implementing the BitVector class. Oneisthat if
the number of bits you need doesn’t fall on an 8-bit boundary (or whatever word size your
machine uses), you must round up to the nearest boundary. The second is the care necessary
in selecting the bits of interest. For example, when creating a BitVector using an array of
bytes, each byte in the array must be read in from left to right so it will appear the way you
expect it in the print(') function.

Here are the member function definitions:

/1: CO7:Bitvect.cpp {C
/1 BitVector I|Inplenentation
#i ncl ude <cstdi o>
#i ncl ude <cstdlib>
#i ncl ude <cstring>
#include <climts>// CHARBIT = # bits in char
#include "../require. h"
#i ncl ude "Bitvect.h"
usi ng nanmespace std;
/1 A byte with the high bit set:
const unsigned char highbit =
1 << (CHARBIT - 1);

BitVector::BitVector() {

nunBytes = 0;
Bits = 0;
bytes = 0;

}

/1 Notice default args are not duplicated:
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Bit Vector::BitVector(unsigned char* init,
int size) {
nunBytes = size;
Bits = nunBytes * CHAR BIT,;
bytes = (unsigned char*)call oc(nhunmBytes, 1);
requi re(bytes);
if(init == 0) return; // Default to all O
/1 Translate frombytes into bit sequence:
for(int index = 0; index<nunBytes; index++)
for(int offset = 0;
of fset < CHAR BIT; offset++)
if(init[index] & (highbit >> offset))
set(index * CHAR BIT + of fset);

Bi

tVector::BitVector(char* binary) {
Bits = strlen(binary);
nunBytes = Bits / CHAR BIT;
/1 1If there's a remainder, add 1 byte:
if(Bits % CHAR BI T) nunByt es++;
bytes = (unsigned char*)call oc(nhunmBytes, 1);
requi re(bytes);
for(int i = 0; i < Bits; i++)
if(binary[i] == "1") set(i);
}

BitVector::~BitVector() {
free(bytes);
}

void BitVector::set(int bit) {
require(bit >= 0 & bit < Bits);
int index = bit / CHAR BIT,;
int offset = bit % CHAR BIT;
unsi gned char mask = (1 << offset);
byt es[i ndex] | = mask;

}

int BitVector::read(int bit) {
require(bit >= 0 & bit < Bits);
int index = bit / CHAR BIT,;
int offset = bit % CHAR BIT;
return (bytes[index] >> offset) & 1;
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}

void BitVector::clear(int bit) {
require(bit >= 0 & bit < Bits);
int index = bit / CHAR BIT,;
int offset = bit % CHAR BIT;
unsi gned char mask = ~(1 << offset);
byt es[i ndex] &= mask;

}

int BitVector::bits() { return Bits; }

void BitVector::bits(int size) {
int oldsize = Bits;
Bits = size;
nunBytes = Bits / CHAR BIT;
/1 1f there's a renainder, add 1 byte:
if(Bits % CHAR BI T) nunByt es++;
voi d* v = reall oc(bytes, nunBytes);

require(v);
bytes = (unsigned char*)v;
for(int i = oldsize; i < Bits; i++)
clear(i); // Erase additional bits
}
void BitVector::print(const char* nsg) {
put s(msg) ;
for(int i =0; i <Bits; i++)/{

if(read(i)) putchar('1');
el se putchar('0");
/1l Format into byte bl ocks:
if((i +1) %CHAR BIT == 0) putchar(" ');

putchar('\n"');
Y I~

Thefirst constructor istrivia because it just sets everything to zero. The second constructor
allocates storage and initializes the number of bits, and then it gets alittle tricky. The outer
for loop indexes through the array of bytes, and the inner for loop indexes through each byte
abit at atime. However, the bit is selected from the byte from left to right using the
expression init[index] & (0x80 >> offset). Notice thisis a bitwise AND, and the hex 0x80 (a
1-bit in the highest location) is shifted to the right by offset to create amask. If theresult is
nonzero, thereisaonein that particular bit position, and the set( ) function is used to set the
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bit inside the BitVector. It was important to scan the source bytes from left to right so the
print() function makes sense to the viewer.

The third constructor converts from a character string representing a binary sequence of ones
and zeroes into a BitVector. The number of bitsis taken at face value — the length of the
character string. But because the character string may produce a number of bits that isn't a
multiple of eight, the number of bytes numBytesis calculated by first doing an integer
division and then checking to see if there's aremainder by using the modulus operator. In this
case, unlike the second constructor, the bits are scanned in from left to right from the source
string.

The set( ), clear( ), and read( ) functions follow a nearly identical format. The first three lines
areidentical in each case: assert( ) that the argument isin range, and create an index into the
array of bytes and an offset into the selected byte. Both set( ) and read( ) create their mask
the same way: by shifting a bit left into the desired position. But set( ) forces the bit in the
array to be set by ORing the appropriate byte with the mask, and read( ) checks the value by
ANDing the mask with the byte and seeing if the result is nonzero. clear (') createsits mask
by shifting the one into the desired position, then flipping all the bits with the binary NOT
operator (thetilde: ~), then ANDing the mask onto the byte so only the desired bit is forced to
zero.

Note that set( ), read( ), and clear () could be written much more succinctly. For example,
clear (') could be reduced to

| bytes[bit/CHAR BIT] & ~(1 << (bit % CHAR BIT));
While thisis more efficient, it certainly isn’t as readable.

The two overloaded bits( ) functions are quite different in their behavior. The first is simply
an access function (afunction that produces a value based on private data without allowing
access to that data) that tells how many bits arein the array. The second uses its argument to
calculate the new number of bytes required, realloc( )s the memory (which allocates fresh
memory if bytesis zero) and zeroes the additiona bits. Note that if you ask for the same
number of bits you've already got, this may actually reallocate the memory (depending on the
implementation of realloc()) but it won't hurt anything.

The print() function puts out the msg string. The Standard C library function puts( ) always
adds a new line, so thiswill result in anew line for the default argument. Then it usesread( )
on each successive hit to print the appropriate character. For easier visual scanning, after each
eight bitsit prints out a space. Because of the way the second BitVector constructor readsin
its array of bytes, the print() function will produce resultsin afamiliar form.

The following program tests the BitVector class by exercising all the functions:

/1: CO7:Bvtest.cpp

/1{L} Bitvect

/1 Testing the BitVector class
#i ncl ude "Bitvect.h"
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int main() {

unsi gned char b[] = {
OxO0f, Oxff, OxfO,
OxAA, 0x78, 0Ox11

i

Bi t Vector bvl(b, sizeof b / sizeof *b),
bv2("10010100111100101010001010010010101");

bvi.print("bvl before nodification");

for(int i =36; i < bvl.bits(); i++)
bvi.clear(i);

bvi.print("bvl after nodification");

bv2.print("bv2 before nodification");

for(int j=bv2.bits()-10; j<bv2.bits(); j++)
bv2.clear(j);

bv2. set (30);

bv2.print("bv2 after nodification");

bv2. bits(bv2.bits() / 2);

bv2.print("bv2 cut in half");

bv2. bits(bv2.bits() + 10);

bv2. print("bv2 grown by 10");

Bi t Vect or bv3((unsigned char*)0);

Yy oI~

The objects bvl, bv2, and bv3 show three different types of BitVectorsand their
constructors. The set( ) and clear () functions are demonstrated. (read( ) is exercised inside
print().) Toward the end of this example, bv2is cut in half and then grown to demonstrate a
way to zero the end of the BitVector.

Y ou should be aware that the Standard C++ library contains bits and bitstring classes which
are much more complete (and standard) implementations of bit vectors.

Summary

Both function overloading and default arguments provide a convenience for caling function
names. It can seem confusing at times to know which technique to use. For example, in the
BitVector classit seems like the two bits( ) functions could be combined into asingle
version:

int bits(int sz = -1);

If you called it without an argument, the function would check for the -1 default and interpret
that as meaning that you wanted it to tell you the current number of bits. The use appearsto
be the same as the previous scheme. However, there are a number of significant differences
that jump out, or at least should make you feel uncomfortable.
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Inside bits( ) you'll have to do a conditional based on the value of the argument. If you have
to look for the default rather than treating it as an ordinary value, that should be a clue that
you will end up with two different functions inside one: one version for the normal case, and
one for the default. Y ou might as well split it up into two distinct function bodies and let the
compiler do the selection. This resultsin adlight increase in efficiency, because the extra
argument isn't passed and the extra code for the conditional isn’t executed. The slight
efficiency increase for two functions could make a difference if you call the function many
times.

Y ou do lose something when you use a default argument in this case. Firdt, the default hasto
be something you wouldn’t ordinarily use, -1 in this case. Now you can't tell if a negative
number is an accident or a default substitution. Second, there's only one return value with a
single function, so the compiler loses the information that was available for the overloaded
functions. Now, if you say

int i = bvl. set(10);

the compiler will accept it and no longer sees something that you, as the class designer, might
want, to be an error.

And consider the plight of the user, always. Which design will make more sense to users of
your class as they peruse the header file? What does a default argument of -1 suggest? Not
much. The two separate functions are much clearer because one takes a value and doesn’t
return anything and the other doesn’t take a value but returns something. Even without
documentation, it's far easier to guess what the two different functions do.

Asaguideline, you shouldn’t use a default argument as a flag upon which to conditionally
execute code. Y ou should instead break the function into two or more overloaded functions if
you can. A default argument should be a value you would ordinarily put in that position. It'sa
valuethat is more likely to occur than all the rest, so users can generally ignoreit or use it
only if they want to change it from the default value.

The default argument is included to make function calls easier, especially when those
functions have many arguments with typical values. Not only is it much easier to write the
cals, it's easier to read them, especialy if the class creator can order the arguments so the
least-modified defaults appear latest in the list.

An especially important use of default arguments is when you start out with a function with a
set of arguments, and after it’s been used for awhile you discover you need to add arguments.
By defaulting al the new arguments, you ensure that al client code using the previous
interface is not disturbed.

Exercises

1. Create a message class with a constructor that takes a single char* with a
default value. Create a private member char*, and assume the constructor
will be passed a static quoted string; simply assign the argument pointer to
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your internal pointer. Create two overloaded member functions called
print(): onethat takes no arguments and simply prints the message stored
in the object, and one that takes a char* argument, which it printsin
addition to the internal message. Does it make sense to use this approach
rather than the one used for the constructor?

2. Determine how to generate assembly output with your compiler, and run
experiments to deduce the name-mangling scheme.

3. Modify STASH4.H and STASH4.CPP to use default argumentsin the
constructor. Test the constructor by making two different versions of a
Stash object.

4, Compare the execution speed of the Flags class versus the BitVector class.
To ensure there's no confusion about efficiency, first remove the index,
offset, and mask clarification definitionsin set( ), clear( ) and read( ) by
combining them into a single statement that performs the appropriate action.
(Test the new code to make sure you haven't broken anything.)

5. Change FLAGS.CPP so it dynamically alocates the storage for the flags.
Give the constructor an argument that is the size of the storage, and put a
default of 100 on that argument. Make sure you properly clean up the
storage in the destructor.

Chapter 5: Introduction to lostreams
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8. Constants

The concept of constant (expressed by the const keyword)
was created to allow the programmer to draw a line between
what changes and what doesn’t.

This provides safety and control in a C++ programming project. Sinceits origin, it has taken
on anumber of different purposes. In the meantime it trickled back into the C language where
its meaning was changed. All this can seem a bit confusing at first, and in this chapter you'll
learn when, why, and how to use the const keyword. At the end there' s a discussion of
volatile, which isanear cousin to const (because they both concern change) and has identical
syntax.

The first motivation for const seemsto have been to eliminate the use of preprocessor
#defines for value substitution. It has since been put to use for pointers, function arguments,
and return types, and class objects and member functions. All of these have dightly different
but conceptually compatible meanings and will be looked at in separate sections.

V aue substitution

When programming in C, the preprocessor is liberally used to create macros and to substitute
values. Because the preprocessor simply does text replacement and has no concept nor
facility for type checking, preprocessor value substitution introduces subtle problems that can
be avoided in C++ by using const values.

The typical use of the preprocessor to substitute values for namesin C looks like this:
#define BUFSIZE 100

BUFSIZE is aname that doesn’t occupy storage and can be placed in a header file to provide
asingle value for all trandation units that use it. It's very important to use value substitution
instead of so-called «magic numbers» to support code maintenance. If you use magic numbers
inyour code, not only does the reader have no idea where the numbers come from or what
they represent, but if you decide to change avalue, you must perform hand editing, and you
have no trail to follow to ensure you don’'t miss one.

Most of the time, BUFSIZE will behave like an ordinary variable, but not all thetime. In
addition, there's no type information. This can hide bugs that are very difficult to find. C++
uses const to eliminate these problems by bringing value substitution into the domain of the
compiler. Now you can say
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const int bufsize = 100;

Y ou can use bufsize anyplace where the compiler must know the value at compile time so it
can perform constant folding, which means the compiler will reduce a complex constant
expression to a simple one by performing the necessary calculations at compiletime. Thisis
especialy important in array definitions:

char buf [ bufsi ze];

You can use congt for al the built-in types (char, int, float, and double) and their variants (as
well as class objects, as you'll see later in this chapter). Y ou should always use const instead
of #define value substitution.

const in header files

To use congt instead of #define, you must be able to place const definitions inside header
files as you can with #define. This way, you can place the definition for aconst in asingle
place and distribute it to atrandation unit by including the header file. A const in C++
defaultsto internal linkage; that is, it is visible only within the file where it is defined and
cannot be seen at link time by other trandation units. Y ou must aways assign avaueto a
const when you define it, except when you make an explicit declaration using extern:

extern const bufsize;

The C++ compiler avoids creating storage for a const, but instead holds the definition in its
symbol table, although the above extern forces storage to be allocated, as do certain other
cases, such as taking the address of a const. When the const is used, it isfolded in at compile
time.

Of course, this goa of never allocating storage for a const cannot always be achieved,
especially with complicated structures. In these cases, the compiler creates storage, which
prevents constant folding. Thisiswhy const must default to internal linkage, that is, linkage
only within that particular trandation unit; otherwise, linker errors would occur with
complicated consts because they alocate storage in multiple CPP files. The linker seesthe
same definition in multiple object files, and complains. However, a const defaultsto internal
linkage, so the linker doesn’t try to link those definitions across trandation units, and there are
no collisions. With built-in types, which are used in the majority of cases involving constant
expressions, the compiler can aways perform constant folding.

Safety consts

The use of const is not limited to replacing #definesin constant expressions. If you initialize
avariable with avalue that is produced at run-time and you know it will not change for the
lifetime of that variable, it is good programming practice to make it a const so the compiler
will give you an error message if you accidentally try to change it. Here's an example:

| //: Co08: Saf econs. cpp
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/1 Using const for safety
#i ncl ude <i ostreanp
usi ng nanmespace std;

const int i 100; // Typical constant

const int j i + 10; // Value from const expr
I ong address = (long)& ; // Forces storage
char buf[j + 10]; // Still a const expression

int main() {
cout << "type a character & CR";
const char ¢ = cin.get(); // Can't change
const char c2 =c¢c + 'a';
cout << c2;
/1

Y 1~

You can seethat i isacompile-time const, but j is calculated from i. However, becausei isa
congt, the calculated value for j still comes from a constant expression and is itself a compile-
time constant. The very next line requires the address of j and therefore forces the compiler to
allocate storage for j. Y et this doesn’t prevent the use of j in the determination of the size of
buf because the compiler knowsj is const and that the value is valid even if storage was
allocated to hold that value at some point in the program.

In main( ), you see adifferent kind of const in the identifier ¢ because the value cannot be
known at compile time. This means storage is required, and the compiler doesn’'t attempt to
keep anything in its symbol table (the same behavior asin C). The initialization must till
happen at the point of definition, and once the initialization occurs, the value cannot be
changed. Y ou can see that c2 is calculated from ¢ and a so that scoping works for consts asit
does for any other type — yet another improvement over the use of #define.

Asamatter of practice, if you think a value shouldn’t change, you should make it a const.
This not only provides insurance against inadvertent changes, it also allows the compiler to
generate more efficient code by eliminating storage and memory reads.

Aggregates
It's possible to use const for aggregates, but you're virtually assured that the compiler will not
be sophisticated enough to keep an aggregate in its symbol table, so storage will be alocated.
In these situations, const means «a piece of storage that cannot be changed.» However, the
value cannot be used at compile time because the compiler is not required to know the
contents of storage at compile time. Thus, you cannot say

/1: CO08: Constag.cpp {C
/1 Constants and aggregates
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const int i[] ={ 1, 2, 3, 4};

/1" float f[i[3]]; // Illegal

struct s { int i, j; };

const s S[] ={ {1, 2}, {3 4}1};

/1! double d[S[1].j]; // 1llegal
111~

In an array definition, the compiler must be able to generate code that moves the stack pointer
to accommaodate the array. In both of theillegal definitions, the compiler complains because it
cannot find a constant expression in the array definition.

Differences with C

Constants were introduced in early versions of C++ while the Standard C specification was
till being finished. It was then seen as a good idea and included in C. But somehow, const in
C came to mean «an ordinary variable that cannot be changed.» In C, it dways occupies
storage and its name is global. The C compiler cannot treat a const as a compile-time
congtant. In C, if you say

const bufsize = 100;
char buf [ buf si ze];

you will get an error, even though it seems like arationa thing to do. Because bufsize
occupies storage somewhere, the C compiler cannot know the value at compile time. You can

optionally say

| const bufsi ze;
in C, but not in C++, and the C compiler acceptsit as a declaration indicating there is storage
allocated elsewhere. Because C defaults to externa linkage for consts, this makes sense. C++

defaultsto internal linkage for consts so if you want to accomplish the samething in C++,
you must explicitly change the linkage to external using extern:

extern const bufsize; // Declaration only
Thisline aso worksin C.

The C approach to const is not very useful, and if you want to use anamed value inside a
constant expression (one that must be evaluated at compile time), C ailmost forces you to use
#define in the preprocessor.
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Pointers

Pointers can be made const. The compiler will still endeavor to prevent storage allocation and
do constant folding when dealing with const pointers, but these features seem less useful in
this case. More importantly, the compiler will tell you if you attempt changes using such a
pointer later in your code, which adds a great deal of safety.

When using const with pointers, you have two options: const can be applied to what the
pointer is pointing to, or the const can be applied to the address stored in the pointer itself.
The syntax for these is alittle confusing at first but becomes comfortable with practice.

Pointer to const

The trick with a pointer definition, as with any complicated definition, isto read it starting at
the identifier and working your way out. The const specifier bindsto the thing it is «closest
to.» So if you want to prevent any changes to the element you are pointing to, you write a
definition like this:

| const int* x;

Starting from the identifier, we read «x is a pointer, which points to a const int.» Here, no
initialization is required because you're saying that x can point to anything (that is, it is not
const), but the thing it points to cannot be changed.

Here' s the mildly confusing part. Y ou might think that to make the pointer itself
unchangeable, that is, to prevent any change to the address contained inside x, you would
simply move the const to the other side of the int like this:

int const* Xx;

It'snot all that crazy to think that this should read «x is aconst pointer to an int.» However,
the way it actually reads is «x is an ordinary pointer to an int that happensto be const.» That
is, the const has bound itself to the int again, and the effect is the same as the previous
definition. The fact that these two definitions are the same is the confusing point; to prevent
this confusion on the part of your reader, you should probably stick to the first form.

const pointer

To make the pointer itself a const, you must place the const specifier to the right of the *, like
this:

int d=1;

int* const x = &d;
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Now it reads: «x isapointer, which is const that pointsto an int.» Because the pointer itself is
now the const, the compiler requires that it be given an initial value that will be unchanged
for the life of that pointer. It's OK, however, to change what that value points to by saying

*X = 2
Y ou can also make a const pointer to aconst object using either of two legal forms:

int d=1;
const int* const x = &d; // (1)
int const* const x2 = &d; // (2)

Now neither the pointer nor the object can be changed.

Some people argue that the second form is more consistent because the const is always placed
to the right of what it modifies. You'll have to decide which is clearer for your particular
coding style.

Formatting

This book makes a point of only putting one pointer definition on aline, and initializing each
pointer at the point of definition whenever possible. Because of this, the formatting style of
«attaching» the ‘*’ to the data type is possible:

int* u = &w
asif int* were a discrete type unto itself. This makes the code easier to understand, but
unfortunately that’s not actually the way things work. The **’ in fact binds to the identifier,

not the type. It can be placed anywhere between the type name and the identifier. So you can
do this:

|int*u:&w,v:0;

which creates an int* u, as before, and a nonpointer int v. Because readers often find this
confusing, it is best to follow the form shown in this book.

Assignment and type checking

C++ isvery particular about type checking, and this extends to pointer assignments. Y ou can
assign the address of a non-const object to a const pointer because you're ssimply promising
not to change something that is OK to change. However, you can't assign the address of a
const object to a hon-const pointer because then you' re saying you might change the object
viathe pointer. Of course, you can always use a cast to force such an assignment, but thisis
bad programming practice because you are then breaking the constness of the object, along
with any safety promised by the const. For example:

int d=1;

const int e = 2;

int* u &d; // OK -- d not const
int* v &e; I/ lllegal -- e const
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int* w= (int*)&,; // Legal but bad practice

Although C++ helps prevent errors it, does not protect you from yourself if you want to break
the safety mechanisms.

String literals
The place where strict constnessis not enforced is with string literals. You can say
| char* cp = "howdy";

and the compiler will accept it without complaint. Thisistechnically an error because a string
literal («<howdy» in this case) is created by the compiler as a constant string, and the result of
the quoted string is its starting address in memory.

So string literals are actually constant strings. Of course, the compiler lets you get away with
treating them as non-const because there’ s so much existing C code that relies on this.
However, if you try to change the valuesin a string literal, the behavior is undefined, although
it will probably work on many machines.

Function arguments
& return values

The use of const to specify function arguments and return values is another place where the
concept of constants can be confusing. If you are passing objects by value, specifying const
has no meaning to the client (it means that the passed argument cannot be modified inside the
function). If you are returning an object of a user-defined type by value as a congt, it means
the returned value cannot be modified. If you are passing and returning addresses, const isa
promise that the destination of the address will not be changed.

Passing by const value

Y ou can specify that function arguments are const when passing them by value, such as

void f1l(const int i) {
i++, // lllegal -- conpile-tinme error
}

but what does this mean? Y ou’ re making a promise that the original value of the variable will
not be changed by the function x( ). However, because the argument is passed by value, you
immediately make a copy of the original variable, so the promise to the client isimplicitly
kept.

Inside the function, the const takes on meaning: the argument cannot be changed. So it's
really atool for the creator of the function, and not the caller.
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To avoid confusion to the caller, you can make the argument a const inside the function,
rather than in the argument list. Y ou could do thiswith a pointer, but anicer syntax is
achieved with the reference, a subject that will be fully developed in Chapter 9. Briefly, a
referenceis like a constant pointer that is automatically dereferenced, so it has the effect of
being an aias to an object. To create areference, you use the & in the definition. So the
nonconfusing function definition looks like this:

void f2(int ic) {
const int&i =ic;
i++, // lllegal -- conpile-time error
}
Again, you'll get an error message, but this time the constness of the local object is not part of
the function signature; it only has meaning to the implementation of the function soit’s
hidden from the client.

Returning by const value

A similar truth holds for the return value. If you return by value from afunction, as a const
| const int g();

you are promising that the original variable (inside the function frame) will not be modified.
And again, because you're returning it by value, it's copied so the original valueis
automatically not modified.

At first, this can make the specification of const seem meaningless. Y ou can see the apparent
lack of effect of returning consts by value in this example:

/1: Q08: Constval.cpp
/1 Returning consts by val ue
/1 has no nmeaning for built-in types

int f3() { return 1; }
const int f4() { return 1; }

int main() {

const int j = 1f3(); // Wrks fine

int k =f4(); // But this works fine too!
Y oI~

For built-in types, it doesn't matter whether you return by value as a const, so you should
avoid confusing the client programmer by leaving off the const when returning a built-in type
by value.

Returning by value as a const becomes important when you' re dealing with user-defined
types. If afunction returns a class object by value as a const, the return value of that function
cannot be an lvalue (that is, it cannot be assigned to or otherwise modified). For example:
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/1: C08: Constret.cpp
/1 Constant return by val ue
/1 Result cannot be used as an |val ue

class X {

int i;
publi c:

X(int 1 =0) {i =1; }
void nodify() { i++ }
1

X £5() {
return X();
}

const X f6() {
return X();

}

void f7(X& x) { // Pass by non-const reference
x. modi fy();
}

int main() {
f5() = X(1); // OK -- non-const return val ue
f5().nodify(); // OK
f7(f5()); /1 XK
/1 Causes conpile-time errors:
[1Y f6() = X(1);
{117 £6().nodify();
/1Y f7(f6());
Y I~

f5( ) returns anon-const X object, while f6( ) returns a const X object. Only the non-const
return value can be used as an Ivalue. Thus, it's important to use const when returning an
object by value if you want to prevent its use as an Ivalue.

The reason const has no meaning when you’ re returning a built-in type by value is that the
compiler aready preventsit from being an lvalue (because it's always a value, and not a
variable). Only when you' re returning objects of user-defined types by value does it become
anissue.

The function f7( ) takes its argument as a non-const reference (an additional way of handling
addresses in C++ which is the subject of Chapter 9). Thisis effectively the same astaking a
non-const pointer; it'sjust that the syntax is different.
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Temporaries

Sometimes, during the evaluation of an expression, the compiler must create temporary
objects. These are objects like any other: they require storage and they must be constructed
and destroyed. The differenceis that you never see them — the compiler is responsible for
deciding that they’ re needed and the details of their existence. But there is one thing about
temporaries: they’ re automatically const. Because you usually won't be able to get your
hands on atemporary object, telling it to do something that will change that temporary is
almost certainly a mistake because you won't be able to use that information. By making all
temporaries automatically const, the compiler informs you when you make that mistake.

The way the constness of class objectsis preserved is shown later in the chapter.

Passing and returning addresses

If you pass or return a pointer (or areference), it's possible for the user to take the pointer and
modify the origina value. If you make the pointer a const, you prevent this from happening,
which may be an important factor. In fact, whenever you' re passing an address into a
function, you should make it acongt if at al possible. If you don't, you' re excluding the
possibility of using that function with a pointer to a const.

The choice of whether to return a pointer to a const depends on what you want to alow your
user to do with it. Here's an example that demonstrates the use of const pointers as function
arguments and return values:

/1: Q08: Constp. cpp
/1 Constant pointer arg/return

void t(int*) {}

void u(const int* cip) {

/1Y *cip =2; // Illegal -- nodifies value
int i =*cip; // OK-- copies value

/1Y int* ip2 = cip; // Illegal: non-const

}

const char* v() {
/1 Returns address of static string:
return "result of function v()";

}

const int* const W) {
static int i;
return & ;

}
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int main() {
int x = 0;
int* ip = &;
const int* cip = &;
t(ip); /1 X
1Y t(cip); [/ Not K
u(tip); /1 K
u(cip); // Also K
/11 char* cp = v(); // Not OK
const char* ccp = v(); // K
1Y int* ip2 = w(); // Not O
const int* const ccip =wW); // K
const int* cip2 =w); // XK
/1Y *w() =1; // Not XK
Y I~

The function t( ) takes an ordinary non-const pointer as an argument, and u( ) takes a const
pointer. Inside u( ) you can see that attempting to modify the destination of the const pointer
isillegal, but you can of course copy the information out into a non-const variable. The
compiler also prevents you from creating a non-const pointer using the address stored inside a
const pointer.

The functions v( ) and w( ) test return value semantics. v( ) returns aconst char* that is
created from a string literal. This statement actually produces the address of the string literal,
after the compiler createsit and storesit in the static storage area. As mentioned earlier, this
string is technically a constant, which is properly expressed by the return value of v().

The return value of w( ) requires that both the pointer and what it points to be a const. Aswith
Vv(), the value returned by w( ) isvalid after the function returns only because it is static. You
never want to return pointersto local stack variables because they will be invalid after the
function returns and the stack is cleaned up. (Another common pointer you might return isthe
address of storage alocated on the heap, which is still valid after the function returns.

In main( ), the functions are tested with various arguments. Y ou can see that t( ) will accept a
non-const pointer argument, but if you try to passit a pointer to a const, there’ s no promise
that t( ) will leave the pointer’ s destination alone, so the compiler gives you an error message.
u( ) takes a const pointer, so it will accept both types of arguments. Thus, a function that takes
aconst pointer is more general than one that does not.

As expected, the return value of v( ) can be assigned only to a const pointer. Y ou would aso
expect that the compiler refuses to assign the return value of w( ) to a non-const pointer, and
accepts aconst int* const, but it might be a bit surprising to see that it also accepts a const

int*, which is not an exact match to the return type. Once again, because the value (which is
the address contained in the pointer) is being copied, the promise that the original variableis
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untouched is automatically kept. Thus, the second const in const int* const is only
meaningful when you try to useit as an Ivalue, in which case the compiler prevents you.

Standard argument passing

In Cit's very common to pass by value, and when you want to pass an address your only
choiceisto use a pointer. However, neither of these approachesis preferred in C++. Instead,
your first choice when passing an argument is to pass by reference, and by const reference at
that. To the client programmer, the syntax isidentical to that of passing by value, so there's
no confusion about pointers — they don’'t even have to think about the problem. For the
creator of the class, passing an address is virtually always more efficient than passing an
entire class object, and if you pass by const reference it means your function will not change
the destination of that address, so the effect from the client programmer’ s point of view is
exactly the same as pass-by-value.

Because of the syntax of references (it looks like pass-by-vaue) it's possible to pass a
temporary object to a function that takes a reference, whereas you can never pass a temporary
object to afunction that takes a pointer — the address must be explicitly taken. So passing by
reference produces a new situation that never occursin C: atemporary, which is always
const, can have its address passed to afunction. Thisiswhy, to alow temporariesto be
passed to functions by reference the argument must be a const reference. The following
example demonstrates this:

/1: C08: Consttnp.cpp
/1 Tenporaries are const

class X {};
XFf() { return X(); } // Return by value

void gl(X& {} // Pass by non-const reference
void g2(const X&) {} // Pass by const reference

int main() {
/1 Error: const tenporary created by f():
Iy gl(f());
/1 OK: g2 takes a const reference:
92(f());
Y I~

f(') returns an object of class X by value. That means when you immediately take the return
value of f() and passit to another function asin the callsto g1( ) and g2( ), atemporary is
created and that temporary is const. Thus, the call in g1( ) isan error because g1( ) doesn’t
take aconst reference, but the call to g2( ) is OK.
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Classes

This section shows the two ways to use const with classes. Y ou may want to create alocal
const in aclassto use inside constant expressions that will be evaluated at compile time.
However, the meaning of const is different inside classes, so you must use an aternate
technique with enumerations to achieve the same effect.

Y ou can also make a class object const (and as you've just seen, the compiler always makes
temporary class objects const). But preserving the constness of a class object is more
complex. The compiler can ensure the constness of a built-in type but it cannot monitor the
intricacies of a class. To guarantee the constness of a class object, the const member function
isintroduced: Only aconst member function may be caled for a const object.

const and enum in classes

One of the places you'd like to use aconst for constant expressionsisinside classes. The
typical example iswhen you' re creating an array inside a class and you want to use a const
instead of a#define to establish the array size and to usein calculations involving the array.
The array size is something you' d like to keep hidden inside the class, so if you used a name
like size, for example, you could use that name in another class without a clash. The
preprocessor treats all #defines as global from the point they are defined, so this will not
achieve the desired effect.

Initialy, you probably assume that the logical choice isto place a const inside the class. This
doesn’t produce the desired result. Inside a class, const partialy revertsto its meaning in C. It
allocates storage within each class object and represents a value that isinitialized once and
then cannot change. The use of const inside a class means «Thisis constant for the lifetime of
the object.» However, each different object may contain a different value for that constant.

Thus, when you create a const inside a class, you cannot give it aninitia vaue. This
initialization must occur in the constructor, of course, but in aspecia place in the constructor.
Because a const must beinitialized at the point it is created, inside the main body of the
constructor the const must already be initialized. Otherwise you' re left with the choice of
waiting until some point later in the constructor body, which means the const would be un-
initialized for awhile. Also, there's nothing to keep you from changing the value of the const
at various places in the constructor body.

The constructor initializer list

The special initiaization point is called the constructor initializer list, and it was originaly
developed for use in inheritance (an object-oriented subject of alater chapter). The
constructor initializer list — which, as the name implies, occurs only in the definition of the
constructor — isalist of «constructor calls» that occur after the function argument list and a
colon, but before the opening brace of the constructor body. Thisisto remind you that the
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initiaization in the list occurs before any of the main constructor code is executed. Thisisthe
place to put al const initiaizations, so the proper form for const inside aclassis

class fred {
const si ze;

publi c:
fred();

}
fred::fred() : size(100) {}

The form of the constructor initializer list shown above is at first confusing because you're
not used to seeing a built-in type treated as if it has a constructor.

«Constructors» for built-in types

As the language devel oped and more effort was put into making user-defined types look like
built-in types, it became apparent that there were times when it was helpful to make built-in
types look like user-defined types. In the constructor initializer list, you can treat a built-in
type asif it has a constructor, like this:

class B {
int i;
public:
B(int 1);
b
B::B(int 1) : i(l) {}

Thisis especialy critical when initializing const data members because they must be
initialized before the function body is entered.

It made sense to extend this «constructor» for built-in types (which simply means assignment)
to the general case. Now you can say

float pi(3.14159);

It's often useful to encapsulate a built-in type inside a class to guarantee initialization with the
constructor. For example, here’san integer class:

class integer {
int i;
publi c:
integer(int I = 0);
1
integer::integer(int 1) : i(l) {}

Now if you make an array of integers, they are all automatically initialized to zero:
| i nteger 1[100];
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This initialization isn’t necessarily more costly than afor loop or memset( ). Many compilers
easily optimize thisto avery fast process.

Compile-time constants in classes

Because storage is allocated in the class object, the compiler cannot know what the contents
of the const are, so it cannot be used as a compile-time constant. This means that, for constant
expressions inside classes, const becomes as useless asit isin C. Y ou cannot say

cl ass bob {
const size = 100; // Illegal
int array[size]; [/ 1llegal
/...

The meaning of const inside aclassis «Thisvalue is const for the lifetime of this particular
object, not for the class as awhole.» How then do you creste a class constant that can be used
in constant expressions? A common solution is to use an untagged enum with no instances.
An enumeration must have al its values established at compile time, it’slocal to the class,
and its values are available for constant expressions. Thus, you will commonly see

cl ass Bunch {
enum { size = 1000 };
int i[size];
}
The use of enum here is guaranteed to occupy no storage in the object, and the enumerators

are dl evaluated at compiletime. You can aso explicitly establish the values of the
enumerators:

| enum{ one = 1, two = 2, three };

With integral enum types, the compiler will continue counting from the last value, so the
enumerator three will get the value 3.

Here's an example that shows the use of enum inside a container that represents a Stack of
string pointers:

/1: C08:SStack. cpp

/1 enuminside classes
#i ncl ude <cstring>

#i ncl ude <i ostreanp
usi ng nanmespace std;

class StringStack {
enum{ size = 100 };
const char* Stack[size];
i nt index;
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publi c:
StringStack();
voi d push(const char* s);
const char* pop();

}s

StringStack:: StringStack() : index(0) {
nmenset (Stack, 0, size * sizeof(char*));
}

void StringStack:: push(const char* s) {
i f(index < size)
St ack[i ndex++] = s;

}

const char* StringStack:: pop() {
if(index > 0) {
const char* rv
Stack[index] =
return rv;

}

= Stack[--index];
0;

}

const char* iceCreanf] = {
"pralines & creant,
"fudge ripple",
"janmocha al nond fudge",
"wild nmountai n bl ackberry",
"raspberry sorbet",
"l emon swirl",
"rocky road",
"deep chocol ate fudge"

b
const | Csz = sizeof iceCream sizeof *iceCream

int main() {
StringStack SS;
for(int i =0; i <I1Csz; i++)
SS. push(iceCreanfi]);
const char* cp;
while((cp = SS.pop()) !'=0)
cout << cp << endl;
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Notice that push( ) takes a const char* as an argument, pop( ) returns aconst char*, and
Stack holds const char*. If this were not true, you couldn’t use a StringStack to hold the
pointers in iceCream. However, it also prevents you from doing anything that will change the
objects contained by StringStack. Of course, not al containers are designed with this
restriction.

Although you'll often see the enum technique in legacy code, C++ aso has the static const
which produces a more flexible compile-time constant inside a class. This is described in
Chapter 8.

Type checking for enumerations

C's enumerations are fairly primitive, smply associating integral values with names, but
providing no type checking. In C++, as you may have come to expect by now, the concept of
type is fundamental, and thisis true with enumerations. When you create a named
enumeration, you effectively create a new type just as you do with a class: The name of your
enumeration becomes a reserved word for the duration of that trandation unit.

In addition, there' s stricter type checking for enumerationsin C++ thanin C. You'll notice
thisin particular if you have an instance of an enumeration color called a. In C you can say
a++ but in C++ you can't. This is because incrementing an enumeration is performing two
type conversions, one of them legal in C++ and one of themillegal. First, the value of the
enumeration isimplicitly cast from acolor to an int, then the value isincremented, then the
int is cast back into acolor. In C++ thisisn’t allowed, because color isadistinct type and not
equivaent to an int. This makes sense because how do you know the increment of blue will
even beinthelist of colors? If you want to increment a color, then it should be a class (with
an increment operation) and not an enum. Any time you write code that assumes an implicit
conversion to an enum type, the compiler will flag thisinherently dangerous activity.

Unions have similar additional type checking.

const objects & member functions

Class member functions can be made const. What does this mean? To understand, you must
first grasp the concept of const objects.

A congt object is defined the same for a user-defined type as a built-in type. For example:

const int i = 1;
const blob B(2);

Here, B isaconst object of type blob. Its constructor is called with an argument of two. For
the compiler to enforce constness, it must ensure that no data members of the object are
changed during the object’ s lifetime. It can easily ensure that no public datais modified, but
how isit to know which member functions will change the data and which ones are «safe» for
aconst object?
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If you declare a member function const, you tell the compiler the function can be called for a
const object. A member function that is not specifically declared const istreated as one that
will modify data membersin an object, and the compiler will not allow you to call it for a
const object.

It doesn’t stop there, however. Just claiming afunction is const inside a class definition
doesn’t guarantee the member function definition will act that way, so the compiler forces you
to reiterate the const specification when defining the function. (The const becomes part of the
function signature, so both the compiler and linker check for constness.) Then it enforces
constness during the function definition by issuing an error message if you try to change any
members of the object or call anon-const member function. Thus, any member function you
declare congt is guaranteed to behave that way in the definition.

Preceding the function declaration with const means the return value is const, so that isn’t the
proper syntax. Y ou must place the const specifier after the argument list. For example,

class X {
int i;
publi c:
int f() const;

};

The const keyword must be repeated in the definition using the same form, or the compiler
sees it as a different function:

| int X:f() const { returni; }

If f( )attempts to change i in any way or to call another member function that is not const, the
compiler flagsit as an error.

Any function that doesn’t modify member data should be declared as const, so it can be used
with const objects.

Here' s an example that contrasts a const and non-const member function:

/1: C08: Quoter.cpp

/1 Random quot e sel ection

#i ncl ude <i ostreanp

#i nclude <cstdlib> // Random nunber generat or
#i nclude <ctine> // To seed random gener at or
usi ng nanmespace std;

class Quoter {
i nt |astquote;
publi c:
Quoter();
i nt Lastquote() const;
const char* quote();
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1
Quoter::Quoter(){

| astquote = -1;
srand(tinme(0)); // Seed random nunber gener at or

}

int Quoter::Lastquote() const {
return | ast quote;

}

const char* Quoter::quote() {
static const char* quotes[] = {

"Are we having fun yet?",
"Doctors al ways know best",
"Isit ... Atom c?",
"Fear is obscene",
"There is no scientific evidence
"to support the idea "
“"that life is serious",

1

const qsize = sizeof quotes/sizeof *quotes;

int gnum = rand() % qgsi ze;

whil e(l astquote >= 0 & gnum == | ast quot e)
gnum = rand() % gsi ze;

return quotes[lastquote = gnuni;

}

int main() {
Quoter q;
const Quoter cq;
cq. Lastquote(); // K
/11" cqg.quote(); // Not OK; non const function

for(int i =0; i < 20; i++4)
cout << g.quote() << endl;
Y I~

Neither constructors nor destructors can be const member functions because they virtually
always perform some modification on the object during initialization and cleanup. The
quote( ) member function also cannot be const because it modifies the data member
lastquote in the return statement. However, L astquote( ) makes no modifications, and so it
can be const and can be safely called for the const object cqg.
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mutable: bitwise vs. memberwise const

What if you want to create a const member function, but you'd still like to change some of the
datain the object? Thisis sometimes referred to as the difference between bitwise const and
memberwise const. Bitwise const means that every bit in the object is permanent, so a bit
image of the object will never change. Memberwise const means that, although the entire
object is conceptually constant, there may be changes on a member-by-member basis.
However, if the compiler istold that an object is const, it will jealously guard that object.
There are two ways to change a data member inside a const member function.

Thefirst approach isthe historical one and is called casting away constness. It is performed in
arather odd fashion. Y ou take this (the keyword that produces the address of the current
object) and you cast it to a pointer to an object of the current type. It would seem that thisis
already such a pointer, but it'saconst pointer, so by casting it to an ordinary pointer, you
remove the constness for that operation. Here' s an example:

//: C08: Cast away. cpp
/1 "Casting away" constness

class Y {

int i, j;

publi c:

YOO {1 =] =05}
void f() const;

}!
void Y:.:f() const {
/1! i++, // Error -- const nenber function
((Y*)this)->j++; // OK cast away const-ness
}
int main() {
const Y yy;
yy.f(); /1 Actually changes it!
Y I~

This approach works and you'll seeit used in legacy code, but it is not the preferred
technique. The problem isthat thislack of constnessis hidden away in amember function of
an object, so the user has no clue that it’s happening unless she has access to the source code
(and actually goes looking for it). To put everything out in the open, you should use the
mutable keyword in the class declaration to specify that a particular data member may be
changed inside a const object:

//: C08: Mutable.cpp
/1 The "nutable" keyword
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class Y {

int i;

nmutable int j;
publi c:

YOO {1 =] =05}
void f() const;

};

void Y:.:f() const {
/1Y i++; [/ Error -- const nenber function
j++ /1 OK mutable

}

int main() {

const Y yy;

yy.f(); // Actually changes it!
Y 11~

Now the user of the class can see from the declaration which members are likely to be
modified in a const member function.

ROM ability

If an object is defined as congt, it is a candidate to be placed in read-only memory (ROM),
which is often an important consideration in embedded systems programming. Simply making
an object const, however, is not enough — the requirements for ROMability are much more
strict. Of course, the object must be bitwise-const, rather than memberwise-const. Thisis
easy to see if memberwise constness is implemented only through the mutable keyword, but
probably not detectable by the compiler if constnessis cast away inside a const member
function. In addition,

6. The class or struct must have no user-defined constructors or destructor.

7. There can be no base classes (covered in the future chapter on inheritance)
or member objects with user-defined constructors or destructors.

The effect of awrite operation on any part of a const object of a ROMable type is undefined.
Although a suitably formed object may be placed in ROM, no objects are ever required to be
placed in ROM.
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volatile

The syntax of volatile isidentical to that for const, but volatile means «This data may change
outside the knowledge of the compiler.» Somehow, the environment is changing the data
(possibly through multitasking), and volatile tells the compiler not to make any assumptions
about the data— thisis particularly important during optimization. If the compiler says, «l
read the datainto aregister earlier, and | haven't touched that register,» normally it wouldn’'t
need to read the data again. But if the datais volatile, the compiler cannot make such an
assumption because the data may have been changed by another process, and it must reread
the data rather than optimizing the code.

Y ou can create volatile objects just as you create const objects. You can aso create const
volatile objects, which can’'t be changed by the programmer but instead change through some
outside agency. Here is an example that might represent a class to associate with some piece
of communication hardware:

//1: C08:Volatile.cpp
/1 The volatile keyword

class Comm {
const vol atile unsigned char byte;
vol atil e unsigned char flag;
enum { bufsize = 100 };
unsi gned char buf[ bufsize];
i nt index;

publi c:

Comm() ;

void isr() volatile;

char read(int Index) const;

1
Comm : Comm() : index(0), byte(0), flag(0) {}

/] Only a denp; won't actually work
/1 as an interrupt service routine:
void Comm:isr() volatile {

if(flag) flag = 0;

buf [ i ndex++] = byte;

/1 Wap to beginning of buffer:

i f(index >= bufsize) index = 0;

}

char Conm :read(int Index) const {
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if(Index < 0 || Index >= bufsize)
return O;
return buf[ I ndex];

}

int main() {
vol atil e Conm Port;
Port.isr(); // X
/1" Port.read(0); // Not CK;
/1 read() not volatile
Y I~

Aswith const, you can use volatile for data members, member functions, and objects
themselves. You can call only volatile member functions for volatile objects.

The reason that isr () can't actually be used as an interrupt service routine is that in a member
function, the address of the current object (this) must be secretly passed, and an ISR generally
wants no arguments at al. To solve this problem, you can makeisr( ) astatic member
function, a subject covered in afuture chapter.

The syntax of volatileisidentical to const, so discussions of the two are often treated
together. To indicate the choice of either one, the two are referred to in combination as the c-v
qualifier.

Summary

The const keyword gives you the ability to define objects, function arguments and return
values, and member functions as constants, and to eliminate the preprocessor for value
substitution without losing any preprocessor benefits. All this provides a significant additional
form of type checking and safety in your programming. The use of so-called const correctness
(the use of const anywhere you possibly can) has been alifesaver for projects.

Although you can ignore const and continue to use old C coding practices, it's there to help
you. Chapters 9 & 10 begin using references heavily, and there you' Il see even more about
how critical it isto use const with function arguments.

Exercises

1. Create a class called bird that can fly( ) and a classrock that can’t. Create a
rock object, take its address, and assign that to avoid*. Now take the
void*, assign it to abird*, and call fly() through that pointer. Isit clear
why C's permission to openly assign viaavoid* isa«hole» in the
language?
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2. Create a class containing a const member that you initialize in the
constructor initializer list and an untagged enumeration that you useto
determine an array size.

3. Create a class with both const and non-const member functions. Create
const and non-const objects of this class, and try calling the different types
of member functions for the different types of objects.

4, Create a function that takes an argument by value as a const; then try to
change that argument in the function body.

5. Prove to yourself that the C and C++ compilersreally do treat constants
differently. Create aglobal const and useit in a constant expression; then
compile it under both C and C++.
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O: Inline functions

One of the important features C++ inheritsfrom C is
efficiency. If the efficiency of C++ were dramatically less
than C, there would be a significant contingent of
programmers who couldn’t justify its use.

In C, one of the ways to preserve efficiency is through the use of macros, which alow you to
make what looks like a function call without the normal overhead of the function call. The
macro is implemented with the preprocessor rather than the compiler proper, and the
preprocessor replaces all macro calls directly with the macro code, so there’ s no cost involved
from pushing arguments, making an assembly-language CALL, returning arguments, and
performing an assembly-language RETURN. All the work is performed by the preprocessor,
S0 you have the convenience and readability of afunction call but it doesn’t cost you
anything.

There are two problems with the use of preprocessor macrosin C++. Thefirst is aso true with
C: A macro looks like a function call, but doesn’'t always act like one. This can bury difficult-
to-find bugs. The second problem is specific to C++: The preprocessor has no permission to
access private data. This means preprocessor macros are virtually useless as class member
functions.

To retain the efficiency of the preprocessor macro, but to add the safety and class scoping of
true functions, C++ has the inline function. In this chapter, we'll look at the problems of
preprocessor macros in C++, how these problems are solved with inline functions, and
guidelines and insights on the way inlines work.

Preprocessor pitfalls

The key to the problems of preprocessor macros is that you can be fooled into thinking that
the behavior of the preprocessor is the same as the behavior of the compiler. Of course, it was
intended that a macro look and act like afunction call, so it's quite easy to fal into this
fiction. The difficulties begin when the subtle differences appear.

As asimple example, consider the following:
#define f (x) (x + 1)
Now, if acal ismadeto f like this

| (D)
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the preprocessor expands it, somewhat unexpectedly, to the following:

| (0 (x + 1)(1)
The problem occurs because of the gap between f and its opening parenthesis in the macro
definition. When this gap is removed, you can actually call the macro with the gap
f (1)
and it will still expand properly, to
(1 + 1)
The above exampleisfairly trivial and the problem will make itself evident right away. The
real difficulties occur when using expressions as arguments in macro calls.

There are two problems. Thefirst is that expressions may expand inside the macro so that
their evaluation precedence is different from what you expect. For example,

| #define floor(x,b) x>=b?0:1
Now, if expressions are used for the arguments

| i f(floor(a&x0f,0x07)) //
the macro will expand to

| i f (a&0x0f >=0x0720: 1)

The precedence of & islower than that of >=, so the macro evaluation will surprise you. Once
you discover the problem (and as a general practice when creating preprocessor macros) you
can solve it by putting parentheses around everything in the macro definition. Thus,

| #define floor(x,b) ((x)>=(b)?0:1)

Discovering the problem may be difficult, however, and you may not find it until after you've
taken the proper macro behavior for granted. In the unparenthesized version of the preceding
example, most expressions will work correctly, because the precedence of >= is lower than
most of the operators like +, /, ——, and even the bitwise shift operators. So you can easily
begin to think that it works with al expressions, including those using bitwise logical
operators.

The preceding problem can be solved with careful programming practice: Parenthesize
everything in a macro. The second difficulty is more subtle. Unlike a normal function, every
time you use an argument in a macro, that argument is evaluated. Aslong asthe macro is
called only with ordinary variables, this evaluation is benign, but if the evaluation of an
argument has side effects, then the results can be surprising and will definitely not mimic
function behavior.

For example, this macro determines whether its argument falls within a certain range:
#define band(x) (((x)>5 & (x)<10) ? (x) : 0)

Aslong as you use an «ordinary» argument, the macro works very much like areal function.
But as soon as you relax and start believing it isareal function, the problems start. Thus,
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/1: C09: Macro. cpp

/1 Side effects with nacros
#i ncl ude <fstreanp
#include "../require.h"
usi ng nanmespace std;

#defi ne band(x) (((x)>5 && (x)<10) ? (x) : 0)
int main() {

of stream out (" macro. out");
assure(out, "macro.out");

for(int i =4; i < 11; i++) {
int a=i;
out << "a = " << a << endl << "\t';
out << "band(++a)=" << band(++a) << endl
out << "\t a = " << a << endl
}
Y I~

Here' s the output produced by the program, which is not at al what you would have expected
from atrue function:

a=414
band( ++a) =0
a=>5
a=>5
band( ++a) =8
a =28
a==
band( ++a) =9
a=29
a=17
band( ++a) =10
a = 10
a =28
band( ++a) =0
a = 10
a=29
band( ++a) =0
a =11
a = 10
band( ++a) =0
a =12

Chapter 7: Inline Functions 259



When aisfour, only the first part of the conditional occurs, so the expression is evaluated
only once, and the side effect of the macro call is that a becomes five, which is what you
would expect from a normal function call in the same situation. However, when the number is
within the band, both conditionals are tested, which resultsin two increments. Theresult is
produced by evaluating the argument again, which resultsin athird increment. Once the
number gets out of the band, both conditionals are still tested so you get two increments. The
side effects are different, depending on the argument.

Thisis clearly not the kind of behavior you want from a macro that looks like a function call.
In this case, the obvious solution is to make it a true function, which of course adds the extra
overhead and may reduce efficiency if you cal that function alot. Unfortunately, the problem
may not always be so obvious, and you can unknowingly get alibrary that contains functions
and macros mixed together, so a problem like this can hide some very difficult-to-find bugs.
For example, the putc( ) macro in STDIO.H may evaluate its second argument twice. Thisis
specified in Standard C. Also, careless implementations of toupper () as amacro may
evaluate the argument more than once, which will give you unexpected results with

toupper (*p++).32

Macros and access

Of course, careful coding and use of preprocessor macros are required with C, and we could
certainly get away with the same thing in C++ if it weren't for one problem: A macro has no
concept of the scoping required with member functions. The preprocessor simply performs
text substitution, so you cannot say something like

class X {
int i;
publi c:
#define val (X :i) // Error

or anything even close. In addition, there would be no indication of which object you were
referring to. Thereis simply no way to express class scope in a macro. Without some
alternative to preprocessor macros, programmers will be tempted to make some data members
public for the sake of efficiency, thus exposing the underlying implementation and preventing
changes in that implementation.

Inline functions

In solving the C++ problem of a macro with accessto private class members, all the problems
associated with preprocessor macros were eliminated. This was done by bringing macros

32Andrew Koenig goes into more detail in his book C Traps & Pitfalls (Addison-Wedey,
1989).
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under the control of the compiler, where they belong. In C++, the concept of amacro is
implemented as an inline function, which is atrue function in every sense. Any behavior you
expect from an ordinary function, you get from an inline function. The only differenceis that
aninline function is expanded in place, like a preprocessor macro, so the overhead of the
function call is eliminated. Thus, you should (almost) never use macros, only inline functions.

Any function defined within a class body is automatically inline, but you can also make a
nonclass function inline by preceding it with the inline keyword. However, for it to have any
effect, you must include the function body with the declaration; otherwise the compiler will
treat it as an ordinary function declaration. Thus,

inline int PlusOne(int x);

has no effect at al other than declaring the function (which may or may not get an inline
definition sometime later). The successful approachis

inline int PlusOne(int x) { return ++x; }

Notice that the compiler will check (asit always does) for the proper use of the function
argument list and return value (performing any necessary conversions), something the
preprocessor isincapable of. Also, if you try to write the above as a preprocessor macro, you
get an unwanted side effect.

You'll amost always want to put inline definitions in a header file. When the compiler sees
such adefinition, it puts the function type (signature + return value) and the function body in
its symbol table. When you use the function, the compiler checks to ensure the call is correct
and the return value is being used correctly, and then substitutes the function body for the
function call, thus eliminating the overhead. The inline code does occupy space, but if the
function is small, this can actually take less space than the code generated to do an ordinary
function call (pushing arguments on the stack and doing the CALL).

Aninline function in a header file defaults to internal linkage — that is, it is static and can
only be seen in trandation units where it isincluded. Thus, aslong as they aren’t declared in
the same trangdlation unit, there will be no clash at link time between an inline function and a
global function with the same signature. (Remember the return value is not included in the
resolution of function overloading.

Inlines inside classes

To define an inline function, you must ordinarily precede the function definition with the
inline keyword. However, thisis not necessary inside a class definition. Any function you
define inside a class definition is automatically an inline. Thus,

[1: Q09:Inline.cpp

/1 Inlines inside classes
#i ncl ude <i ostreanp

usi ng nanmespace std;
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class Point {
int i, j, k;
publi c:
Point() { i =] =k =0; }
Point(int I, int J, int K) {
i = 1;
i =J
k = K
}
void print(const char* nsg = "") const {
i f(*meg) cout << meg << endl;
cout << "j =" <«<j << ", "
<< "j =" <o, "
<< "k = " << k << endl;
}
}s
int main() {
Point p, q(1,2,3);
p.print("value of p");
g.print("value of q");
Y I~

Of course, the temptation isto use inlines everywhere inside class declarations because they
save you the extra step of making the external member function definition. Keep in mind,
however, that the idea of an inlineis to reduce the overhead of afunction call. If the function
body islarge, chances are you'll spend a much larger percentage of your time inside the body
versus going in and out of the function, so the gainswill be small. But inlining a big function
will cause that code to be duplicated everywhere the function is called, producing code bloat
with little or no speed benefit.

Access functions

One of the most important uses of inlines inside classes is the access function. Thisisasmall
function that allows you to read or change part of the state of an object — that is, an internal
variable or variables. The reason inlines are so important with access functions can be seenin
the following example:

/1: C09: Access. cpp
// 1nline access functions

cl ass Access {
int i;
publi c:
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int read() const { return i; }

void set(int 1) { i =1; }
1
int main() {

Access A;

A. set (100);

int x = A read();
Y I~

Here, the class user never has direct contact with the state variables inside the class, and they
can be kept private, under the control of the class designer. All the access to the private data
members can be controlled through the member function interface. In addition, accessis
remarkably efficient. Consider the read( ), for example. Without inlines, the code generated
for the call to read(') would include pushing this on the stack and making an assembly
language CALL. With most machines, the size of this code would be larger than the code
created by the inline, and the execution time would certainly be longer.

Without inline functions, an efficiency-conscious class designer will be tempted to simply
make i a public member, eliminating the overhead by alowing the user to directly accessi.
From a design standpoint, thisis disastrous because i then becomes part of the public
interface, which means the class designer can never changeit. You're stuck with anint called
i. Thisisa problem because you may learn sometime later that it would be much more useful
to represent the state information as afloat rather than an int, but becauseint i is part of the
public interface, you can’t changeit. If, on the other hand, you’ ve always used member
functions to read and change the state information of an object, you can modify the
underlying representation of the object to your heart’s content (and permanently remove from
your mind the idea that you are going to perfect your design before you code it and try it out).

Accessors and mutators

Some people further divide the concept of access functions into accessors (to read state
information from an object) and mutators (to change the state of an object). In addition,
function overloading may be used to provide the same function name for both the accessor
and mutator; how you call the function determines whether you're reading or modifying state
information. Thus,

/1: C09: Rectangl.cpp
// Accessors & nmutators

cl ass Rectangle {
int Wdth, Height;
publi c:
Rectangle(int W= 0, int H= 0)
Wdth(W, Height(H {}
int width() const { return Wdth; } // Read
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void width(int W { Wdth = W } // Set

void height(int H { Height = H } // Set
b

int main() {
Rectangl e R(19, 47);
/1 Change wi dth & height:
R height(2 * Rwidth());
Rwdth(2 * Rheight());
Y I~

The constructor uses the constructor initializer list (briefly introduced in Chapter 6 and
covered fully in Chapter 12) to initialize the values of Width and Height (using the

pseudoconstructor-call form for built-in types).

int height() const { return Height; } // Read

Of course, accessors and mutators don’t have to be simple pipelinesto an internal variable.

Sometimes they can perform some sort of calculation. The following example uses the

Standard C library time functions to produce a simple Time class:

[1: C09: Cpptine.h

/1 A sinple time class
#i f ndef CPPTIME_H_
#define CPPTI ME_H_

#i ncl ude <cti me>

#i ncl ude <cstring>

class Tinme {
time_t t;
tmlocal;
char Ascii[26];
unsi gned char |flag, aflag;
voi d updat eLocal () {
if(!lIflag) {
local = *localtinme(&);
[ flag++;
}

}
voi d updateAscii() {

if(laflag) {
updat eLocal ();
strcpy(Ascii, asctime(& ocal));
af | ag++;
}
}
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publi c:

Time() { mark(); }

void mark() {
Iflag = aflag = O;
time(&t);

}

const char* ascii() {
updat eAscii ();
return Ascii;

}

/1 Difference in seconds:

int delta(Tinme* dt) const {
return difftime(t, dt->t);

}

i nt Daylight Savi ngs() {
updat eLocal ();
return | ocal .tm. sdst;

}

int DayOfYear() { // Since January 1
updat eLocal ();
return | ocal .tmyday;

}

int DayOFWweek() { // Since Sunday
updat eLocal ();
return | ocal .t mwday;

}

int Sincel900() { // Years since 1900
updat eLocal ();
return | ocal .tmyear;

}

int Month() { // Since January
updat eLocal ();
return | ocal .tm non;

}

int DayOfMont h() {
updat eLocal ();
return | ocal .tm nday;

}

int Hour() { // Since mdight, 24-hour clock
updat eLocal ();
return | ocal.tm hour;

}
int Mnute() {

Chapter 7: Inline Functions 265



updat eLocal () ;
return local.tmmn;
}
i nt Second() {
updat eLocal () ;
return | ocal .tm sec;
}
b
#endif // CPPTIMEH ///:~

The Standard C library functions have multiple representations for time, and these are all part
of the Time class. However, it isn't necessary to update all of them all the time, so instead the
time_t T is used as the base representation, and the tm local and ASCII character
representation Ascii each have flags to indicate if they’ ve been updated to the current time t.
The two private functions updatel ocal( ) and updateAscii( ) check the flags and
conditionally perform the update.

The constructor calls the mark( ) function (which the user can also call to force the object to
represent the current time), and this clears the two flags to indicate that the local time and
ASCII representation are now invalid. The ascii( ) function calls updateAscii( ), which copies
the result of the Standard C library function asctime( ) into alocal buffer because asctime( )
uses a static data area that is overwritten if the function is called elsewhere. The return value
isthe address of thislocal buffer.

In the functions starting with DaylightSavings( ), all use the updatelL ocal( ) function, which
causes the composite inline to be fairly large. This doesn’t seem worthwhile, especialy
considering you probably won't call the functions very much. However, this doesn’t mean al
the functions should be made out of line. If you leave updatel ocal( ) asan inline, its code
will be duplicated in al the out-of-line functions, eliminating the extra overhead.

Here'sasmall test program:

[1: C09: Cpptine.cpp
/1 Testing a sinple tinme class
#i ncl ude <i ostreanp
#i ncl ude "Cpptine. h"
usi ng nanmespace std;

int main() {
Tinme start;
for(int i =1; i < 1000; i++) {
cout << i << ' ';
if(i%d0 == 0) cout << endl;
}
Ti me end;
cout << endl;
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cout << "start = " << start.ascii();

cout << "end = " << end.ascii();

cout << "delta = " << end.delta(&start);
Yy oI~

A Time object is created, then some time-consuming activity is performed, then a second
Time object is created to mark the ending time. These are used to show starting, ending, and
elapsed times.

Inlines & the compiler

To understand when inlining is effective, it’s helpful to understand what the compiler does
when it encounters an inline. Aswith any function, the compiler holds the function type (that
is, the function prototype including the name and argument types, in combination with the
function return value) in its symbol table. In addition, when the compiler seestheinline
function body and the function body parses without error, the code for the function body is
also brought into the symbol table. Whether the code is stored in source form or as compiled
assembly instructions is up to the compiler.

When you make a call to an inline function, the compiler first ensures that the call can be
correctly made; that is, all the argument types must be the proper types, or the compiler must
be able to make a type conversion to the proper types, and the return value must be the correct
type (or convertible to the correct type) in the destination expression. This, of course, is
exactly what the compiler does for any function and is markedly different from what the
preprocessor does because the preprocessor cannot check types or make conversions.

If al the function type information fits the context of the call, then the inline code is
substituted directly for the function call, eliminating the call overhead. Also, if theinlineisa
member function, the address of the object (this) is put in the appropriate place(s), which of
course is another thing the preprocessor is unable to perform.

Limitations
There are two situations when the compiler cannot perform inlining. In these cases, it smply
revertsto the ordinary form of afunction by taking the inline definition and creating storage
for the function just asit does for anon-inline. If it must do thisin multiple translation units
(which would normally cause a multiple definition error), the linker is told to ignore the
multiple definitions.

The compiler cannot perform inlining if the function is too complicated. This depends upon
the particular compiler, but at the point most compilers give up, the inline probably wouldn’t
gain you any efficiency. Generally, any sort of looping is considered too complicated to
expand as an inline, and if you think about it, looping probably entails much more timeinside
the function than embodied in the calling overhead. If the function is just a collection of
simple statements, the compiler probably won't have any troubleinlining it, but if there are a
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lot of statements, the overhead of the function call will be much less than the cost of
executing the body. And remember, every time you call abig inline function, the entire
function body is inserted in place of each call, so you can easily get code bloat without any
noticeable performance improvement. Some of the examplesin this book may exceed
reasonable inline sizesin favor of conserving screen real estate.

The compiler also cannot perform inlining if the address of the function is taken, implicitly or
explicitly. If the compiler must produce an address, then it will allocate storage for the
function code and use the resulting address. However, where an address is not required, the
compiler will probably still inline the code.

It isimportant to understand that an inline is just a suggestion to the compiler; the compiler is
not forced to inline anything at all. A good compiler will inline small, simple functions while
intelligently ignoring inlines that are too complicated. Thiswill give you the results you want
— the true semantics of afunction call with the efficiency of a macro.

Order of evaluation

If you' re imagining what the compiler is doing to implement inlines, you can confuse yourself
into thinking there are more limitations than actually exist. In particular, if aninline makes a
forward reference to a function that hasn’t yet been declared in the class, it can seem like the
compiler won't be able to handleit:

/1: C09: Evorder.cpp
// Inline evaluation order

class Forward {
int i;

publi c:
Forward() : i(0) {}
/1 Call to undeclared function:
int f() const { return g() + 1; }
int g() const { returni; }

}s

int main() {
Forward F;
F.f(0);

Y I~

Inf(), acall ismadeto g( ), athough g( ) has not yet been declared. This works because the
language definition states that no inline functions in a class shall be evaluated until the closing
brace of the class declaration.

Chapter 7: Inline Functions 268



Of course, if g() inturn caled f( ), you'd end up with a set of recursive calls, which are too
complicated for the compiler to inline. (Also, you' d have to perform sometestinf() or g() to
force one of them to «bottom out,» or the recursion would be infinite.)

Hidden activities in constructors &
destructors

Constructors and destructors are two places where you can be fooled into thinking that an
inline is more efficient than it actually is. Both constructors and destructors may have hidden
activities, because the class can contain subobjects whose constructors and destructors must
be called. These sub-objects may be member objects, or they may exist because of inheritance
(which hasn’t been introduced yet). As an example of a class with member objects

/1: Q09: Hi dden. cpp

/! Hidden activites in inlines
#i ncl ude <i ostreanp

usi ng nanmespace std;

cl ass Menber ({

int i, j, k;
publi c:

Mermber(int x =0) { i =) =k =x; }
~Menber () { cout << "~Menber" << endl; }
1

cl ass WthMenbers {
Menber Q R, S; // Have constructors
int i;
publi c:
WthMenbers(int I) : i(l) {} // Trivial?
~W t hMenbers() {
cout << "~WthMenbers" << endl;

}
b

int main() {
Wt hMenbers WV 1) ;
Y I~

In class WithM ember s, the inline constructor and destructor look straightforward and ssimple
enough, but there's more going on than meets the eye. The constructors and destructors for
the member objects Q, R, and S are being called automatically, and those constructors and
destructors are al'so inline, so the difference is significant from norma member functions.
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This doesn’t necessarily mean that you should always make constructor and destructor
definitions out-of-line. When you' re making an initial «sketch» of a program by quickly
writing code, it’s often more convenient to use inlines. However, if you' re concerned about
efficiency, it's a place to look.

Reducing clutter

In abook like this, the simplicity and terseness of putting inline definitionsinside classesis
very useful because more fits on a page or screen (in a seminar). However, Dan Saks33 has
pointed out that in areal project this has the effect of needlessly cluttering the class interface
and thereby making the class harder to use. He refers to member functions defined within
classes using the Latin in situ (in place) and maintains that all definitions should be placed
outside the class to keep the interface clean. Optimization, he argues, is a separate issue. If
you want to optimize, use the inline keyword. Using this approach, the earlier
RECTANGL.CPP example (page Erreur! Signet non défini.) becomes

/1: QC09: Noi nsitu.cpp
/1 Renoving in situ functions

cl ass Rectangle {
int Wdth, Height;

publi c:
Rectangle(int W= 0, int H= 0);
int width() const; // Read
void width(int W; // Set
int height() const; // Read
void height(int H); // Set

1

inline Rectangle::Rectangle(int W int H)
Wdth(W, Height(H {
}

inline int Rectangle::wi dth() const {
return Wdth;

}

inline void Rectangle::width(int W {
Wdth = W

33 Co-author with Tom Plum of C++ Programming Guidelines, Plum Hall, 1991.
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}

inline int Rectangle:: height() const {
return Height;

}

inline void Rectangle::height(int H) {
Hei ght = H;
}

int main() {
Rectangl e R(19, 47);
/1 Transpose wi dth & height:
R hei ght (R wi dth());
R wi dt h(R height());
Y I~

Now if you want to compare the effect of inlining with out-of-line functions, you can simply
remove the inline keyword. (Inline functions should normally be put in header files, however,
while non-inline functions must reside in their own trandation unit.) If you want to put the
functionsinto documentation, it's a simple cut-and-paste operation. In situ functions require
more work and have greater potential for errors. Another argument for this approach is that
you can always produce a consistent formatting style for function definitions, something that
doesn’t always occur with in situ functions.

Preprocessor features

Earlier, | said you almost always want to use inline functions instead of preprocessor macros.
The exceptions are when you need to use three special featuresin the Standard C preprocessor
(which is, by inheritance, the C++ preprocessor): stringizing, string concatenation, and token
pasting. Stringizing, performed with the # directive, allows you to take an identifier and turn it
into a string, whereas string concatenation takes place when two adjacent strings have no
intervening punctuation, in which case the strings are combined. These two features are
exceptionaly useful when writing debug code. Thus,

#define DEBUE X) cout << #X " =" << X << endl

This prints the value of any variable. Y ou can also get atrace that prints out the statements as
they execute:

#define TRACE(S) cout << #S << endl; S

The #S stringizes the statement for output, and the second S reiterates the statement so it is
executed. Of course, this kind of thing can cause problems, especially in one-line for loops:

| for(int i =0; i < 100; i++)
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TRACE(f (i));
Because there are actualy two statements in the TRACE( ) macro, the one-line for loop

executes only the first one. The solution is to replace the semicolon with acommain the
macro.

Token pasting

Token pasting is very useful when you are manufacturing code. It allows you to take two
identifiers and paste them together to automatically create a new identifier. For example,

#define FIELD(A) char* A## _string; int A##_size
class record {

FI ELD( one) ;

FI ELD( t wo) ;

FI ELD(t hr ee) ;

1
1
Each call to the FIELD(') macro creates an identifier to hold a string and another to hold the
length of that string. Not only isit easier to read, it can eliminate coding errors and make
maintenance easier. Notice, however, the use of all upper-case characters in the name of the
macro. Thisisahelpful practice because it tells the reader this is amacro and not a function,
s0 if there are problems, it acts as alittle reminder.

Improved error checking

It's convenient to improve the error checking for the rest of the book; with inline functions
you can simply include the file and not worry about what to link. Up until now, the assert( )
macro has been used for «error checking,» but it's really for debugging and should be
replaced with something that provides useful information at run-time. In addition, exceptions
(presented in Chapter 16) provide a much more effective way of handling many kinds of
errors — especially those that you' d like to recover from, instead of just halting the program.
The conditions described in this section, however, are ones which prevent the continuation of
the program, such asif the user doesn't provide enough command-line arguments or afile
cannot be opened.

Inline functions are convenient here because they allow everything to be placed in a header
file, which simplifies the process of using the package. Y ou just include the header file and
you don’t need to worry about linking.

The following header file will be placed in the book’ s root directory so it's easily accessed
from all chapters.

[1: :require.h

/1 Test for error conditions in prograns
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/1 Local "using nanespace std" for old conpilers
#i fndef REQUI RE H_

#defi ne REQU RE H_

#i ncl ude <cstdi o>

#i ncl ude <cstdlib>

#i ncl ude <fstreanp

inline void require(bool requirenent,
char* nmsg = "Requirenent failed") {
usi ng namespace std;
if (!requirenent) {
fprintf(stderr, "9%", nsg);
exit(1);
}
}

inline void requireArgs(int argc, int args,
char* msg = "Miust use % argunents") {
usi ng nanmespace std;
if (argc !'= args) {
fprintf(stderr, nmsg, args);
exit(1);
}
}

inline void requireM nArgs(int argc, int mnArgs,
char* msg = "Must use at |east %l argunents") {
usi ng nanmespace std;
if(argc < mnArgs) {
fprintf(stderr, nmsg, m nArgs);

exit(1);
}
}
inline void
assure(std::ifstream& in, char* filenane = "") {
usi ng nanmespace std;
if(lin) {

fprintf(stderr,
"Coul d not open file %", filenane);
exit(1);
}

}
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inline void
assure(std::ofstream& in, char* filenane = "") {
usi ng namespace std;
if(lin) {
fprintf(stderr,
"Coul d not open file %", filenane);
exit(1);
}

}
#endif // REQURE H ///:~

The default values provide reasonable messages that can be changed if necessary.

Note the use of local «using namespace std» declarations within each function. Thisis
because some compilers at the time of this writing incorrectly did not include the C standard
library functionsin namespace std, so explicit qualification would cause a compile-time
error. The local declaration allows require.h to work with both correct and incorrect libraries.

Here's asimple program to test require.h:

/1: CO09:Errtest.cpp

/] Testing require.h
#include "../require. h"
#i ncl ude <fstreanr

int main(int argc, char* argv[]) {
int i =1;
require(i, "value nust be nonzero");
requi reArgs(argc, 2);
requi reM nArgs(argc, 2);
ifstreamin(argv[1]);
assure(in, argv[1]); // Use the file nane
ifstreamnofile("nofile.xxx");
assure(nofile); // The default argunent
of streamout ("tnp.txt");
assure(out);

Y I~

Y ou might be tempted to go one step further for opening files and add a macro to require.h:

#defi ne | FOPEN( VAR, NAME) \
i fstream VAR(NAME) ; \
assure( VAR, NAME) ;

Which could then be used like this:
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| FOPEN(in, argv[1])

At first, this might seem appealing since you' ve got less to type. It's not terribly unsafe, but
it'saroad best avoided. Note that, once again, a macro looks like a function but behaves
differently: it's actually creating an object (in) whose scope persists beyond the macro. You
may understand this, but for new programmers and code maintainersit’s just one more thing
they have to puzzle out. C++ is complicated enough without adding to the confusion, so try to
talk yourself out of using macros whenever you can.

Summary

It's critical that you be able to hide the underlying implementation of a class because you may
want to change that implementation sometime later. You'll do thisfor efficiency, or because
you get a better understanding of the problem, or because some new class becomes available
that you want to use in the implementation. Anything that jeopardizes the privacy of the
underlying implementation reduces the flexibility of the language. Thus, the inline functionis
very important because it virtually eliminates the need for preprocessor macros and their
attendant problems. With inlines, member functions can be as efficient as preprocessor
Macros.

Theinline function can be overused in class definitions, of course. The programmer is
tempted to do so because it’'s easier, so it will happen. However, it’'s not that big an issue
because later, when looking for size reductions, you can aways move the functions out of line
with no effect on their functionality. The development guideline should be «First make it
work, then optimize it.»

Exercises

1. Take Exercise 2 from Chapter 6, and add an inline constructor, and an inline
member function called print() to print out all the valuesin the array.

2. Take the NESTFRND.CPP example from Chapter 2 and replace all the
member functions with inlines. Make them non-in situ inline functions.
Also change theinitialize( ) functions to constructors.

3. Take the NL.CPP example from Chapter 5 and turn nl into aninline
function in its own header file.

4, Create a class A with adefault constructor that announces itself. Now make
anew class B and put an object of A asamember of B, and give B aninline
congtructor. Create an array of B objects and see what happens.

5. Create alarge quantity of the objects from Exercise 4, and use the Time
class to time the difference between a non-inline constructor and an inline
constructor. (If you have a profiler, also try using that.)
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10: Name control

Creating names is a fundamental activity in programming,
and when a project gets large the number of names can
easily be overwhelming. C++ allows you a great deal of
control over both the creation and visibility of names, where
storage for those names is placed, and linkage for names.
The static keyword was overloaded in C before people knew what the term «overl oad»
meant, and C++ has added yet another meaning. The underlying concept with all uses of

static seems to be «something that holds its position» (like static electricity), whether that
means a physical location in memory or visibility within afile.

In this chapter, you'll learn how static controls storage and visibility, and an improved way to
control access to names via C++'s nhamespace feature. You'll aso find out how to use
functions that were written and compiled in C.

Static elements from C

In both C and C++ the keyword static has two basic meanings, which unfortunately often step
on each other’ s toes:

1. Allocated once at afixed address; that is, the object is created
inaspecia static data area rather than on the stack each time
afunctionis called. Thisisthe concept of static storage.

2. Loca to aparticular trandation unit (and class scopein C++,
asyou will seelater). Here, static controls the visibility of a
name, so that name cannot be seen outside the trandation unit
or class. This also describes the concept of linkage, which
determines what names the linker will see.

This section will look at the above meanings of static as they were inherited from C.

static variables inside functions

Normally, when you create a variable inside a function, the compiler allocates storage for that
variable each time the function is called by moving the stack pointer down an appropriate
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amount. If thereis aninitializer for the variable, the initialization is performed each time that
seguence point is passed.

Sometimes, however, you want to retain a val ue between function calls. Y ou could
accomplish this by making a global variable, but that variable would not be under the sole
control of the function. C and C++ allow you to create a static object inside a function; the
storage for this object is not on the stack but instead in the program’ s static storage area. This
object isinitialized once the first time the function is called and then retains its value between
function invocations. For example, the following function returns the next character in the
string each time the function is called:

/1: Cl0: Statfun.cpp

/1 Static vars inside functions
#i ncl ude <i ostreanp

#include "../require. h"

usi ng nanmespace std;

char onechar(const char* string = 0) {
static const char* s;
if(string) {
s = string;
return *s;
}
el se
require(s, "un-initialized s");
if(*s == "'\0")
return O;
return *s++;

}

char* a = "abcdef ghij kl mmopqr st uvwxyz";

int main() {
/1 Onechar(); // require() fails
onechar(a); // Initializes s to a
char c;
while((c = onechar()) !'= 0)
cout << ¢ << endl;
Yy oI~

The static char* sholdsits value between calls of onechar () becauseits storageis not part
of the stack frame of the function, but is in the static storage area of the program. When you
call onechar () with achar* argument, sis assigned to that argument, and the first character
of the string is returned. Each subsequent call to onechar () without an argument produces the
default value of zero for string, which indicates to the function that you are till extracting
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characters from the previoudly initialized value of s. The function will continue to produce
characters until it reaches the null terminator of the string, at which point it stops
incrementing the pointer so it doesn’t overrun the end of the string.

But what happens if you call onechar () with no arguments and without previously
initializing the value of s? In the definition for s, you could have provided an initializer,

static char* s=0;

but if you do not provide an initializer for a static variable of a built-in type, the compiler
guarantees that variable will be initialized to zero (converted to the proper type) at program
start-up. So in onechar (), the first time the function is called, sis zero. In this case, theif(!s)
conditional will catch it.

The above initialization for sisvery simple, but initialization for static objects (like all other
objects) can be arbitrary expressions involving constants and previously declared variables
and functions.

static class objects inside functions

Therules are the same for static objects of user-defined types, including the fact that some
initialization is required for the object. However, assignment to zero has meaning only for
built-in types; user-defined types must be initialized with constructor calls. Thus, if you don't
specify constructor arguments when you define the static object, the class must have a default
constructor. For example,

/1: C10: Funobj . cpp

/1 Static objects in functions
#i ncl ude <i ostreanp

usi ng nanmespace std;

class X {
int i;
publi c:
X(int 1 =0) : i(l) {} // Default
~X() { cout << "X :~X()" << endl; }
1

void f() {
static X x1(47);
static X x2; // Default constructor required

}

int main() {

f();
Y oI~
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The static objects of type X inside (') can be initialized either with the constructor argument
list or with the default constructor. This construction occurs the first time control passes
through the definition, and only the first time.

Static object destructors

Destructors for static objects (all objects with static storage, not just local static objectsasin
the above example) are called when main( ) exits or when the Standard C library function
exit( ) isexplicitly caled, main() in most implementations calls exit( ) when it terminates.
This meansthat it can be dangerous to call exit() inside a destructor because you can end up
with infinite recursion. Static object destructors are not called if you exit the program using
the Standard C library function abort( ).

Y ou can specify actions to take place when leaving main( ) (or caling exit()) by using the
Standard C library function atexit( ). In this case, the functions registered by atexit( ) may be
called before the destructors for any objects constructed before leaving main( ) (or caling
exit()).

Destruction of static objects occursin the reverse order of initialization. However, only
objects that have been constructed are destroyed. Fortunately, the programming system keeps
track of initialization order and the objects that have been constructed. Global objects are
always constructed before main( ) is entered, so this last statement applies only to static
objects that are local to functions. If afunction containing alocal static object is never called,
the constructor for that object is hever executed, so the destructor is aso not executed. For
example,

/1: Cl10: St at dest . cpp

/1 Static object destructors

#i ncl ude <fstreanp

usi ng nanmespace std;

of stream out ("statdest.out"); // Trace file

class Obj {
char c; // ldentifier
publi c:

oj (char C : c(O {
out << "Mj::j() for " << c << endl;
}
~Qj () {
out << "j::~Cbj() for " << ¢ << endl;
}
1

hj A("A); /]l dobal (static storage)
/1 Constructor & destructor always called
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void f() {
static bj B('B');

}
void g() {

static Obj C('C);
}

int main() {
out << "inside main()" << endl;
f(); // Calls static constructor for B
/1 g() not called
out << "leaving main()" << endl;
Yy oI~

In Obj, the char c acts as an identifier so the constructor and destructor can print out
information about the object they’ re working on. The Obj A isaglobal object, so the
constructor is always called for it before main() is entered, but the constructors for the static
Obj B inside f(') and the static Obj C inside g( ) are called only if those functions are called.

To demonstrate which constructors and destructors are called, inside main( ) only f() is
called. The output of the program is

oj::wj () for A
i nsi de mai n()
oj::nj() for B
| eavi ng mai n()
oj ::~Cbj () for B
oj ::~Cbj () for A

The constructor for A is called before main( ) is entered, and the constructor for B is called
only because f( ) is called. When main( ) exits, the destructors for the objects that have been
constructed are called in reverse order of their construction. This meansthat if g( ) iscaled,
the order in which the destructors for B and C are called depends on whether f() or g( ) is
caled first.

Notice that the trace file of stream object out is also a static object. It isimportant that its
definition (as opposed to an extern declaration) appear at the beginning of the file, before
thereis any possible use of out. Otherwise you'll be using an object before it is properly
initialized.

In C++ the constructor for aglobal static object is called before main() is entered, so you
now have a simple and portable way to execute code before entering main( ) and to execute
code with the destructor after exiting main( ). In C thiswas aways atrial that required you to
root around in the compiler vendor’ s assembly-language startup code.
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Controlling linkage

Ordinarily, any name at file scope (that is, not nested inside a class or function) isvisible
throughout al trandation unitsin a program. This is often called external linkage because at
link time the name is visible to the linker everywhere, external to that trandation unit. Global
variables and ordinary functions have external linkage.

There are timeswhen you'd like to limit the visibility of a name. Y ou might like to have a
variable at file scope so al the functions in that file can use it, but you don’t want functions
outside that file to see or access that variable, or to inadvertently cause name clashes with
identifiers outside the file.

An object or function name at file scope that is explicitly declared static islocal to its
trandlation unit (in the terms of this book, the .CPP file where the declaration occurs); that
name hasinternal linkage. This means you can use the same name in other translation units
without a name clash.

One advantage to internal linkage is that the name can be placed in a header file without
worrying that there will be a clash at link time. Names that are commonly placed in header
files, such as const definitions and inline functions, default to interna linkage. (However,
const defaults to internal linkage only in C++; in C it defaults to external linkage.) Note that
linkage refers only to elements that have addresses at link/load time; thus, class declarations
and local variables have no linkage.

Confusion

Here's an example of how the two meanings of static can cross over each other. All global
objects implicitly have static storage class, so if you say (at file scope),

|inta:O;

then storage for a will be in the program’ s static data area, and the initiaization for a will
occur once, before main( ) is entered. In addition, the visibility of ais global, across al
trandation units. In terms of visihility, the opposite of static (visible only in this trandation
unit) is extern, which explicitly states that the visibility of the name is across al trandation
units. So the above definition is equivalent to saying

0;

| extern int a
But if you say instead,
| static int a = 0;

al you've done is change the visihility, so a hasinternal linkage. The storage classis
unchanged — the object resides in the static data area whether the visibility is static or
extern.

Once you get into local variables, static stops altering the visibility (and extern hasno
meaning) and instead alters the storage class.
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With function names, static and extern can only alter visibility, so if you say,
| extern void f();

it’' s the same as the unadorned declaration

| void f();

and if you say,

| static void f();

it meansf( ) isvisible only within this trandlation unit; this is sometimes called file static.

Other storage class specifiers

You will see static and extern used commonly. There are two other storage class specifiers
that occur less often. The auto specifier is almost never used because it tells the compiler that
thisisalocal variable. The compiler can aways determine this fact from the context in which
the variable is defined, so auto is redundant.

A register variableisaloca (auto) variable, along with a hint to the compiler that this
particular variable will be heavily used, so the compiler ought to keep it in aregister if it can.
Thus, it is an optimization aid. Various compilers respond differently to this hint; they have
the option to ignoreit. If you take the address of the variable, the register specifier will
almost certainly be ignored. Y ou should avoid using register because the compiler can
usually do abetter job at of optimization than you.

Namespaces

Although names can be nested inside classes, the names of global functions, global variables,
and classes are still in asingle global name space. The static keyword gives you some control
over this by allowing you to give variables and functions internal linkage (make them file
static). But in alarge project, lack of control over the global name space can cause problems.
To solve these problems for classes, vendors often create long complicated names that are
unlikely to clash, but then you’ re stuck typing those names. (A typedef is often used to
simplify this.)) It's not an elegant, language-supported solution.

Y ou can subdivide the globa name space into more manageabl e pieces using the namespace
feature of C++.34 The namespace keyword, like class, struct, enum, and union, puts the
names of its membersin a distinct space. While the other keywords have additional purposes,
the creation of a new name space is the only purpose for namespace.

34y our compiler may not have implemented this feature yet; check your local documentation.
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Creating a namespace
The creation of a namespace is hotably similar to the creation of a class:

nanespace MyLib {
/1 Decl arations

}

This produces a new namespace containing the enclosed declarations. There are significant
differences with class, struct, union and enum, however:

6. A namespace definition can only appear at the global scope, but
namespaces can be nested within each other.

7. No terminating semicolon is necessary after the closing brace of a
namespace definition.

8. A namespace definition can be «continued» over multiple header files
using a syntax that would appear to be aredefinition for a class:

//: Cl10: Header 1. h
nanespace MyLib {
extern int X
void f();
...
Y I~
/1: Cl10: Header 2. h
/1 Add nore names to M/Lib
nanespace MyLib { // NOT a redefinition!
extern int Y,

void g();
I
Yy oI~
9. A namespace name can be aliased to another name, so you don’'t have to

type an unwieldy name created by alibrary vendor:

nanmespace BobsSuperDuperlLibrary {
class widget { /* ... */ };
class poppit { /* ... *| };
...
}
/1 Too much to type! I'Il alias it:
nanespace Bob = BobsSuper DuperLi brary;

10. Y ou cannot create an instance of a namespace as you can with a class.
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Unnamed namespaces

Each trandlation unit contains an unnamed namespace that you can add to by saying
namespace without an identifier:

nanespace {
class Am { /* ... *[ };
class Leg { /* ... *| };
class Head { /* ... */ };
cl ass Robot {
Arm arni4];
Leg | eg[ 16];
Head head[ 3];
I
} Xant han;
int i, j, k;
}
The names in this space are automatically available in that translation unit without
quaification. It is guaranteed that an unnamed space is unique for each trandation unit. If you
put local names in an unnamed namespace, you don’t need to give them internal linkage by
making them static.

Friends

You caninject afriend declaration into a namespace by declaring it within an enclosed class:

nanespace ne {
class us {

/...

friend you();

1

}

Now the function you( ) is a member of the namespace me.

Using a namespace

Y ou can refer to a name within a namespace in two ways: one name at atime, using the scope
resolution operator, and more expediently with the using keyword.

Scope resolution

Any name in a namespace can be explicitly specified using the scope resolution operator, just
like the names within a class:
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nanespace X {
class Y {
static int i;
publi c:
void f();
i
class Zz;
void foo();
}
int XX:Y.:i =9
class X :Z {
int u v, w
publi c:
Z(int 1);
int g();
1
X:zZ::Z(int 1) { u=v =
int X:Z::g() { returnu
void X :foo() {
X:Z a(l);
a.g();

:|,
v =w=0; }

So far, namespaces ook very much like classes.

The using directive

Because it can rapidly get tediousto type the full qualification for an identifier in a
namespace, the using keyword allows you to import an entire namespace at once. When used
in conjunction with the namespace keyword, thisis called ausing directive. The using
directive declares al the names of a namespace to be in the current scope, so you can
conveniently use the unqualified names:

nanespace nmath {
enum sign { positive, negative };
class integer {
int i;
sign s;
publi c:
integer(int I = 0)
(),
s(i >= 0 ? positive : negative)
{}
sign Sign() { returns; }
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void Sign(sign S) { s =S; }
I
1
integer A, B, G

i nteger divide(integer, integer);
1

}

Now you can declare al the names in math inside a function, but leave those names nested
within the function:

void arithnetic() {
usi ng nanmespace mat h;
i nteger X;
X. Sign(positive);

Without the using directive, all the names in the namespace would need to be fully qualified.

One aspect of the using directive may seem dlightly counterintuitive at first. The visibility of
the names introduced with a using directive is the scope where the directive is made. But you
can override the names from the using directive as if they’ ve been declared globally to that
scope!

void q() {
usi ng nanmespace mat h;

integer A, // Hides math::A
A. Si gn(negative);
mat h: : A. Si gn(posi tive);

}

If you have a second namespace:

nanmespace cal cul ation {
class integer {};
i nteger divide(integer, integer);
/1

}

And this namespace is a so introduced with ausing directive, you have the possibility of a
collision. However, the ambiguity appears at the point of use of the name, not at the using
directive:

void s() {
usi ng nanmespace mat h;
usi ng nanmespace cal cul ati on;
/1 Everything’ s ok until:
divide(l, 2); // Anbiguity
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| }

Thusit’s possible to write using directives to introduce a number of namespaces with
conflicting names without ever producing an ambiguity.

The using declaration

Y ou can introduce names one at a time into the current scope with a using declaration. Unlike
the using directive, which treats names as if they were declared globally to the scope, ausing

declaration is a declaration within the current scope. This means it can override names from a
using directive:

nanespace U {
void f();
void g();

}

nanespace V {
void f();
void g();

}

voi d func() {
usi ng nanmespace U; // Using directive
using V::f; // Using declaration
f(); /1 Calls V::f();
U:f(); // Mist fully qualify to call
}

The using declaration just gives the fully specified name of the identifier, but no type
information. This means that if the namespace contains a set of overloaded functions with the
same name, the using declaration declares all the functions in the overloaded set.

Y ou can put a using declaration anywhere a normal declaration can occur. A using
declaration works like a normal declaration in all ways but one: it's possible for ausing
declaration to cause the overload of afunction with the same argument types (which isn't
allowed with normal overloading). This ambiguity, however, doesn’t show up until the point
of use, rather than the point of declaration.

A using declaration can also appear within a namespace, and it has the same effect as
anywhere else: that name is declared within the space:

nanespace Q {
using U :f;
using V::g;
/1
}
void m() {
usi ng nanespace Q
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f(); /1 Calls U :f();
g(); I/ Calls V::g():
}

A using declarationis an dlias, and it allows you to declare the same function in separate
namespaces. If you end up redeclaring the same function by importing different namespaces,
it's OK — there won't be any ambiguities or duplications.

Static members in C++

There are times when you need a single storage space to be used by all objects of aclass. In
C, you would use aglobal variable, but thisis not very safe. Globa data can be modified by
anyone, and its name can clash with other identical namesin alarge project. It would be idea
if the data could be stored as if it were global, but be hidden inside a class, and clearly
associated with that class.

Thisis accomplished with static data membersinside aclass. There is asingle piece of
storage for a static data member, regardiess of how many objects of that class you create. All
objects share the same static storage space for that data member, so it is away for them to
«communi cate» with each other. But the static data belongs to the class; its name is scoped
inside the class and it can be public, private, or protected.

Defining storage for static data members

Because static data has a single piece of storage regardless of how many objects are created,
that storage must be defined in a single place. The compiler will not allocate storage for you,
although this was once true, with some compilers. The linker will report an error if astatic
data member is declared but not defined.

The definition must occur outside the class (no inlining is allowed), and only one definition is
allowed. Thusit isusual to put it in the implementation file for the class. The syntax
sometimes gives people trouble, but it is actually quite logical. For example,

class A {
static int i;
publi c:
/...
}s
and later, in the definition file,
| int A:i o= 1;

If you were to define an ordinary global variable, you would say
| int i =1;
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but here, the scope resolution operator and the class name are used to specify A::i.

Some people have trouble with the ideathat A::i is private, and yet here’ s something that
seems to be manipulating it right out in the open. Doesn't this break the protection
mechanism? It's a completely safe practice for two reasons. First, the only place this
initialization islegal isin the definition. Indeed, if the static data were an object with a
constructor, you would call the constructor instead of using the = operator. Secondly, once the
definition has been made, the end-user cannot make a second definition — the linker will
report an error. And the class creator is forced to create the definition, or the code won't link
during testing. This ensures that the definition happens only once and that it’s in the hands of
the class creator.

The entire initialization expression for a static member isin the scope of the class. For
example,

//: Cl0:Statinit.cpp
/1 Scope of static initializer
#i ncl ude <i ostreanp
usi ng nanmespace std;

int x = 100;

class WthStatic {
static int x;
static int vy;
publi c:
void print() const {
cout << "WthStatic::x " << x << endl;
cout << "WthStatic::y " <<y << endl;

}
b

int WthStatic::x
int WthStatic::y X + 1;
[/ WthStatic::x NOT ::x

int main() {
WthStatic W5
W5. print();

Y I~

Here, the quaification WithStatic:: extends the scope of WithStatic to the entire definition.
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static array initialization

It's possible to create static const objects as well as arrays of static objects, both const and
non-const. Here' s the syntax you use to initialize such elements:

/l: Cl0: Statarry.cpp {O
/1 Initializing static arrays

cl ass Val ues {
static const int size;
static const float table[4];
static char letters[10];

b
const int Val ues::size = 100;

const float Values::table[4] = {
1.1, 2.2, 3.3, 4.4

}1

char Values::letters[10] = {
‘a', 'b'", 'c¢', 'd, 'e',
", 'g, thty it e

1

1~

Aswith all static member data, you must provide asingle external definition for the member.
These definitions have internal linkage, so they can be placed in header files. The syntax for
initializing static arrays is the same as any aggregate, but you cannot use automatic counting.
With the exception of the above paragraph, the compiler must have enough knowledge about
the class to create an object by the end of the class declaration, including the exact sizes of all
the components.

Compile-time constants inside classes

In Chapter 6 enumerations were introduced as a way to create a compile-time constant (one
that can be evauated by the compiler in a constant expression, such as an array size) that's
local to aclass. This practice, although commonly used, is often referred to as the «enum
hack» because it uses enumerations in away they were not originally intended.
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To accomplish the same thing using a better approach, you can use a static const inside a
class.3° Because it’s both const (it won’'t change) and static (there’s only one definition for
the whole class), astatic const inside a class can be used as a compile-time constant, like this:

class X {
static const int size;
int array[size];

publi c:

/1

1

const int X :size = 100; // Definition

If you're using it in a constant expression inside a class, the definition of the static const
member must appear before any instances of the class or member function definitions
(presumably in the header file). Aswith an ordinary global const used with a built-in type, no
storage is allocated for the const, and it has internal linkage so no clashes occur.

An additional advantage to this approach is that any built-in type may be made a member
static const. With enum, you're limited to integral values.

Nested and local classes

You can easily put static data membersin that are nested inside other classes. The definition
of such membersis an intuitive and obvious extension — you simply use another level of
scope resolution. However, you cannot have static data membersinside local classes (classes
defined inside functions). Thus,

//: Cl10: Local .cpp {G

/1l Static nenbers & | ocal classes
#i ncl ude <i ostreane

usi ng nanmespace std;

/1 Nested class CAN have static data nenbers:
class Quter {
class Inner {
static int i; // K
}s
}s

int Quter::lnner::i = 47,

35y our compiler may not have implemented this feature yet; check your local documentation.
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/1l Local class cannot have static data nenbers:
void f() {

cl ass Foo {

publi c:
/1! static int i; [/ Error

/1 (How woul d you define i?)

}ox

Y I~

Y ou can see the immediate problem with a static member in aloca class: How do you
describe the data member at file scope in order to define it? In practice, local classes are used

very rarely.

static member functions

Y ou can aso create static member functions that, like static data members, work for the class
as awhole rather than for a particular object of aclass. Instead of making a global function
that livesin and «pollutes» the global or local namespace, you bring the function inside the
class. When you create a static member function, you are expressing an association with a
particular class.

A static member function cannot access ordinary data members, only static data members. It
can cal only other static member functions. Normally, the address of the current object (this)
is quietly passed in when any member function is called, but a static member has no this,
which is the reason it cannot access ordinary members. Thus, you get the tiny increasein
speed afforded by a global function, which doesn’'t have the extra overhead of passing this,
but the benefits of having the function inside the class.

Using static to indicate that only one piece of storage for a class member exists for al objects
of aclass paralelsits use with functions, to mean that only one copy of aloca variableis
used for al calls of afunction.

Here' s an example showing static data members and static member functions used together:
//: Cl10: StaticMenber Functi ons. cpp

class X {
int i;
static int j;
publi c:
X(int I =0) : i(l) {
/1 Non-static nenber function can access
/1 static nmenber function or data:
o=
}

int val() const { returni; }
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static int incr() {
/1! i++; /] Error: static nmenber function
/!l cannot access non-static nenber data
return ++j;

}

static int f() {
/11 val(); /! Error: static nmenber function
/!l cannot access non-static nmenber function

return incr(); // OK-- calls static
}
b
int X:j =0;
int main() {
X X;
X* xp = &X;
x.£();
xp->f () ;
X:f(); /1 Only works with static nenbers
Yo~

Because they have no this pointer, static member functions can neither access nonstatic data
members nor call nonstatic member functions. (Those functions require athis pointer.)

Notice in main( ) that a static member can be selected using the usual dot or arrow syntax,
associating that function with an object, but also with no object (because a static member is
associated with a class, not a particular object), using the class name and scope resolution
operator.

Here's an interesting feature: Because of the way initialization happens for static member
objects, you can put a static data member of the same class inside that class. Here' san
example that alows only a single object of type egg to exist by making the constructor
private. Y ou can access that object, but you can’t create any new egg objects:

/1: Cl10: Sel fmem cpp

/1 Static nmenber of same type

/1 ensures only one object of this type exists.
/1 Also referred to as a "singleton" pattern.
#i ncl ude <i ostreanr

usi ng nanmespace std;

class Egg {
static Egg e;
int i;
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Egg(int 1) : i(l) {}
publi c:

static Egg* instance() { return &e; }
int val() { returni; }

}1
Egg EQQ::e(47);

int main() {

/1" Egg x(1); // Error -- can't create an Egg
/1 You can access the single instance:
cout << Egg::instance()->val () << endl;

Y I~

The initialization for E happens after the class declaration is complete, so the compiler has all
the information it needs to allocate storage and make the constructor call.

Static initialization dependency

Within a specific trandation unit, the order of initialization of static objects is guaranteed to
be the order in which the object definitions appear in that trand ation unit. The order of
destruction is guaranteed to be the reverse of the order of initialization.

However, there is no guarantee concerning the order of initialization of static objects across
trandation units, and there's no way to specify this order. This can cause significant problems.
Asan example of an instant disaster (which will halt primitive operating systems, and kill the
process on sophisticated ones), if one file contains

/1l First file
#i ncl ude <fstreanp
of stream out ("out.txt");

and another file uses the out object in one of itsinitiaizers

/1l Second file
#i ncl ude <fstreanp
extern of stream out;
cl ass oof {
publi c:
oof () { out << "barf"; }
} OOF;

the program may work, and it may not. If the programming environment builds the program
so that the first file isinitialized before the second file, then there will be no problem.
However, if the second fileisinitialized before the first, the constructor for oof relies upon the
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existence of out, which hasn’'t been constructed yet and this causes chaos. Thisisonly a
problem with static object initializers that depend on each other, because by the time you get
into main( ), al constructors for static objects have aready been called.

A more subtle example can be found in the ARM.36 In onefile,

extern int vy;
int x =y + 1;

and in asecond file,

extern int x;
int y =x+ 1;

For all static objects, the linking-loading mechanism guarantees a static initialization to zero
before the dynamic initialization specified by the programmer takes place. In the previous
example, zeroing of the storage occupied by the fstream out object has no special meaning,
so it istruly undefined until the constructor is called. However, with built-in types,
initialization to zero does have meaning, and if the files areinitialized in the order they are
shown above, y begins as statically initialized to zero, so x becomes one, and y is dynamically
initialized to two. However, if the files are initiaized in the opposite order, x is statically
initialized to zero, y is dynamically initialized to one, and x then becomes two.

Programmers must be aware of this because they can create a program with static
initialization dependencies and get it working on one platform, but move it to another
compiling environment where it suddenly, mysteriously, doesn’t work.

What to do

There are three approaches to dealing with this problem:
1. Don't do it. Avoiding stetic initializer dependenciesis the best solution.

2. If you must do it, put the critical static object definitionsin asinglefile, so
you can portably control their initialization by putting them in the correct
order.

3. If you're convinced it's unavoidable to scatter static objects across

trandation units— as in the case of alibrary, where you can't control the
programmer who uses it — there is a technique pioneered by Jerry Schwarz
while creating the iostream library (because the definitions for cin, cout,
and cerr livein a separate file).
This technique requires an additional classin your library header file. This classis responsible
for the dynamic initialization of your library’s static objects. Here is a simple example:

3BBjarne Stroustrup and Margaret Ellis, The Annotated C++ Reference Manual, Addison-
Wesley, 1990, pp. 20-21.
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//: C10: Depend. h

/1 Static initialization technique

#i f ndef DEPEND H_

#defi ne DEPEND H_

#i ncl ude <i ostreany

extern int x; // Delarations, not definitions
extern int vy;

class Initializer {

static int init_count;

publi c:

Initializer() {
std::cout << "Initializer()" << endl;
/1 Initialize first time only

if(init_count++ == 0) {
std::cout << "performing initialization"
<< endl;
x = 100;
y = 200;
}
}
~Initializer() {
std::cout << "~Initializer()" << endl;
/] Clean up last time only
if(--init_count == 0) {
std::cout << "performing cleanup" << endl;
/1 Any necessary cl eanup here
}
}

b

/1 The follow ng creates one object in each
/1 file where DEPEND. H is included, but that
/1 object is only visible within that file:
static Initializer init;
#endif // DEPEND H ///:~

The declarations for x and y announce only that these objects exist, but don’t allocate storage
for them. However, the definition for the I nitializer init allocates storage for that object in
every file where the header isincluded, but because the name is static (controlling visibility
thistime, not the way storage is allocated because that is at file scope by default), it isonly
visible within that translation unit, so the linker will not complain about multiple definition
errors.
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Hereisthe file containing the definitions for X, y, and init_count:

[1: Cl10: Depdefs.cpp {G

// Definitions for DEPEND. H

#i ncl ude " Depend. h"

/[l Static initialization will force
/! all these values to zero:

int x;

int vy;

int Initializer::init_count;

11~

(Of course, afile static instance of init is also placed in thisfile.) Suppose that two other files
are created by the library user:

[1: C10: Depend. cpp {C
/] Static initialization
#i ncl ude " Depend. h"
11~

/1: C10: Depend2. cpp
/1{L} Depdefs Depend

/] Static initialization
#i ncl ude " Depend. h"

usi ng nanmespace std;

int main() {
cout << "inside main()" << endl;
cout << "leaving main()" << endl;
Yy oI~

Now it doesn’t matter which trandation unit isinitialized first. The first time a translation unit
containing DEPEND.H isinitialized, init_count will be zero so the initialization will be
performed. (This depends heavily on the fact that global objects of built-in types are set to
zero before any dynamic initialization takes place.) For all the rest of the trandation units, the
initialization will be skipped. Cleanup happens in the reverse order, and ~I nitializer ()
ensures that it will happen only once.

This example used built-in types as the global static objects. The technique also works with
classes, but those objects must then be dynamically initialized by the I nitializer class. One
way to do thisisto create the classes without constructors and destructors, but instead with
initialization and cleanup member functions using different names. A more common
approach, however, is to have pointers to objects and to create them dynamically on the heap
inside I nitializer (). This requires the use of two C++ keywords, new and delete, which will
be explored in Chapter 11.
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Alternate linkage specifications

What happens if you're writing a program in C++ and you want to use a C library? If you
make the C function declaration,

| float f(int a, char b);

the C++ compiler will mangle (decorate) this name to something like f_int_int to support
function overloading (and type-safe linkage). However, the C compiler that compiled your C
library has most definitely not mangled the name, so its internal name will be _f. Thus, the
linker will not be able to resolve your C++ callsto f( ).

The escape mechanism provided in C++ isthe alternate linkage specification, which was
produced in the language by overloading the exter n keyword. The extern isfollowed by a
string that specifies the linkage you want for the declaration, followed by the declaration
itself:

extern "C' float f(int a, char b);
Thistells the compiler to give C linkage to f(); that is, don't mangle the name. The only two

types of linkage specifications supported by the standard are «C» and «C++,» but compiler
vendors have the option of supporting other languages in the same way.

If you have agroup of declarations with alternate linkage, put them inside braces, like this:

extern "C" {
float f(int a, char b);
doubl e d(int a, char b);

}
Or, for aheader file,

extern "C" {
#i ncl ude "Myheader. h"
}

Most C++ compiler vendors handle the aternate linkage specifications inside their header
files that work with both C and C++, so you don’t have to worry about it.

The only aternate linkage specification strings that are standard are «C» and «C++» but
implementations can support other languages using the same mechanism.

Summary

The static keyword can be confusing because in some situations it controls the location of
storage, and in others it controls visibility and linkage of a name.
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With the introduction of C++ namespaces, you have an improved and more flexible
alternative to control the proliferation of namesin large projects.

The use of static inside classes is one more way to control namesin a program. The names do
not clash with global names, and the visibility and access is kept within the program, giving
you greater control in the maintenance of your code.

Exercises

1.

Create aclassthat holds an array of ints. Set the size of the array using an
untagged enumeration inside the class. Add a const int variable, and
initialize it in the constructor initiaizer list. Add a static int member
variable and initialize it to a specific value. Add a static member function
that prints the static data member. Add an inline constructor and an inline
member function called print() to print out al the values in the array, and
to call the static member function.

In STATDEST.CPP, experiment with the order of constructor and
destructor callsby calling f() and g() inside main() in different orders.
Does your compiler get it right?

In STATDEST.CPP, test the default error handling of your implementation
by turning the original definition of out into an extern declaration and
putting the actual definition after the definition of A (whose obj constructor
sends information to out). Make sure there’ s nothing else important running
on your machine when you run the program or that your machine will
handle faults robustly.

Create a class with a destructor that prints a message and then calls exit( ).
Create aglobal static object of this class and see what happens.

Modify VOLATILE.CPP from Chapter 6 to make comm::isr() something
that would actually work as an interrupt service routine.
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11: References &
the copy-
constructor

References are a C++ feature that are like constant pointers
automatically dereferenced by the compiler.

Although references also exist in Pascal, the C++ version was taken from the Algol language.
They are essential in C++ to support the syntax of operator overloading (see Chapter 10), but
are aso agenera convenience to control the way arguments are passed into and out of
functions.

This chapter will first look briefly at the differences between pointersin C and C++, then
introduce references. But the bulk of the chapter will delve into a rather confusing issue for
the new C++ programmer: the copy-constructor, a specia constructor (requiring references)
that makes a new object from an existing object of the same type. The copy-constructor is
used by the compiler to pass and return objects by valueinto and out of functions.

Finally, the somewhat obscure C++ pointer-to-member feature isilluminated.

Pointersin C++

The most important difference between pointersin C and in C++ isthat C++ isamore
strongly typed language. This stands out where void* is concerned. C doesn’t let you casually
assign a pointer of one type to another, but it does allow you to quietly accomplish this
through avoid*. Thus,

bi rd* b;
rock* r;
voi d* v;

v r;
b V;
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C++ doesn’t alow this because it leaves a big hole in the type system. The compiler gives you
an error message, and if you really want to do it, you must make it explicit, both to the
compiler and to the reader, using a cast. (See Chapter 17 for C++’simproved casting syntax.)

Referencesin C++

A reference (&) islike a constant pointer that is automatically dereferenced. It is usually used
for function argument lists and function return values. But you can also make a free-standing
reference. For example,

int x;
int &r = x;
When areference is created, it must be initialized to alive object. However, you can aso say
| int & q = 12;

Here, the compiler allocates a piece of storage, initializes it with the value 12, and tiesthe
reference to that piece of storage. The point is that any reference must be tied to someone
else’ s piece of storage. When you access a reference, you' re accessing that storage. Thus if
you say,
int x =
int & a
a++;

0;
= X,

incrementing a is actually incrementing x. Again, the easiest way to think about areferenceis
as afancy pointer. One advantage of this pointer is you never have to wonder whether it's
been initialized (the compiler enforcesit) and how to dereference it (the compiler does it).

There are certain rules when using references:

6. A reference must be initialized when it is created. (Pointers can be
initialized at any time.)

7. Once areferenceisinitialized to an object, it cannot be changed to refer to
another object. (Pointers can be pointed to another object at any time.)

8. Y ou cannot have NULL references. Y ou must always be able to assume that
areferenceis connected to a legitimate piece of storage.

References in functions

The most common place you'll see referencesisin function arguments and return values.
When areference is used as a function argument, any modification to the reference inside the
function will cause changes to the argument outside the function. Of course, you could do the
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same thing by passing a pointer, but a reference has much cleaner syntax. (Y ou can think of a
reference as nothing more than a syntax convenience, if you want.)

If you return a reference from a function, you must take the same care asif you return a
pointer from a function. Whatever the reference is connected to shouldn’t go away when the
function returns; otherwise you'll be referring to unknown memory.

Here's an example:

/1: Cl1:Refrnce.cpp
/1 Sinple C++ references

int* f(int* x) {
(*Xx) ++;
return x; // Safe; x is outside this scope

}

int& g(int& x) {
x++; /] Same effect as in f()
return x; // Safe; outside this scope

}

int& h() {
int q;
/1Y return q; [/ Error
static int x;
return x; // Safe; x lives outside scope

}

int main() {
int A=0;
f(&A); // Wly (but explicit)
g(A); // dean (but hidden)
Y~

The call to () doesn’t have the convenience and cleanliness of using references, but it's clear
that an address is being passed. In the call to g( ), an address is being passed (via areference),
but you don't seeit.

const references

The reference argument in REFRNCE.CPP works only when the argument is a non-const
object. If it isaconst object, the function g( ) will not accept the argument, which is actualy a
good thing, because the function does modify the outside argument. If you know the function
will respect the constness of an object, making the argument a const reference will allow the
function to be used in al situations. This meansthat, for built-in types, the function will not
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modify the argument, and for user-defined types the function will call only const member
functions, and won’t modify any public data members.

The use of congt references in function arguments is especially important because your
function may receive atemporary object, created as a return value of another function or
explicitly by the user of your function. Temporary objects are aways const, so if you don’'t
use aconst reference, that argument won't be accepted by the compiler. Asavery simple
example,

/1: Cl1: Pasconst.cpp
/1 Passing references as const

void f(int& {}
void g(const int& {}

int main() {

/1Y f(1); I/ Error
g(1);

Y I~

The call to f(1) produces a compiler error because the compiler must first create areference. It
does so by alocating storage for anint, initializing it to one and producing the address to bind
to the reference. The storage must be a const because changing it would make no sense —
you can never get your hands on it again. With all temporary objects you must make the same
assumption, that they’ re inaccessible. It's valuable for the compiler to tell you when you're
changing such data because the result would be lost information.

Pointer references

In C, if you wanted to modify the contents of the pointer rather than what it points to, your
function declaration would look like

| void f(int**);
and you' d have to take the address of the pointer when passing 